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Previously on CMP784
• convolution layer

• design guidelines for CNNs

• CNN architectures

• transfer learning

• semantic segmentation networks

• object detection networks
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detail from the visualization of ResNet-18 // Graphcore



Lecture Overview
• more on transfer learning

• visualizing neuron activations

• visualizing class activations

• pre-images

• adversarial examples

• adversarial training

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Andrea Vedaldi’s tutorial on Understanding Visual Representations
—Wojciech Samek’s talk on Towards explainable Deep Learning
—Efstratios Gavves and Max Willing’s UvA deep learning class
—Fei-Fei Li, Justin Johnson and Serana Yeung’s CS231n class
—Ian Goodfellow’s talk on Adversarial Examples and Adversarial Training
—Justin Johnson’s EECS 498/598 class
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Image Representations

• An encoder maps the data into a vectorial representation

• Facilitate labelling of images, text, sound, videos, ... 
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Image representations

 An encoder maps the data into a vectorial representation 

 Facilitate labelling of images, text, sound, videos, …
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Modern Convolutional Nets

Excellent performance in most image 
understanding tasks 

Learn a sequence of general-purpose 
representations

Millions of parameters learned from data

The “meaning” of the representation is 
unclear
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unclear

3

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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[AlexNet by Krizhevsky et al. 2012]
[AlexNet by Krizhevsky et al. 2012] 
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256⇥256 images and training our network on these extracted patches4. This increases the size of our
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Transfer Learning with 
Deep Networks
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Invariance and Covariance

Matthew D. Zeiler, Rob Fergus. Visualizing and Understanding Convolutional Networks. arXiv 2013.

Visualizing and Understanding Convolutional Neural Networks
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Figure 4. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.

Mean Feature Mean Feature
Sign Change Sign Change

Occlusion Location Layer 5 Layer 7
Right Eye 0.067± 0.007 0.069± 0.015
Left Eye 0.069± 0.007 0.068± 0.013
Nose 0.079± 0.017 0.069± 0.011

Random 0.107± 0.017 0.073± 0.014

Table 3. Measure of correspondence for di↵erent object
parts in 5 di↵erent dog images. The lower scores for the
eyes and nose (compared to random object parts) show the
model implicitly establishing some form of correspondence
of parts at layer 5 in the model. At layer 7, the scores
are more similar, perhaps due to upper layers trying to
discriminate between the di↵erent breeds of dog.

explore the ability of these feature extraction layers to
generalize to other datasets, namely Caltech-101 (Fei-
fei et al., 2006), Caltech-256 (Gri�n et al., 2006) and
PASCAL VOC 2012. To do this, we keep layers 1-7
of our ImageNet-trained model fixed and train a new
softmax classifier on top (for the appropriate number
of classes) using the training images of the new dataset.
Since the softmax contains relatively few parameters,
it can be trained quickly from a relatively small num-
ber of examples, as is the case for certain datasets.

This approach is a supervised form of pre-training,
since the bulk of the model parameters have been
learned in a supervised fashion on the ImageNet data.
This prevents direct comparisons to existing algo-
rithms since they did not use the ImageNet data dur-

ing training. However, the results do give an absolute
assessment of the performance of features extracted by
our network. We also try a second strategy of training
a model from scratch, i.e. resetting layers 1-7 to ran-
dom values and train them, as well as the softmax, on
the training images of the dataset.

Caltech-101: We follow the procedure of (Fei-fei
et al., 2006) and randomly select 15 or 30 images per
class for training and test on up to 50 images per class
reporting the average of the per-class accuracies in Ta-
ble 4, using 5 train/test folds. Training took 17 min-
utes for 30 images/class. The pre-trained model beats
the best reported result for 30 images/class from (Bo
et al., 2013) by 2.2%. The convnet model trained from
scratch however does terribly, only achieving 46.5%.

Acc % Acc %

# Train 15/class 30/class

(Bo et al., 2013) � 81.4 ± 0.33
(Jianchao et al., 2009) 73.2 84.3

Non-pretrained convnet 22.8 ± 1.5 46.5 ± 1.7
ImageNet-pretrained convnet 83.8 ± 0.5 86.5 ± 0.5

Table 4. Caltech-101 classification accuracy for our con-
vnet models, against two leading alternate approaches.

Caltech-256: We follow the procedure of (Gri�n
et al., 2006), selecting 15, 30, 45, or 60 training images
per class, reporting the average of the per-class accura-
cies in Table 5. Our ImageNet-pretrained model beats
the state-of-the-art results obtained by (Bo et al.,
2013) by a significant margin: 74.2% vs 55.2% for 60
training images/class. However, as with Caltech-101,

8
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Filter Invariance and 
Equivariance

Mathieu Aubry and Bryan C. Russell. Understanding deep features with computer-generated imagery. ICCV 2015.

Table 2: Relative variance and intrinsic dimensionality of a
foreground square of one color on a background color. Each
cell: top – rel. variance; bottom – intrinsic dim.

Foreground Background �L

Places, fc7 13.4% 51.1% 35.5%
13 14 216

AlexNet, fc7 19.2% 39.9% 40.8%
14 16 315

VGG, fc7 20.2% 36.9% 42.9%
11 15 216

4.2. Object categories

In this section we want to explore the embedding gener-
ated by the networks for image sets and factors related to
the tasks for which they are trained, namely object category
classification in the case of AlexNet and VGG. We also com-
pare against the CNN trained on Places. We thus select an
object category and, using rendered views of 3D models, we
analyze how the CNN features are influenced by the style
of the specific instances as well as different transformations
and rendering parameters. The parameter sampling for each
experiment is described in section 3.3.

Model–orientation separation. The first variation we
study jointly with style is the rotation of the 3D model. The
first column of figure 2 visualizes the PCA embedding of the
resulting pool5 features. This embedding is hard to interpret
because it mixes information about viewpoint (important for
cars) and instance style (important for chairs). To separate
this information, we perform the decomposition presented in
section 2. The decomposition provides us with embedding
spaces for style and viewpoint and associates to each model
and viewpoint its own descriptor. We visualize the embed-
dings in figure 2; the second column corresponds to style and
the third to viewpoint. Note that the different geometries of
the two categories lead to different embeddings of rotation
in pool5. While a left-facing car typically looks similar to a
right-facing car and is close in the feature space (figure 2g), a
right-facing chair is usually different from left-facing chairs
and is far in the embedding (figure 2c). The last column
shows the viewpoint embedding for fc6. The comparison
of the last two columns indicates that much viewpoint infor-
mation is lost between pool5 and fc6 and that fc6 is largely
left-right flip invariant. A potential interesting future direc-
tion could be to interpret the viewpoint embeddings relative
to classic work on mental rotation [29].

Translation, scale, lighting, color. We repeated the same
experiment for the following factors: 2D translation, scale,
light direction, background color, and object color. For

(a) Car, pool5 (b) Chair, pool5

(c) Car, fc6 (d) Chair, fc6

(e) Car, fc7 (f) Chair, fc7

Figure 3: PCA embeddings for 2D position on AlexNet.

simplicity and computational efficiency, we considered in
all experiments a frontal view of all the instances of the
objects. The framework allows the same analysis using the
object orientation as an additional factor. The embeddings
associated with AlexNet features for translation of cars and
chairs are shown in figure 3. Note that similar to rotations,
the embedding corresponding to cars and chairs are different,
and that the first two components of the fc6 features indicate
a left-right flip-invariant representation. The embeddings for
the pool5 layer of the car category for the other factors are
shown figure 4.

Quantitative analysis: viewpoint. We analyze the rela-
tive variance explained by the 3D rotation, translation, and
scale experiments. While the variance was different for
each factor and category, the variation across the layers and
networks was consistent in all cases. For this reason we
report in table 3 an average of the variance across all five
categories and all three factors. We refer the reader to the
supplementary material for detailed results. The analysis of
table 3 reveals several observations. First, the proportion
of the variance of deeper layers corresponding to viewpoint
information is less important, while the proportion corre-
sponding to style is more important. This corresponds to the

(a) Lighting (b) Scale

(c) Object color (d) Background color

Figure 4: PCA embeddings for different factors using
AlexNet pool5 features on “car” images. Colors in (a) corre-
spond to location of the light source (green – center).

intuition that higher layers are more invariant to viewpoint.
We also note that the residual feature �L is less important
in higher layers, indicating style and viewpoint are more
easily separable in those layers. These observations are con-
sistent with our results of section 4.1. Second, the part of
the variance associated with style is more important in the
fc7 layer for VGG than in AlexNet and Places. Also, the
part associated with the viewpoint and residual is smaller.
Note that this does not hold in pool5, where the residual is
important for the VGG network. This effect may be related
to the difference in the real and intrinsic dimension of the
features. The intrinsic dimension of the style component of
VGG pool5 features is larger and decreases from pool5 to
fc7. On the contrary, the intrinsic dimensionality of AlexNet
has smaller variation across layers. Finally, we note that the
intrinsic dimensionality of the fc7 style feature of Places is
smaller than the other networks. This may indicate that it is
less rich, and may be related to the fact that identifying the
style of an object is less crucial for scene classification. We
believe it would be an interesting direction for future work
to study how the improved performance of VGG for object
classification is related to the observed reduced sensitivity to
viewpoint.

Quantitative analysis: color. We report in table 4 the
average across categories of our quantitative study for object
and background color. The results are different from those of
viewpoint. First, we observe that a larger part of the variance
of the features of the Places network is explained by the

Table 3: Relative variance and intrinsic dimensionality av-
eraged over experiments for different object categories and
viewpoints (3D orientation, translation, and scale). Each cell:
top – rel. variance; bottom – intrinsic dim. We do not report
the intrinsic dim. of �L since it is typically larger than 1K
across the experiments and expensive to compute.

pool5 fc6 fc7
Places 26.8 % 21.4 % 17.8 %

8.5 7.0 5.9
Viewpoint AlexNet 26.4 % 19.4 % 15.6 %

8.3 7.2 6.0
VGG 21.2 % 16.4 % 12.3 %

10.0 7.7 6.2
Places 26.8 % 39.1 % 49.4 %

136.3 105.5 54.6
Style AlexNet 28.2 % 40.3 % 49.4 %

121.1 125.5 96.7
VGG 26.4 % 44.3 % 56.2 %

181.9 136.3 94.2
Places 46.8 % 39.5 % 32.9 %

�L AlexNet 45.0 % 40.3 % 35.0 %
VGG 52.4 % 39.3 % 31.5 %

color in all layers. This may be related to the fact that color
is a stronger indicator of the scene type than it is of an object
category. Second, while the part of the variance explained by
foreground and background color is similar in the fc7 feature
of the Places network, it is much larger for the foreground
object than for the background object in AlexNet and VGG.
Once again, one can hypothesize that it is related to the fact
that the color of an object is more informative than the color
of its background for object classification. Finally, we note
that similarly to our previous experiments, the difference
between networks is present in pool5 and increases in the
higher layers, indicating that the features become more tuned
to the target task in the higher layers of the networks.

4.3. Natural images

Embedding. We used ImageNet [28] images to study the
embeddings of natural images. Since we have no control
over the image content, we cannot perform a detailed anal-
ysis of the different factors similar to the previous sections.
Our only choice is to consider the images altogether. The
direct embedding of natural images is possible but hard to
interpret. We can however project the images in the spaces
discovered in section 4.2. The resulting embeddings for style
and viewpoint are shown in figure 5 and are similar to the
embeddings obtained with the CAD models.

2D-3D instance recognition. The observed similarity of
the embeddings for natural and rendered images motivates

(a) Lighting (b) Scale

(c) Object color (d) Background color

Figure 4: PCA embeddings for different factors using
AlexNet pool5 features on “car” images. Colors in (a) corre-
spond to location of the light source (green – center).

intuition that higher layers are more invariant to viewpoint.
We also note that the residual feature �L is less important
in higher layers, indicating style and viewpoint are more
easily separable in those layers. These observations are con-
sistent with our results of section 4.1. Second, the part of
the variance associated with style is more important in the
fc7 layer for VGG than in AlexNet and Places. Also, the
part associated with the viewpoint and residual is smaller.
Note that this does not hold in pool5, where the residual is
important for the VGG network. This effect may be related
to the difference in the real and intrinsic dimension of the
features. The intrinsic dimension of the style component of
VGG pool5 features is larger and decreases from pool5 to
fc7. On the contrary, the intrinsic dimensionality of AlexNet
has smaller variation across layers. Finally, we note that the
intrinsic dimensionality of the fc7 style feature of Places is
smaller than the other networks. This may indicate that it is
less rich, and may be related to the fact that identifying the
style of an object is less crucial for scene classification. We
believe it would be an interesting direction for future work
to study how the improved performance of VGG for object
classification is related to the observed reduced sensitivity to
viewpoint.

Quantitative analysis: color. We report in table 4 the
average across categories of our quantitative study for object
and background color. The results are different from those of
viewpoint. First, we observe that a larger part of the variance
of the features of the Places network is explained by the

Table 3: Relative variance and intrinsic dimensionality av-
eraged over experiments for different object categories and
viewpoints (3D orientation, translation, and scale). Each cell:
top – rel. variance; bottom – intrinsic dim. We do not report
the intrinsic dim. of �L since it is typically larger than 1K
across the experiments and expensive to compute.
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color in all layers. This may be related to the fact that color
is a stronger indicator of the scene type than it is of an object
category. Second, while the part of the variance explained by
foreground and background color is similar in the fc7 feature
of the Places network, it is much larger for the foreground
object than for the background object in AlexNet and VGG.
Once again, one can hypothesize that it is related to the fact
that the color of an object is more informative than the color
of its background for object classification. Finally, we note
that similarly to our previous experiments, the difference
between networks is present in pool5 and increases in the
higher layers, indicating that the features become more tuned
to the target task in the higher layers of the networks.

4.3. Natural images

Embedding. We used ImageNet [28] images to study the
embeddings of natural images. Since we have no control
over the image content, we cannot perform a detailed anal-
ysis of the different factors similar to the previous sections.
Our only choice is to consider the images altogether. The
direct embedding of natural images is possible but hard to
interpret. We can however project the images in the spaces
discovered in section 4.2. The resulting embeddings for style
and viewpoint are shown in figure 5 and are similar to the
embeddings obtained with the CAD models.

2D-3D instance recognition. The observed similarity of
the embeddings for natural and rendered images motivates
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• Filters learn how different 
variances affect appearance 

• Different layers and different 
hierarchies focus on different 
transformations 

• For different objects filters 
reproduce different behaviors 
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Right-left chairs look different

Right-left chairs look similar

Filter Invariance and Equivariance

Mathieu Aubry and Bryan C. Russell. Understanding deep features with computer-generated imagery. ICCV 2015.



Pre-training and Transfer Learning

CNN as universal representations

• First several layers in most CNNs are generic 

• They can be reused when training data is 
comparatively scarce.

Application 

• Pre-train on ImageNet classification 1M images 

• Cut at some deep conv or FC layer to get 
features 

11

[Evaluations in A. S. Razavian, 2014, Chatfield et al., 2014] 

Pre-training and transfer learning

 CNN as universal representations

▶ First several layers in most CNNs 
are generic

▶ They can be reused when training 
data is comparatively scarce  

 Application

▶ Pre-train on ImageNet classification  
1M images

▶ Cut at some deep conv or FC layer 
to get features

6

representation predictor label

Pertained layers Fine-tuned layers
Pretrained layers Fine-tuned layers

[Evaluations in A. S. Razavian, 2014, Chatfield et al., 2014] 



Transfer Learning
Deep representations are generic
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Deep representations are generic

Transfer learning

 A general purpose deep encoder is obtained by chopping off the last layers of a 
CNN trained on a large dataset.

7

c1 c2 c3 c4 c5 f6 f7 f8
class  
label

trained on a reference dataset (eg ImageNet) predictor
class  
label

trained on target dataset (eg PASCAL)

deep feature encoderdeep feature encoder

• A general purpose deep encoder is obtained by chopping off the last layers of a CNN trained on a 
large dataset. 



Transfer Learning with CNNs
• Keep layers 1-7 of our ImageNet-trained model fixed 

• Train a new softmax classifier on top using the training images of the new dataset. 
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1. Train on 
Imagenet

2. Small dataset:
feature extractor

Freeze 
these

Train 
this

3. Medium dataset:
finetuning

more data = retrain more of the 
network (or all of it)

Freeze these

Train this

tip: use only ~1/10th of the original 
learning rate in finetuning top layer, 
and ~1/100th on intermediate layers



CNNs as Filter Banks
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Deep representations used as local features

• In R-CNN and similar models, the most important shared component are the convolutional 
features. 

Deep representations used as local features

CNNs as filter banks

 In R-CNN and similar models, the most important shared component are the 
convolutional features.

8

c1 c2 c3 c4 c5 f6 f7 f8
class  
label

trained on a reference dataset (eg ImageNet)
predictor

class  
labeltrained on target dataset (eg PASCAL)

deep filter bank

pooling

deep filter bank



Interpretability
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Dimensions of Interpretation
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Different dimensions
of “interpretability” 

model

data

prediction



Dimensions of Interpretation

17

Different dimensions
of “interpretability” 

model

data
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Dimensions of Interpretation

model

prediction

data

“Explain why a certain pattern x has 
been classified in a certain way f(x).”

“What would a pattern belonging 
to a certain category typically look 
like according to the model.”

“Which dimensions of the data
are most relevant for the task.”

Different dimensions

of “interpretability”

prediction
“Explain why a certain pattern x has 
been classified in a certain way f(x).”



Dimensions of Interpretation
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data
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Dimensions of Interpretation

model

prediction

data

“Explain why a certain pattern x has 
been classified in a certain way f(x).”

“What would a pattern belonging 
to a certain category typically look 
like according to the model.”

“Which dimensions of the data
are most relevant for the task.”

Different dimensions

of “interpretability”

4

Dimensions of Interpretation

model

prediction

data

“Explain why a certain pattern x has 
been classified in a certain way f(x).”

“What would a pattern belonging 
to a certain category typically look 
like according to the model.”

“Which dimensions of the data
are most relevant for the task.”
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Dimensions of Interpretation

model

prediction

data

“Explain why a certain pattern x has 
been classified in a certain way f(x).”

“What would a pattern belonging 
to a certain category typically look 
like according to the model.”

“Which dimensions of the data
are most relevant for the task.”

Different dimensions

of “interpretability”

prediction
“Explain why a certain pattern x has 
been classified in a certain way f(x).”

model
“What would a pattern belonging
to a certain category typically look
like according to the model.” 

data
“Which dimensions of the data 
are most relevant for the task.” 



Why Interpretability?
1) Verify that classifier works as expected

Wrong decisions can be costly and dangerous

20

ICASSP 2017 Tutorial — W. Samek, G. Montavon & K.-R. Müller /29

Why Interpretability ?

Wrong decisions can be costly 
and dangerous

1) Verify that classifier works as expected

11

“Autonomous car crashes, 
because it wrongly recognizes …”

“AI medical diagnosis system 
misclassifies patient’s disease …”

ICASSP 2017 Tutorial — W. Samek, G. Montavon & K.-R. Müller /29

Why Interpretability ?

Wrong decisions can be costly 
and dangerous

1) Verify that classifier works as expected

11

“Autonomous car crashes, 
because it wrongly recognizes …”

“AI medical diagnosis system 
misclassifies patient’s disease …”

“Autonomous car crashes, 
because it wrongly recognizes ...” 

“AI medical diagnosis system
misclassifies patient’s disease ...”



Why Interpretability?
2) Improve classifier

21

ICASSP 2017 Tutorial — W. Samek, G. Montavon & K.-R. Müller /29

2) Improve classifier

12

Why Interpretability ?

Generalization error Generalization error + human experience 

ICASSP 2017 Tutorial — W. Samek, G. Montavon & K.-R. Müller /29

2) Improve classifier

12

Why Interpretability ?

Generalization error Generalization error + human experience 



Why Interpretability?
3) Learn from the learning machine

22
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“It's not a human move. I've 
never seen a human play this 
move.” (Fan Hui)

3) Learn from the learning machine

Old promise:

“Learn about the human brain.”

13

Why Interpretability ?
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“It's not a human move. I've 
never seen a human play this 
move.” (Fan Hui)

3) Learn from the learning machine

Old promise:

“Learn about the human brain.”

13

Why Interpretability ?

“It's not a human move. I’ve
never seen a human play this
move.” (Fan Hui)

Old promise:
“Learn about the human brain.”



Why Interpretability?
4) Interpretability in the sciences

23

Learn about the physical / biological / chemical mechanisms. 
(e.g. find genes linked to cancer, identify binding sites ...)

ICASSP 2017 Tutorial — W. Samek, G. Montavon & K.-R. Müller /2915

4) Interpretability in the sciences

Learn about the physical / biological / chemical mechanisms. 

(e.g. find genes linked to cancer, identify binding sites …)

Why Interpretability ?
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4) Interpretability in the sciences

Learn about the physical / biological / chemical mechanisms. 

(e.g. find genes linked to cancer, identify binding sites …)

Why Interpretability ?



Why Interpretability?
5) Compliance to legislation

24

European Union’s new General 
Data Protection Regulation

“right to explanation”

Retain human decision in order to assign responsibility.

“With interpretability we can ensure that ML models
work in compliance to proposed legislation.”



Dimensions of Interpretation

25

5

Dimensions of Interpretation

Find the input pattern

that maximizes class

probability.

Find the most likely

input pattern for a 

given class.

Explain individual

prediction.

Find the input pattern
that maximizes class
probability. 

Find the most likely
input pattern for a 
given class.

Explain individual
prediction.

model analysis decision analysis



6

Dimensions of Interpretation

6

Dimensions of InterpretationDimensions of Interpretation
• Finding a prototype:

Question: How does a “motorbike“ typically look like

• Individual explanation:

Question: Why is this example classified as motorbike?
26



Some Approaches
• Visualize patches that maximally activate neurons

• Visualize the weights

• Visualize the representation space (e.g. with t-SNE)

• Occlusion experiments

• Human experiment comparisons

• Deconv approaches (single backward pass)

• Optimization over image approaches (optimization)

27



Visualize patches that maximally activate 
neurons

28

Rich feature hierarchies for accurate object detection and semantic segmentation
[Girshick, Donahue, Darrell, Malik]

one-stream AlexNet

pool5



First Layer: Visualize Filters

29

conv1

only interpretable on the first layer :( 



First Layer: Visualize Filters

30Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 20175

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-121:
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

AlexNet:
64 x 3 x 11 x 11 

ResNet-18: 
64 x 3 x 7 x 7

ResNet-101: 
64 x 3 x 7 x 7

DenseNet-121: 
64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014 
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017 
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Higher Layers: 
Visualize 
Filters

you can still do it 
for higher layers, 
it’s just not that 
interesting

(these are taken 
from ConvNetJS 
CIFAR-10 demo)

layer 1 weights

layer 2 weights

layer 3 weights



Last Layer

32

fc7 layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the 
feature vectors



Last Layer: Nearest Neighbors

33
Justin Johnson April 4, 2022Lecture 21 -

Last Layer: Nearest Neighbors
Test 
image L2 Nearest neighbors in feature space

Recall: Nearest 
neighbors in pixel space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012.
Figures reproduced with permission.

11

Recall: Nearest 
neighbors in pixel space 

Test
image L2 Nearest neighbors in feature space



Last Layer: Dimensionality Reduction
t-SNE visualization
[van der Maaten & Hinton]

• Embed high-dimensional 
points so that locally, 
pairwise distances are 
conserved

• i.e. similar things end up in 
similar places. dissimilar 
things end up wherever

• Right: Example embedding 
of MNIST digits (0-9) in 2D

34



t-SNE 
visualization:

• two images are placed 
nearby if their CNN codes 
are close. See more:

http://cs.stanford.edu/people
/karpathy/cnnembed/



t-SNE 
visualization:

• two images are placed 
nearby if their CNN codes 
are close. See more:

http://cs.stanford.edu/peopl
e/karpathy/cnnembed/



Visualize patches that maximally activate neurons
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201712

Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.

• Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

• Run many images through the network, 
record values of chosen channel

• Visualize image patches that correspond to
maximal activations

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201712

Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.
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(as a function of 
the position of the 
square of zeros in 
the original image)

Which Pixels Matter? Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
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Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Which Pixels Matter? Saliency via Occlusion

Justin Johnson April 4, 2022Lecture 21 -

Which Pixels Matter?  
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

16

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
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Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201713

Occlusion Experiments

Mask part of the image before 
feeding to CNN, draw heatmap of 
probability at each mask location

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Which Pixels Matter? Saliency via Occlusion
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Which Pixels Matter?  
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, 
check how much predicted probabilities change

16



Which pixels matter? Saliency via Backprop
Forward pass: Compute probabilities

41

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201715

Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014



Which pixels matter? Saliency via Backprop
Forward pass: Compute probabilities

42
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Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201715

Saliency Maps

Dog

How to tell which pixels matter for classification?

Compute gradient of (unnormalized) class 
score with respect to image pixels, take 
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models 
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014



Which pixels matter? Saliency via Backprop
• Given the “monkey” class, what are the 

most “monkey-ish” parts in my image? 

• Approximate Sc around an initial point I0
with the first order Taylor expansion

, where            

from backpropagation

⎯ Solution is locally optimal 

43
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o Given the “monkey” class, what are the 
most “monkey-ish” parts in my image?

o Approximate 𝑆𝑐 around an initial point 𝐼0
with the first order Taylor expansion

𝑆𝑐 𝐼 ȁ𝐼0 ≈ 𝑤𝑇𝐼 + 𝑏, where 𝑤 = 𝜕𝑆𝑐
𝜕𝐼

ȁ𝐼0 from 
backpropagation

◦ Solution is locally optimal

Class-specific image saliency

Sc(I)|I0 ⇡ wT I + b w =
@Sc

@I
|I0

K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014



Which pixels matter? Saliency via Backprop

44
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Examples
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Examples
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Examples

K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014



Which pixels matter? Saliency via Backprop
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Examples

K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014



Saliency Maps: Segmentation without Supervision
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Saliency Maps: Segmentation without Supervision

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al, “Grabcut: Interactive foreground extraction using iterated graph cuts”, ACM TOG 2004

Use GrabCut on 
saliency map

21

Use GrabCut
on saliency map 

K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014



Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. one 
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with 
respect to image pixels

47

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201712

Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 feature 
map

Compute gradient of neuron value with 
respect to image pixels
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Maximally Activating Patches

Pick a layer and a channel; e.g. conv5 is 
128 x 13 x 13, pick channel 17/128

Run many images through the network, 
record values of chosen channel

Visualize image patches that correspond 
to maximal activations

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; 
reproduced with permission.Justin Johnson April 4, 2022Lecture 21 -

Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 
feature map

Compute gradient of neuron value with 
respect to image pixels

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

23

Images come out nicer if you only 
backprop positive gradients through 
each ReLU (guided backprop)Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Intermediate Features via (guided) backprop

Maximally activating patches 
(Each row is a different neuron)

49

Guided Backprop

Justin Johnson April 4, 2022Lecture 21 -

Intermediate Features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop

24

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Intermediate Features via (guided) backprop

Maximally activating patches 
(Each row is a different neuron)
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Guided Backprop

Justin Johnson April 4, 2022Lecture 21 -

Intermediate Features via (guided) backprop

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.

Maximally activating patches
(Each row is a different neuron)

Guided Backprop

25
Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Visualizing arbitrary neurons along the way 
to the top…

51Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Visualizing arbitrary neurons along the way 
to the top…

52Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
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Visualizing 
arbitrary 
neurons 
along the 
way to the 
top...

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Last layer CNN features:
! ∈ ℝ!×#×$

Pooled features:
$ ∈ ℝ$

Class Scores:
% ∈ ℝ%

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
& ∈ ℝ$×%

26

Global
Average
Pooling

Fully Connected
Layer, weights

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016



Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016



Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

59

Justin Johnson April 4, 2022Lecture 21 -

Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Class Activation Mapping (CAM)
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Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016

Last layer CNN features:
! ∈ ℝ!×#×$

Pooled features:
$ ∈ ℝ$

Class Scores:
% ∈ ℝ%

KH

W

K
C

Global 
Average 
Pooling

Fully Connected 
Layer, weights
& ∈ ℝ$×%

26Justin Johnson April 4, 2022Lecture 21 -

Class Activation Mapping (CAM)

Zhou et al, “Learning Deep Features for Discriminative Localization”, CVPR 2016
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Figure 2: Grad-CAM overview: Given an image, and a category (‘tiger cat’) as input, we foward propagate the image through the model to obtain the raw class scores before
softmax. The gradients are set to zero for all classes except the desired class (tiger cat), which is set to 1. This signal is then backpropagated to the rectified convolutional feature
map of interest, where we can compute the coarse Grad-CAM localization (blue heatmap). Finally, we pointwise multiply the heatmap with guided backpropagation to get Guided
Grad-CAM visualizations which are both high-resolution and class-discriminative.

of current generation CNNs (Section 6), showing that seem-
ingly unreasonable predictions have reasonable explanations.
For image captioning and VQA, our visualizations expose
the somewhat surprising insight that common CNN + Long
Short Term Memory (LSTM) models can often be good at
localizing discriminative input image regions despite not
being trained on grounded image-text pairs.
(3) We visualize the recently introduced ResNets [16] for
the task of image classification and VQA (Section 7.2). We
observe that while visualizing different layers from top to
bottom, the discriminative ability of Grad-CAM significantly
reduces as we encounter skip connections connecting layers
with different output dimensionality. We analyze this further
in the supplementary Section G.
(4) We design and conduct human studies to show that
Guided Grad-CAM explanations are class-discriminative
and help humans not only establish trust, but also helps un-
trained users successfully discern a ‘stronger’ network from
a ‘weaker’ one even when both make identical predictions,

simply on the basis of their different explanations.

2. Related Work
Our work draws on recent work in CNN visualizations,
model trust assessment, and weakly-supervised localization.
Visualizing CNNs. A number of previous works [40, 42,
45, 13] have visualized CNN predictions by highlighting
‘important’ pixels (i.e. change in intensities of these pixels
have the most impact on the prediction’s score). Specifically,
Simonyan et al. [40] visualize partial derivatives of predicted
class scores w.r.t. pixel intensities, while Guided Backpropa-
gation [42] and Deconvolution [45] make modifications to
‘raw’ gradients that result in qualitative improvements. De-
spite producing fine-grained visualizations, these methods
are not class-discriminative. Visualizations with respect to
different classes are nearly identical (see Figures 1b and 1h).

Other visualization methods synthesize images to maximally
activate a network unit [40, 11] or invert a latent represen-
tation [32, 10]. Although these can be high-resolution and
class-discriminative, they visualize a model overall and not
predictions for specific input images.
Assessing Model Trust. Motivated by notions of inter-
pretability [28] and assessing trust in models [38], we eval-
uate Grad-CAM visualizations in a manner similar to [38]
via human studies to show that they can be important tools
for users to evaluate and place trust in automated systems.
Weakly supervised localization. Another relevant line of
work is weakly supervised localization in the context of
CNNs, where the task is to localize objects in images using
only whole image class labels [7, 34, 35, 47].
Most relevant to our approach is the Class Activation Map-
ping (CAM) approach to localization [47]. This approach
modifies image classification CNN architectures replacing
fully-connected layers with convolutional layers and global
average pooling [26], thus achieving class-specific feature
maps. Others have investigated similar methods using global
max pooling [35] and log-sum-exp pooling [36].
A drawback of CAM is that it requires feature maps to di-
rectly precede softmax layers, so it is only applicable to a
particular kind of CNN architectures performing global av-
erage pooling over convolutional maps immediately prior to
prediction (i.e. conv feature maps ! global average pooling
! softmax layer). Such architectures may achieve inferior
accuracies compared to general networks on some tasks (e.g.
image classification) or may simply be inapplicable to other
tasks (e.g. image captioning or VQA). We introduce a new
way of combining feature maps using the gradient signal
that does not require any modification in the network ar-
chitecture. This allows our approach to be applied to any
CNN-based architecture, including those for image caption-

3
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Gradient ascent:
Generate a synthetic
image that maximally
activates a neuron

Natural image regularizerNeuron value

I* = arg maxI f(I) + R(I)
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Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 
L2 norm of generated image

44K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014
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Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 
L2 norm of generated image

44K. Simonyan, A. Vedaldi and A. Zisserman. Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps. ICLR 
Workshop 2014

Simple regularizer: Penalize 
L2 norm of generated image 

Justin Johnson April 4, 2022Lecture 21 -

Visualizing CNN Features: Gradient Ascent

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Simple regularizer: Penalize 
L2 norm of generated image

44Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.

Better regularizer: Penalize L2 norm of 
image; also during optimization 
periodically

1. Gaussian blur image
2. Clip pixels with small values to 0
3. Clip pixels with small gradients to 0
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Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
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4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

min
x

�hek,�(x)i+RTV (x) +R↵(x)

• Look for an image that maximally activates a specific feature component 
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Visualizing CNN Features: Gradient Ascent
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Adding “multi-faceted” visualization gives even nicer results: 
(Plus more careful regularization, center-bias)

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, 
ICML Visualization for Deep Learning Workshop 2016.Justin Johnson April 4, 2022Lecture 21 -

Visualizing CNN Features: Gradient Ascent
Adding “multi-faceted” visualization gives even nicer results:
(Plus more careful regularization, center-bias)

Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 
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Nguyen et al, “Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks”, ICML Visualization for Deep Learning Workshop 2016. 
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Visualization: Pre-Image 5

Image Space Representation Space

Φ

Φ-1 Φ(x)

Φ-1

 The representation is not injective  
• The representation is not injective 

Image Space Representation Space
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• The representation is not injective 

• The reconstruction ambiguity provides useful 
information about the representation

Image Space Representation Space
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A simple yet general and effective method 
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 A simple yet general and effective method
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Image Representation Pre-ImageReconstruction

≈

Start from random noise 
 

Optimize using stochastic gradient descent

min
x

k�(x)� �0k22
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min
x

k�(x)� �0k22

Finding a Pre-Image 

 A simple yet general and effective method

14

No prior TV-norm β = 1 TV-norm β = 2No prior TV-norm 𝛽 = 1 TV-norm 𝛽 = 2

+RTV (x)
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conv 1 conv 2 conv 3 conv 4 conv 5 fc 6 fc 7 fc 8

Conv 1
ReLU 1
Max pool 1

LRN 1

AlexNet 
[Krizhevsky et al. 2012]

Conv 2
ReLU 2
Max pool 2

LRN 2

Conv 3
ReLU 3

Conv 4
ReLU 4

Conv 5
ReLU 5
Max pool 5

FC 6
ReLU 6

FC 7
ReLU 7

FC 8

AlexNet [Krizhevsky et al. 2012]
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Multiple reconstructions. Images 
in quadrants all “look” the same to 
the CNN (same code)



Inverting Visual Representations with 
Convolutional Networks [Dosovitskiy and Brox2016]

Minimize mean squared 
error:

Pre-image as the 
conditional expectation:

Given a training set of 
images and their features, 
learn weights of an 
deconvolutional network:

119

Image CONV1 CONV2 CONV3 CONV4 CONV5 FC6 FC7 FC8

Our

[19]

AE

Our

[19]

AE

Figure 16: Reconstructions from different layers of AlexNet with our method and [19].

CONV4

CONV5

FC6

FC7

FC8

Figure 17: Interpolation between the features of two images. Left: AlexNet weights fixed, right: autoencoder.

1.1. Related work

Our approach is related to a large body of work on in-
verting neural networks. These include works making use
of backpropagation or sampling [15, 16, 18, 27, 9, 25] and,
most similar to our approach, other neural networks [2].
However, only recent advances in neural network architec-
tures allow us to invert a modern large convolutional net-
work with another network.

Our approach is not to be confused with the Decon-
vNet [28], which propagates high level activations back-
ward through a network to identify parts of the image re-
sponsible for the activation. In addition to the high-level
feature activations, this reconstruction process uses extra
information about maxima locations in intermediate max-
pooling layers. This information has been shown to be cru-
cial for the approach to work [22]. A visualization method
similar to DeconvNet is by Springenberg et al. [22], yet it
also makes use of intermediate layer activations.

Mahendran and Vedaldi [19] invert a differentiable im-
age representation � using gradient descent. Given a fea-
ture vector �0, they seek for an image x⇤ which minimizes
a loss function – the squared Euclidean distance between
�0 and �(x) plus a regularizer enforcing a natural image
prior. This method is fundamentally different from our ap-
proach in that it optimizes the difference between the fea-
ture vectors, not the image reconstruction error. Addition-
ally, it includes a hand-designed natural image prior, while
in our case the network implicitly learns such a prior. Tech-
nically, it involves optimization at test time, which requires
computing the gradient of the feature representation and
makes it relatively slow (the authors report 6s per image on
a GPU). In contrast, the presented approach is only costly
when training the inversion network. Reconstruction from
a given feature vector just requires a single forward pass
through the network, which takes roughly 5ms per image on
a GPU. The method of [19] requires gradients of the feature
representation, therefore it could not be directly applied to
non-differentiable representations such as LBP, or record-
ings from a real brain [20].

There has been research on inverting various tradi-
tional computer vision representations: HOG and dense
SIFT [24], keypoint-based SIFT [26], Local Binary De-
scriptors [4], Bag-of-Visual-Words [11]. All these meth-
ods are either tailored for inverting a specific feature repre-
sentation or restricted to shallow representations, while our
method can be applied to any feature representation.

2. Method
Denote by (x, �) random variables representing a natu-

ral image and its feature vector, and denote their joint prob-
ability distribution by p(x,�) = p(x)p(�|x). Here p(x) is
the distribution of natural images and p(�|x) is the distribu-

tion of feature vectors given an image. As a special case, �
may be a deterministic function of x. Ideally we would like
to find p(x|�), but direct application of Bayes’ theorem is
not feasible. Therefore in this paper we resort to a point es-
timate f(�) which minimizes the following mean squared
error objective:

Ex,� ||x� f(�)||2 (1)

The minimizer of this loss is the conditional expectation:

f̂(�0) = Ex [x |� = �0], (2)

that is, the expected pre-image.
Given a training set of images and their features

{xi, �i}, we learn the weights w of an an up-convolutional
network f(�,w) to minimize a Monte-Carlo estimate of
the loss (1):

ŵ = argmin
w

X

i

||xi � f(�i,w)||22. (3)

This means that simply training the network to predict im-
ages from their feature vectors results in estimating the ex-
pected pre-image.

2.1. Feature representations to invert
Shallow features. We invert three traditional computer

vision feature representations: histogram of oriented gradi-
ents (HOG), scale invariant feature transform (SIFT), and
local binary patterns (LBP). We chose these features for a
reason. There has been work on inverting HOG, so we can
compare to existing approaches. LBP is interesting because
it is not differentiable, and hence gradient-based methods
cannot invert it. SIFT is a keypoint-based representation,
so the network has to stitch different keypoints into a single
smooth image.

For all three methods we use implementations from the
VLFeat library [23] with the default settings. More pre-
cisely, we use the HOG version from Felzenszwalb et al. [7]
with cell size 8, the version of SIFT which is very similar
to the original implementation of Lowe [17] and the LBP
version similar to Ojala et al. [21] with cell size 16. Be-
fore extracting the features we convert images to grayscale.
More details can be found in the supplementary material.

AlexNet. We also invert the representation of the
AlexNet network [13] trained on ImageNet, available at
the Caffe [10] website. 1 It consists of 5 convolutional lay-
ers and 3 fully connected layers, with rectified linear units
(ReLUs) after each layer, and local contrast normalization
or max-pooling after some of them. Exact architecture is
shown in the supplementary material. In what follows,

1More precisely, we used CaffeNet, which is almost identical to the
original AlexNet.
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Visualizing CNN Features: Gradient Ascent
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Visualizing CNN Features: Gradient Ascent

Nguyen et al, “Synthesizing the preferred inputs for neurons in neural networks via deep generator networks,” NIPS 2016
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[Google Inceptionism 2015, Mahendran et al. 2015]

Caricaturization

 Emphasise patterns that are detected by a certain representation  
 
 
 
 
 
 
Key differences:

▶ the starting point is the image x0

▶ particular configurations of features are emphasized, 
not individual features

55

Caricaturization

• Emphasize patterns that are detected by a certain representation

• Key differences: 

−The starting point is the image x0

−particular configurations of features are emphasized, not individual features  

122

min
x

�h�(x0),�(x)i+RTV (x) +R↵(x)

[Google Inceptionism 2015, Mahendran et al. 2015]



Results 
(VGG-M)

Caricaturization (VGG-M) 56

conv2 conv3 conv4inputinput conv2 conv3 conv4
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Results 
(VGG-M)

conv5 fc6 fc7 fc8
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Interlude: Neural Art
• Surprisingly, the filters learned by discriminative neural networks capture well the 

“style” of an image. 

This can be used to transfer the style of an image (e.g. a painting) to any other. 

Optimization based 

• L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled generation 
of natural stimuli using convolutional neural networks. In Proc. NIPS, 2015. 

Feed-forward neural network equivalents 

• D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-
forward synthesis of textures and stylized images. Proc. ICML, 2016. 

• J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer 
and super-resolution. In Proc. ECCV, 2016. 
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Generation by moment matching

 Moment matching

▶ Content statistics: same as inversion

▶ Style statistics: cross-channel correlations

53

loss

loss

loss

loss

loss

sumGeneration by Moment Matching
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Generation by moment matching

 Moment matching

▶ Content statistics: same as inversion

▶ Style statistics: cross-channel correlations

53

loss

loss

loss

loss

loss

sum

E(x;xcontent,xstyle)

xstyle xcontent

x⇤ = argmin
x

E(x;xcontent,xstyle)

Moment matching 
• Content statistics: same 

as inversion

• Style statistics: 
cross-channel 
correlations 

xcontent
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https://www.youtube.com/watch?v=Khuj4ASldmU



Fooling Deep Networks

139



...solving CAPTCHAS 
and reading addresses...

...recognizing 
objects
and faces….

(Szegedy et al, 2014)

(Goodfellow et al, 2013)

(Taigmen et al, 2013)

(Goodfellow et al, 2013)

and other tasks...

Since 2013, deep neural networks have 
matched human performance at…

140



Fooling images
• What if we follow a similar procedure but with a different goal

• Generate “visually random” images 
⎯ Images that make a lot of sense to a Convnet but no sense at all to us 

• Or, assume we make very small changes to a picture (invisible to the 
naked eye) 
⎯ Is a convnet always invariant to these changes? 
⎯Or could it be fooled? 

141



Adversarial Examples
1. Start from an arbitrary image

2. Pick an arbitrary category

3. Modify the image (via gradient ascent) to maximize the class score 

4. Stop when the network is fooled

142



Adversarial Examples

143

Justin Johnson April 4, 2022Lecture 21 -

Adversarial Examples

Boat image is CC0 public domain
Elephant image is CC0 public domain
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Adversarial Attacks and Defense
Adversarial Attack: Method for generating adversarial examples for a 
network

Adversarial Defense: Change to network architecture, training, etc
that make it harder to attack

144



Adversarial Attacks and Defense
Adversarial Attack: Method for generating adversarial examples for a 
network — Easy

Adversarial Defense: Change to network architecture, training, etc
that make it harder to attack — Hard
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Adversarial Attacks
White-box attack: We 
have access to the network 
architecture and weights. 
Can get outputs, gradients 
for arbitrary input images.

146

Justin Johnson April 4, 2022Lecture 21 -

Adversarial Attacks

58

White-box attack: We have access 
to the network architecture and 
weights. Can get outputs, gradients 
for arbitrary input images. 

Black-box attack: We don’t know 
network architecture or weights; 
can only get network predictions 
for arbitrary input images

P(elephant) = 0.9
P(cat) = 0.05
…

P(elephant) = 0.9
P(cat) = 0.05
…

Papernot et al, “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples”, 2016
Papernot et al, “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples”, 2016



Adversarial Attacks
White-box attack: We 
have access to the network 
architecture and weights. 
Can get outputs, gradients 
for arbitrary input images.

Black-box attack: We don’t 
know network architecture 
or weights; can only get 
network predictions for 
arbitrary input images
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Adversarial Attacks
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White-box attack: We have access 
to the network architecture and 
weights. Can get outputs, gradients 
for arbitrary input images. 

Black-box attack: We don’t know 
network architecture or weights; 
can only get network predictions 
for arbitrary input images

P(elephant) = 0.9
P(cat) = 0.05
…

P(elephant) = 0.9
P(cat) = 0.05
…

Papernot et al, “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples”, 2016
Papernot et al, “Transferability in machine learning: from phenomena to black-box attacks using adversarial samples”, 2016



Adversarial Examples

Huge area of research!

Security concern for networks deployed in the wild

148
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Adversarial Examples

59

Huge area of research!

Security concern for networks deployed in the wild
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Intriguing properties of neural networks
[Szegedy et al., 2013]

correct +distort ostrich correct +distort ostrich
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Deep Neural Networks are Easily Fooled: High 
Confidence Predictions for Unrecognizable Images
[Nguyen, Yosinski, Clune, 2014]

>99.6% 
confidences
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Deep Neural Networks are Easily Fooled: High 
Confidence Predictions for Unrecognizable Images
[Nguyen, Yosinski, Clune, 2014]

>99.6% 
confidences



Not just for neural nets
• Linear models

• Logistic regression

• Softmax regression

• SVMs

• Decision trees

• Nearest neighbors
152



Attacking a Linear Model
• Softmax regression

• Turning “9” into other 
digits

• Yellow boxes denote 
misclassifications

153
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Lets fool a binary linear 
classifier: (logistic regression)
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

Lets fool a binary linear classifier:
x

w

input example

weights
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class 1 score = dot product:
= -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
i.e. the classifier is 95% certain that this is class 0 example.

2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

x

w

input example

weights

Lets fool a binary linear classifier:
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

? ? ? ? ? ? ? ? ? ?adversarial 
x

class 1 score = dot product:
= -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
i.e. the classifier is 95% certain that this is class 0 example.

Lets fool a binary linear classifier:
x

w

input example

weights
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

1.5 -1.5 3.5 -2.5 2.5 1.5 1.5 -3.5 4.5 1.5

class 1 score before:
-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2
=> probability of class 1 is now 1/(1+e^(-(2))) = 0.88
i.e. we improved the class 1 probability from 5% to 88%

Lets fool a binary linear classifier:
x

w

adversarial 
x
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

1.5 -1.5 3.5 -2.5 2.5 1.5 1.5 -3.5 4.5 1.5

This was only with 10 
input dimensions. A 
224x224 input image has 
150,528.

(It’s significantly easier 
with more numbers, need 
smaller nudge for each)

class 1 score before:
-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2
=> probability of class 1 is now 1/(1+e^(-(2))) = 0.88
i.e. we improved the class 1 probability from 5% to 88%

Lets fool a binary linear classifier:
x

w

adversarial 
x



Blog post: Breaking Linear Classifiers on 
ImageNet

160

Recall CIFAR-10 linear classifiers:

ImageNet classifiers:

http://karpathy.github.io/2015/03/30/breaking-convnets/

http://karpathy.github.io/2015/03/30/breaking-convnets/
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mix in a tiny bit of 
Goldfish classifier weights

+ =

100% Goldfish
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Adversarial Examples from Overfitting
Are these adversarial 
examples are related to 
overfitting?

164



Adversarial Examples from Excessive 
Linearity

165



Modern deep nets are very piecewise 
linear

Rectified linear unit

Carefully tuned sigmoid

Maxout

LSTM
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The Fast Gradient Sign Method

167Explaining and Harnessing Adversarial Examples - Goodfellow, et al - 2014
Adversarial examples in the physical world - Kurakin, et al - 2016



Adversarial Examples

168

Score of label ytrue, given input image X

Adversarial examples in the physical world - Kurakin, et al - 2016
Explaining and Harnessing Adversarial Examples - Goodfellow, et al - 2014



Adversarial Examples that Fool both Human 
and Computer Vision

(Elsayed et al., 2018)

Left: An image of a cat

Right: The same image after it 
has been adversarially
perturbed to look like a dog
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Practical Attacks
• Fool real classifiers trained by remotely hosted API (MetaMind, 

Amazon, Google)

• Fool malware detector networks

• Display adversarial examples in the physical world and fool machine 
learning systems that perceive them through a camera

170



Adversarial Examples in the Physical 
World

171
Adversarial examples in the physical world - Kurakin, et al - 2016
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Hypothetical Attacks on Autonomous Vehicles



Physical Adversarial
Examples
• Physical adversarial examples

against the YOLO detector

• Adversarial examples take the
form of sticker perturbations
that are apply to a real STOP 
sign

173
http://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

http://bair.berkeley.edu/blog/2017/12/30/yolo-attack/


Audio Adversarial Examples
• targeted audio

adversarial examples
on speech-to-text
transcription neural
networks

174https://nicholas.carlini.com/code/audio_adversarial_examples/

“okay google browse
to evil dot com”

“without the dataset
the article is useless”

Figure credit: N. Carlini and D. Wagner

https://nicholas.carlini.com/code/audio_adversarial_examples/


Failed defenses

Weight decay

Adding noise
at test time

Adding noise
at train time

Dropout

Ensembles

Multiple glimpses

Generative
pretraining Removing perturbation

with an autoencoder

Error correcting
codes

Confidence-reducing
perturbation at test time

Various
non-linear units

Double backprop
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Adversarial Training

Labeled as bird

Decrease
probability
of bird class

Still has same label (bird)

176
Adversarial examples in the physical world - Kurakin, et al - 2016



Virtual Adversarial Training
Unlabeled; model

guesses it’s probably
a bird, maybe a plane

Adversarial
perturbation
intended to

change the guess

New guess should
match old guess

(probably bird, maybe plane)

177
Adversarial examples in the physical world - Kurakin, et al - 2016



Training on Adversarial Examples

(Goodfellow 2016)

Training on Adversarial Examples

0 50 100 150 200 250 300

Training time (epochs)

10°2

10°1

100

T
es

t
m

is
cl

a
ss

ifi
ca

ti
o
n

ra
te Train=Clean, Test=Clean

Train=Clean, Test=Adv

Train=Adv, Test=Clean

Train=Adv, Test=Adv
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Adversarial Training of other Models
• Linear models: SVM / linear regression cannot learn a step function, 

so adversarial training is less useful, very similar to weight decay

• k-NN: adversarial training is prone to overfitting.

• Takeway: neural nets can actually become more secure than other 
models. Adversarially trained neural nets have the best empirical 
success rate on adversarial examples of any machine learning model.
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Next lecture: 
Recurrent Neural Networks


