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Previously on CMP784

 Content-based attention
e L ocation-based attention
« Soft vs. hard attention

 Show, Attend
and Tell

« Self-attention and
Transformer networks

* Vision Transformers

* Pretraining during transformers




Lecture overview

« Supervised vs. Unsupervised Learning
» Generative Modeling

 Basic Foundations
—Sparse Coding
—Autoencoders

» Autoregressive Generative Models

Disclaimer: Much of the material and slides for this lecture were borrowed from

— Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS294-158 class

— Ruslan Salakhutdinov's talk titled “Unsupervised Learning: Learning Deep Generative Models”

— Yoshua Bengio's IDT6266 class

— Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class

— Nal Kalchbrenner's talks on “Generative Modelling as Sequence Learning” and “Generative Models of Language and Images”
— Justin Johnson's EECS 498/598 class



Supervised vs Unsupervised Learning

Supervised Learning

Classification

Data: (x, y)
X 1S data, y Is label

Goal: Learn a function to map x -> vy

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning,
sentiment analysis, etc.




Supervised vs Unsupervised Learning

Supervised Learning
Object Detection
Data: (X, v) —

X 1S data, vy I1s label

Goal: Learn a function to map x -> vy

Examples: Classification, regression,
object detection, semantic j -
segmentation, image captioning, DOG, DOG, CAT
sentiment analysis, etc.




Supervised vs Unsupervised Learning

Supervised Learning
Semantic Segmentation

Data: (x, y)
X 1S data, y Is label

Goal: Learn a function to map x -> vy

Examples: Classification, regression,
object detection, semantic f
segmentation, Image captioning, GRASS, , TREE, SKY
sentiment analysis, etc.




Supervised vs Unsupervised Learning

Supervised Learning Image captioning

Data: (X, v)
X 1S data, vy I1s label

Goal: Learn a function to map x -> vy

Examples: Classification, regression,
object detection, semantic
segmentation, Image captioning,
sentiment analysis, etc.

A cat sitting on a
suitcase on the floor



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, V) Sentiment Analysis

“This Movie is amazing.
It has a great plot and
_ talented actors, and

really good as well.”“

X 1S data, vy I1s label

Examples: Classification, regression,
object detection, semantic
segmentation, Image captioning,
sentiment analysis, etc.




Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (X, v) Data: x
X 1S data, vy I1s label Just data, no labels!

Goal: Learn a function to map x->y @Goal: Learn some underlying
hidden structure of the data

Examples: Classification, regression, Examples: Clustering,
object detection, semantic dimensionality reduction,
segmentation, Image captioning, feature learning, density
sentiment analysis, etc. estimation, etc.



Supervised vs Unsupervised Learning

Clustering
(e.g. K-Means)
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.
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Supervised vs Unsupervised Learning

_ | | | Unsupervised Learning
Dimensionality Reduction

(e.g. Principal Components Analysis) Data: x
Just data, no labels!

component space

ESEESS Goal: Learn some underlying
S hidden structure of the data

PC1

Examples: Clustering,
2D dimensionality reduction,

feature learning, density

estimation, etc.

11



Supervised vs Unsupervised Learning

Feature Learning
(e.g. autoencoders)

L2 Loss function:

|z —&)|* ~—]

T

Reconstructed
input data

Decoder

Encoder

@
Features 2
T

Input data

Reconstructed data

e i =N

ENiLellE
P il o o A
-WH*‘ sy

Encoder: 4-layer conv
Decoder: 4-layer upconv

. Input dﬁqta ’
i = P

B L&Ne

o TS
sl < s

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

12



Supervised vs Unsupervised Learning

Density Estimation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

13



Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning
Data: (X, v) Data: x
X 1S data, vy I1s label Just data, no labels!

Goal: Learn a function to map x->y @Goal: Learn some underlying
hidden structure of the data

Examples: Classification, regression, Examples: Clustering,
object detection, semantic dimensionality reduction,
segmentation, Image captioning, feature learning, density
sentiment analysis, etc. estimation, etc.

14



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Conditional

Generative Model:

Learn p(x|y)

15



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Conditional

Generative Model:

Learn p(x|y)

Probability Recap:

Density Function

p(x) assigns a positive
number to each possible Xx;
higher numbers mean x is
more likely

Density functions
are normalized:

fx p(x)dx =1

Different values of x
compete for density

16



Discriminative vs Generative Models
P(cat| s )

Discriminative
Model:

Learn a probability
distribution p(y|x)

P(dog| gl

Generative Model: Density functions

Learn a probability are normalized:
distribution p(x) Density Function
pP(x) assigns a positive number to
o each possible x; higher numbers x)dx = 1
Conditional mean x is more likely ¥ p( )
Generative Model:

Different values of x
Learn p(x|y) compete for density

17



Discriminative vs Generative Models
P(cat| s )

Discriminative
Model:

Learn a probability
distribution p(y|x)

P(dog|ﬂ)

Generative Model:
Learn a probability
distribution p(x)

P(dog|fe )

Condltlo_nal Discriminative model: the possible labels for
Generative Model: each input "compete” for probability mass.

| earn p(x|y) But no competition between images

18



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional

_ Discriminative model: No way for the model to
Generative Model: handle unreasonable inputs; it must give label

Learn p(x|y) distributions for all images

19



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional

_ Discriminative model: No way for the model to
Generative Model: handle unreasonable inputs; it must give label

Learn p(x|y) distributions for all images

20



Discriminative vs Generative Models

Discriminative - 2y
Model: X

Learn a probability

distribution p(y|x)

Generative Model: <> »

Learn a probability

;
AN Iy YR
4 4 Ry \ i ¥ A (R \,
Ny MR O N
A0

distribution p(x)

Conditional with each other for probability mass

Generative Model:
Learn p(x|y)

Generative model: All possible images compete

21



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability

e USRI LN AL L 14. N %:%3‘&»[3“&"‘.&'\{’,” _ i‘ ‘,"‘.:i / :
Generative model: All possible images compete with each other
for probability mass

distribution p(x)

Conditional

Generative Model: Requires deep image understanding! Is a dog more likely to sit or
| earn p(x|y) stand? How about 3-legged dog vs 3-armed monkey?

22



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability

; SR N TN f (‘ 7 | s‘i}‘hf‘%ﬁi\.".:\j- 3 _ ;‘:\Q‘V“" ‘,‘.;‘: 1
Generative model: All possible images compete with each other
for probability mass

distribution p(x)

Conditional
Generative Model: Model can “reject” unreasonable inputs by assigning them small
| earn p(x|y) values

23



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Conditional

Generative Model:
Learn p(x|y)

P( | cat)
] P([H |cat) P (g8 |cat)
] [ ]

P([#g dog)

P(#8§|dog)

Conditional Generative Model: Each possible label
Induces a competition among all images

24



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Conditional

Generative Model:
Learn p(x|y)

Recall Bayes' Rule:

P(x|y) =

P(y | x)

P(y)

P(x)

25



Discriminative vs Generative Models

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Conditional

Generative Model:
Learn p(x|y)

Recall Bayes' Rule:

(Unconditional)
Generative Model

Py %)

P(x|y)= P(x)

P(y)

Conditional
Generative Model

We can build a conditional generative
model from other components!

26



What can we do with a discriminative model?

Discriminative

Model: . Assign labels to data
Learn a probability == Featyre learning (with labels)
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



What can we do with a discriminative model?

Discriminative

Model: . Assign labels to data
Learn a probability == Featyre learning (with labels)
distribution p(y|x)

Generative Model: Detect outliers

Learn a probability = ——  Feature learning (without labels)
distribution p(x) Sample to generate new data
Conditional

Generative Model:
Learn p(x|y)

28



What can we do with a discriminative model?

Discriminative
Model:

Learn a probability
distribution p(y|x)

Generative Model:

Learn a probability
distribution p(x)

Conditional

Generative Model:

Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels

29



Generative Modeling

» Goal: Learn some underlying hidden structure of the training samples
to generate novel samples from same data distribution

Slide adapted from Sebastian Nowozin 30



Learning a generative mode|

* \We are given a training set of examples, e.g., images of dogs
e

6eM
Model family

* \\Ve want to learn a probability distribution p(x) over images x s.t.
— Generation: If we sample X, ~ P(X), X e Should look like a dog (sampling)

— Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

— Unsupervised representation learning: \We should be able to learn what
these images have in common, e.g., ears, tail, etc. (features)

Slide adapted from Stefano Ermon, Aditya Grover 31



Generate Images
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[Deep Belief Nets, Hinton, Osindero, Teh, 2006] ,,
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Generate Images

[VAE, Kingma and Welling, 2013] 3



Generate Images

[GAN, Goodfellow et al. 2014]



Generate Images

[DCGAN, Radford, Metz, Chintala 2015]



Generate Images

[DCGAN, Radford, Metz, Chintala 2015]



Generate Images

bicubic SRResNet
(21.59dB/0.6423)

~ (21.15dB/0.6868)

SRGAN

[Ledig, Theis, Huszar et al, 2017]
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Generate Images

[CycleGAN: Zhu, Park, Isola & Efros, 2017] 4



Generate Images

[BigGAN, Brock, Donahue, Simonyan, 2018]



Generate Images

[StyleGAN, Karras, Laine, Aila, 2018] 40



Generate Images

[Latent Diffusion, Rombach, Blattmann, Lorenz, Esser, Ommer, 2022] 4



Generate Images

[Latent iffusion, Robach, Blattmann, orenz, Esser, Ommer, 2022] 22



Generate Audio

100 ENED D Be -

1 Second

Parametric \WaveNet

1A 1 N
/ QA N /
C 19))) L 19))

N 7/ N 7

[WaveNet, Oord et al., 2018] 4


https://storage.googleapis.com/deepmind-media/pixie/us-english/parametric-1.wav
https://storage.googleapis.com/deepmind-media/pixie/us-english/wavenet-1.wav

Generate Video

k B : Pa\ '

DVD-GAN: Adversarial Video Generation on Complex Datasets, Clark,
Donahue, Simonyan, 2019

44



Generate Video

[Video Diffusion Models, Ho, Salimans, Gritsenko, Chan, Norouzi, Fleet, 2022] s



Generate Video

n a tropical forest Construction Site Activity Clouds moving

it

CI p f Craftsman worker

T m c jam on 23 de MI
e, both directions, south

f 3 P ulo Busy freeway at night

[Video Diffusion Models, Ho, Salimans, Gritsenko, Chan, Norouzi, Fleet, 2022] 4



Generate Text

PANDARUS :
Alas, I think he shall be come approached and the day

When 1little srain would be attain'd 1nto being never fed,
And who 1s but a chain and subjects of his death,
I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit 1s 1n the care of side and that.

[Char-rnn, karpathy, 2015] .



Generate Math

\begin{proof}

We may assume that $\mathcal{I}$ is an abelian sheaf on
$\mathcal{C}s.

\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak g$ be an abelian sheaf on
$XS.

Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a
category.

\begin{enumerate}

\item \hyperref[setain-construction-phantom] { Lemma }
\label{lemma-characterize-quasi-finite}

Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on
$\mathcal{C}s.

Let $\mathcal{F}$ be a coherent $\mathcal{O} XS$-module. Then
$S\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.
\item The following are equivalent

\begin{enumerate}

\item $\mathcal{F}$ is an $\mathcal{O} X$-module.

\end{lemma}

For @, -, . where L,,, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S= SI)O(‘(R) =U XX U XX U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= UU,‘ Xs; U,

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € S’ such that Ox .- = O, ., is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win. O
To prove study we see that F|y is a covering of A”, and 7T; is an object of Fx,g for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M*=1° ®Spcc(k) Os‘, = le}-)
is a unique morphism of algebraic stacks. Note that

e v\ opp .

Arrows = (Sch/S) 7y ¢ (Sch/S) fpps

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. O
The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Szqr,

see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

[Char-rnn, karpathy, 2015]
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Generate Text

Prompt [human written]: A train carriage containing controlled nuclear materials was stolen in Cincinnati
today. Its whereabouts are unknown.

GPT-2: The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it 1is working with the Federal
Railroad Administration to find the thief.

'‘The theft of this nuclear material will have significant negative consequences on public and
environmental health, our workforce and the economy of our nation,’ said Tom Hicks, the U.S. Energy

Secretary, in a statement. 'Our top priority 1is to secure the theft and ensure it doesn’t happen again.’

The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear research
site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information. According to the release,

the U.S. Department of Energy’s Office of Nuclear Material Safety and Security 1is leading that team’s
investigation.

'The safety of people, the environment and the nation’s nuclear stockpile is our highest priority,’ Hicks
said. '‘We will get to the bottom of this and make no excuses.’

[OpenAl’'s GPT2 - Radford, Wu, Child, Luan, Amodei, Sutskever, 2019]
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Generate Text

Prompt (human written): Recycling is good for the world, no, you could not be

more wrong.

GPT-2: Recycling is NOT good for the world. It is bad for the environment, it

1s bad for our health, and i1t is bad for our economy. I’'m not kidding.
Recycling 1s not good for the environment. It 1s destructive to the earth and
1t 1s a major contributor to global warming. Recycling 1s not good for our
health. It contributes to obesity and diseases like heart disease and cancer.
Recycling 1s bad for our economy. It increases the cost of a product, and 1in
turn, the price of everything that i1s made with that product. Recycling 1is
not good for our nation. We pay a tremendous price for the privilege of
having the world’s most advanced and efficient recycling system. Recycling 1is

a huge, colossal waste of time, energy, money, and resources.

[OpenAl’'s GPT2 - Radford, Wu, Child, Luan, Amodei, Sutskever, 2019]
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Try it yourself

InferKit oemo

Generate Options

Learn more in the docs.
Length to generate @
—e 400
[] startatbeginning @

Advanced Settings »

https://talktotranstormer.com

Legolas and Gimli advanced on the orcs, raising their weapons with a

harrowing war cry.

All around him, hundreds of orcs were killing thousands of men.
His black eyes seemed to pierce the darkness.
He was panting with the effort of carrying such a heavy burden.

But he continued forward, with the steady hiss of an undervalued seraph
in his ear.

He needed just a little more power.

He concentrated his might on the earth, and almost without thinking, his

sword shot out of the ground|

x [_‘

9400 /10000

weekly free characters
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https://talktotransformer.com/

Try it yourself

OpenAl’s API Now Available with No Waitlist

Wider availability made possible by safety progress

November 18, 2021 OpenAl is committed to the safe deployment of Al. Since the launch of our

2 minute read API, we’ve made deploying applications faster and more streamlined while
adding new safety features. Our progress with safeguards makes it possible
to remove the waitlist for GPT-3. Starting today, developers in supported
countries can sign up and start experimenting with our API right away.

Improvements to our API over the past year include the Instruct Series
models that adhere better to human instructions, specialized endpoints for
more truthful question-answering, and a free content filter to help
developers mitigate abuse. Our work also allows us to review applications
before they go live, monitor for misuse, support developers as their product
scales, and better understand the effects of this technology.

Other changes include an improved Playground, which makes it easy to
prototype with our models, an example library with dozens of prompts to
get developers started, and Codex, a new model that translates natural
language into code.

https://openal.com/apl/




Compression - Lossless

Model Bits per byte
CIFAR-10

PixelCNN (Oord et al., 2016) 3.03
PixelCNN++ (Salimans et al., 2017) 2.92
Image Transformer (Parmar et al., 2018) 2.90
PixeISNAIL (Chen et al., 2017) 2.85
Sparse Transformer S9M (strided) 2.80
Enwik8

Deeper Self-Attention (Al-Rfou et al., 2018) 1.06
Transformer-XL 88M (Dai et al., 2018) 1.03
Transformer-XL 277M (Dai et al., 2018) 0.99
Sparse Transformer 95M (fixed) 0.99
ImageNet 64x64

PixelCNN (Oord et al., 2016) B
Parallel Multiscale (Reed et al., 2017) L |
Glow (Kingma & Dhariwal, 2018) 3.81
SPN 150M (Menick & Kalchbrenner, 2018) 3.52
Sparse Transformer 152M (strided) 3.44
Classical music, 5 seconds at 12 kHz

Sparse Transformer 152M (strided) 1.97

Generative models provide better
bit-rates than distribution-unaware
compression methods like JPEG,

etc.
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Compression - Lossy

JPEG JPEG2000

[Rippel & Bourdev, 2017]

WaveOne
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Downstream Task - Sentiment Detection

This 1s one of Crichton's best books. The characters of Karen Ross, Peter Elliot,
Munro, and Amy are beautifully developed and their interactions are exciting,
complex, and fast-paced throughout this impressive novel. And about 99.8 percent of
that got lost in the film. Seriously, the screenplay AND the directing were
horrendous and clearly done by people who could not fathom what was good about the
novel. I can't fault the actors because frankly, they never had a chance to make this
turkey live up to Crichton's original work. I know good novels, especially those with
a science fiction edge, are hard to bring to the screen in a way that lives up to the
original. But this may be the absolute worst disparity in quality between novel and
screen adaptation ever. The book is really, really good. The movie is just dreadful.

[Radford et al., 2017]
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Downstream Tasks - NLP (BERT Revolution)

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AX-b AX-g

1 JDExplore d-team Vega v2 91.3 90.598.6/99.2 99.488.2/62.494.4/93.9 96.0 77.4 98.6 -0.4 100.0/50.0

+ 2 Liam Fedus ST-MoE-32B C}Jl 91.2 92.496.9/98.0 99.289.6/65.895.1/94.4 93.5 77.7 96.6 72.3 96.1/94.1
3 Microsoft Alexander v-team  Turing NLR v5 C)J' 90.9 92.095.9/97.6 98.288.4/63.096.4/95.9 94.1 77.1 97.3 67.8 93.3/95.5

4 ERNIE Team - Baidu ERNIE 3.0 C)J. 90.6 91.098.6/99.2 97.488.6/63.294.7/94.2 92.6 77.4 97.3 68.6 92.7/94.7

5 YiTay PaLM 540B C}J' 90.4 91.994.4/96.0 99.088.7/63.694.2/93.3 94.1 77.4 959 72.9 95.5/90.4

+ 6 Zirui Wang T5 + UDG, Single Model (Google Brain) C);' 90.4 91.495.8/97.6 98.088.3/63.094.2/93.5 93.0 77.9 96.6 69.1 92.7/91.9
+ 7 DeBERTa Team - Microsoft =~ DeBERTa / TuringNLRv4 C}J' 90.3 90.495.7/97.6 98.488.2/63.794.5/94.1 93.2 77.5 95.9 66.7 93.3/93.8
8 SuperGLUE Human Baselines SuperGLUE Human Baselines C)J' 89.8 89.095.8/98.9 100.081.8/51.991.7/91.3 93.6 80.0 100.0 76.6 99.3/99.7

+ 9 T5 Team - Google T5 C)Jl 89.3 91.293.9/96.8 94.888.1/63.394.1/93.4 92.5 76.9 93.8 65.6 92.7/91.9
10 SPoT Team - Google Frozen T5 1.1 + SPoT C)J' 89.2 91.195.8/97.6 95.687.9/61.993.3/92.4 929 75.8 93.8 66.9 83.1/82.6

[https://super.gluebenchmark.com/leaderboard] se



Downstream Tasks - Vision (Contrastive)

Method Architecture mAP
Transfer from labeled data:

Supervised baseline ResNet-152 74.7

Transfer from unlabeled data:

Exemplar [17] by [13] ResNet-101 60.9
Motion Segmentation [47] by [13] ResNet-101 61.1

Colorization [64] by [13] ResNet-101 65.5

Relative Position [14] by [13] ResNet-101 66.8

Multi-task [13] ResNet-101 70.5

Instance Discrimination [60] ResNet-50 65.4
Deep Cluster [7] VGG-16 65.9
Deeper Cluster [8] VGG-16 67.8

Local Aggregation [66] ResNet-50 69.1

Momentum Contrast [25] ResNet-50 74.9
Faster-RCNN trained on CPC v2  ResNet-161 76.6

'If, by the first day of autumn (Sept 23) of
2015, a method will exist that can match or
beat the performance of R-CNN on Pascal
VOC detection, without the use of any extra,
human annotations (e.g. ImageNet) as pre-
training, Mr. Malik promises to buy Mr. Efros
one (1) gelato (2 scoops: one chocolate, one
vanilla).”

Table: Data-Efficient Image Recognition
using CPC

[Henaff, Srinivas, et al.] s7



Why Unsupervised Learning?

- Given high-dimensional data X = (z1,...,Z,) we want to find a
low-dimensional model characterizing the population.

» Recent progress mostly in supervised DL
* Real challenges for unsupervised DL

» Potential benefits:
— Exploit tons of unlabeled data
— Answer new questions about the variables observed
— Regularizer — transfer learning — domain adaptation
— Easier optimization (divide and conquer)
—Joint (structured) outputs
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Why Latent Factors & Unsupervised
Representation Learning? Because of
Causality.

* [T Ys of interest are among the causal factors of X, then
XY)P(Y)

P(X)
is tied to P(X) and P(X]Y), and P(X) is defined in terms of P(X]Y), i.e.

* The best possible model of X (unsupervised learning) MUST involve Y
as a latent factor, implicitly or explicitly.

p(y|x) = 2t

» Representation learning SEEKS the latent variables H that explain the
variations of X, making it likely to also uncover Y.

On causal and anticausal learning, Janzing et al. ICML 2012 59



If Y is a Cause of X, Semi-Supervised
Learning Works

« Just observing the x-density 0] )
reveals the causes vy (cluster D) l l

0.4}

» After learning p(x) as a mixture,
a single labeled example per
class suffices to learn p(y|x) T

0.3}

0.2+

0.1}

0.0
0

15

20
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Invariance & Disentangling
Underlying Factors

e |nvariant features

 \Which invariances?’

» Alternative: learning to disentangle factors, i.e. keep all the explanatory
factors in the representation

* Good disentangling = avoid the curse of dimensionality

 Emerges from representation learning

(Goodfellow et al. 2009, Glorot et al. 2011)
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Curse of Dimensionality

+ Challenge: How to model p(z) , € RY (or z € Q) for large N?

* An existing hypothesis Is that, although the ambient dimensionality Is
high, the intrinsic dimensionality of x is low.

15
-
104 * %9 20,
-o." b g
‘wain o
5. La e -20 ¥,
II“ . '..... 2 X \\ ."\-\
0. b S R 53\ . ¥
Wise ..f. L) \ Se ’-
) - . o -A .
‘%0. :“' . - . 10 \.\ oo . ‘:.\
-5 4 0"'.' *e e "' g . 5“\ ". s - o »
- . \ s XN - .
~e 3'.3-.3:@ Sy \ L’“"‘,'-,...’o“ ‘.
LWt Ll W A “d
=104 * . . 0 \ »%% o R | Yol
oS . o? A . -4 - - .‘ . " s :’
2, Ao ' Tl Y
[N L . . A . .
‘}3-____‘ L) =10\ P, o 7.
~~ A . -10
20 T~ g =15\ — 0
e - 0 15 ISOMAPT ~ \—
0 10 -5 0 : -0 0
y 20 ISOMAP2

Slide credit: Joan Bruna (a) Swiss Roll (b) Isomap embedding 62



[ Unsupervised Learning j

<\

‘N babilistic Models |
f”'psm a 'C'SZ'I? odels Probabilistic
ReelSi LAVOLINS (Generative) Models
e Autoencoders

. e (thers (e.g. k-means) / \
(————— & — — —— ~

(Tractable Models ‘Non-Tractable Models | ¢ Generative
e [ully observed e BoltzmannMachines | Adversarial
Belief Nets e \ariational | Networks
e NADE Autoencoders || ® Moment
_* PixelRNN )| * Helmholtz Machines || Matching
e Many others... 1% Networks
\§ )}

G oEr o oGBS GBS GBS GBS GE GE GE GED GED GE GE GED GE GE GE GE GE GE GES 2GS

Explicit Density p(x) Implicit Density



Unsupervised Learning

« Basic Building Blocks:
« Sparse Coding
« Autoencoders

» Autoregressive Generative Models
» Generative Adversarial Networks

* Variational Autoencoders

* Normalizing Flow Models

e Diffusion Models
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Sparse Coding

« Sparse coding (Olshausen & Field, 1996). Originally developed to explain early
visual processing In the brain (edge detection).

* Objective: Given a set of input data vectors {x1, X2, ...,Xn} , learn a dictionary of

bases, such that;
K
Xn — E ank¢k
k=1

N

Sparse: mostly zeros

« Each data vector is represented as a sparse linear combination of bases.
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Sparse Coding

Natural Images

New example

Learned bases: “"Edges”

= (.8 *

0.0, 0.0, ... 0.8, ., 0.3, ...,

Slide Credit: Honglak Lee

P36
0.5, ..

+03* ¢y T0O5% ¢65

| = coefficients (feature representation)
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Sparse Coding: Training

» Input image patches: xi,Xa,...,xy € R”
e Learn dictionary of bases: ¢é;, s, ..., o € R”

2

N K
mmz X, _Zank¢k —I—AS‘Y‘ank’
nzl k=1 n=1 k=1
N / N )
Y Y

Reconstruction error Sparsity penalty

 Alternating Optimization:

1. Fix dictionary of bases and solve for activations a (a standard Lasso
problem).

2. Fix activations a, optimize the dictionary of bases (convex QP problem).



Sparse Coding: Testing Time

* Input: a new image patch x* , and K learned bases ¢, ¢, ..., 9y
« Qutput: sparse representation a of an image patch x*.

K

2 K
min ||xX* — Z apdL|| + )\Z ay|
* 2 k=1

k=1




Sparse Coding: Testing Time

* Input: a new image patch x* , and K learned bases ¢, ¢, ..., 9y
« Qutput: sparse representation a of an image patch x*.

K 2 K
min ||x* — Zakqbk —I—)\Z|ak\
* k=1 2 k=1

X* =08% g t03% gy TO5F e

[0.0, 0.0, ...0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation)
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Image Classification

« Evaluated on Caltech101 object category dataset.

Classification
Algorithm
(SVM)

Input Image Learned Features (coefficients) -
bases 9K images, 101 classes
Algorithm Accuracy
Baseline (Fei-Fei et al., 2004) 16%
PCA 37%
Sparse Coding 47%

Slide Credit: Honglak Lee



Modeling Image Patches

* Natural image patches:
—small image regions extracted from an image of nature (forest, grass, ...)

Image

Image taken from: Emergence of complex cell properties by learning to generalize in natural scenes. Karklin and Lewicki, 2009 71



Relationship to V1

 When trained on natural image e NERNPEDEZE

patches R BHECUBEDERS

— the dictionary columns (“atoms’’) look S 7= ViR o S )15 R A 277

like edge detectors X HLE Y B (0 22 ) Y SR S X

mEEZZINENNNNZEEAN

— each atom is tuned to a particular v RAUSDZEESNEE

position, orientation and spatial N ..........’-
frequency =

.
-

— V1 neurons In the mammalian brain
have a similar behavior

Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996 792



Relationship to V1

* Suggests that the brain might be T e AR RTd NS
learning a sparse code of visual ERhENEENTYUBERERS
stimulus 1 778 0 - O o D O S IR AR 7 W

| e S R L Y BN = B R = R
— Since then, many other models have =1 A1 02711 Bt 17K E Y

-
. » b
-
-
. -~
-
\

been shown to learn similar features

—they usually all incorporate a notion of
sparsity

Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996



Interpreting Sparse Coding

2

N K
Igllq?z Xn_zank¢k +>‘YT|CLW€|
T on=1 k=1

n=1k=1

a  Sparse features

OOO0O00000]
I ga) E_xplicit

{OOOOO} Decoding




Interpreting Sparse Coding

2

Iarl{gl Xp — Zank¢k ‘|‘)\S‘S‘|ank|
a  Sparse features a
OOOOOO00] OOO000000)
§ o v,
OOOO0)  pecoding OOOO0)  Encoding

« Sparse, over-complete representation a.
 Encoding a = f(x) is implicit and nonlinear function of x.
* Reconstruction (or decoding) X' = g(a) is linear and explicit.
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Autoencoder

|

Feature Representation

U

-

.

Decoder

~

j

U

]

-

\_

Encoder

~

j

]

Input Image

76



Autoencoder

|

Feature Representation

U

]

Feed-forward,

bottom-up

Feed-back, [~ A 4 N
enerative,
opdown | Decoder Encoder
\ J o J
[ Input Image

» Detalls of what goes insider the encoder and decoder matter!

* Need constraints to avoid learning an identity.
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Autoencoder

{

Binary Features z

Decoder

U

]

Filters D

Linear
function N

Encoder

A 4 N filters W
Z=G(WX) Sigmoid

Y, \_ function

1
ﬁ olw) = 1 + exp(—x)

Input Image x

1
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Autoencoder

{

Binary Features z

U

-

Decoder
Filters D L

o(WTz)

~

/

U

ﬁ Encoder
~

d filters W
Z=0(Wx R
( ) Sigmoid

o / function

g -

1

1 exp(—)

[

Input Image x

1

* Need additional constraints to avoid learning an identity.
» Relates to Restricted Boltzmann Machines (later).
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Autoencoder

* Feed-forward neural network trained to reproduce its input at the
output layer

Decoder
* ©®0000 | * = o@c)
I — \&gjrn(cj—l—w h(x))
(tied weights) for binary units
h(x) (OGOO0)
IW Encoder
h(x) = g(a(x))

x (OOO000) — sigm(b + Wx)
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Loss Function

* Loss function for binary inputs

I(f(x)) = = > (wrlog(Zk) + (1 — xx) log(1 — )

— Cross-entropy error function (reconstruction loss) f(x) =X

* Loss function for real-valued inputs
(f(x)) = 5 24 (@r — x3)°

— sum of squared differences (reconstruction loss)
— we use a linear activation function at the output
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Autoencoder

[ Linear Features z ] * |f the hidden and output layers are
linear, it will learn hidden units that

@ ﬁ are a linear function of the data and

C A C A minimize the squared error.
Wz z=Wx _ . .

* The K hidden units will span the

~ < ~ < same space as the first k principal

@ ﬁ components. The welight vectors
[ Input Image x ] may not be orthogonal.

* \With nonlinear hidden units, we have a nonlinear generalization of PCA.
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Denoising Autoencoder

. _Idea: Representat_ion should be robust to 3 [O@QOQO]

introduction of noise:

—random assignment of subset of inputs to O, W*= W'
with probability v/ (tied weights)
— Similar to dropouts on the input layer h(;{)@@ QOOOO ]
— (Gaussian additive noise
I w
» Reconstruction X computed from the [@OQ@Q@]
corrupted Input x . nons(expl;o)cess

» Loss function compares X reconstruction X [OQOQOQ]
with the noiseless input X

(Vincent et al., ICML 2008) g3



Denoising Autoencoder
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Learned Filters

Non-corrupted 25% corrupted input

(Vincent et al., ICML 2008) g5



Learned Filters

Non-corrupted 50% corrupted input




Predictive Sparse Decomposition

K Binary Features z 1

{L1 Sparsity} @ ﬁ Encoder

filters W
L Dz } £z=0(Wx)} o
Decoder Sigmoid

filters D @ ﬁ function

[ Real-valued Input x }

(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009) 87



Predictive Sparse Decomposition

K Binary Features z 1

{L1 Sparsity} @ ﬁ Encoder

filters W
L Dz } £z=0(Wx)} o
Decoder Sigmoid

filters D @ ﬁ function

[ Real-valued Input x }

Attaining  min |[Da — |3 + Alaly + llo(Wx) — 2l
time D,W.z

Decoder Encoder

(Kavukcuoglu, Ranzato, Fergus, LeCun, 2009)
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Stacked

Autoencoders
[ Features
B m N
[ Sparsity J [ Decoder J [ Encoder J
< ]

[ Input x




Stacked

Autoencoders
[ Features
- ] N
[ Sparsity J { Decoder } [ Encoder J
< []
[ Features
i [ Z
[ Sparsity J [ Decoder J [ Encoder J
< ]

[ Input x
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Stacked [ Class Labels

J

m Z
Autoencoders [ Decoder } [ Encoder }
N []
[ Features
- [ Z
[ Sparsity J { Decoder } [ Encoder J
N []
[ Features
- m Z
[ Sparsity J [ Decoder J [ Encoder J
5 ]

[ Input x
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StaCked [ Class Labels

J

m Z
Autoencoders [ Decoder J [ Encoder }
< ]
[ Features
m Z
[ Sparsity J { Decoder } [ Encoder }
L []

N ( EI\ALI 1SN~

Greedy Layer-wise Learning
N J G ]

[ Input x
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Stacked
Autoencoders

e Remove decoders and use
feed-forward part.

Class Labels

J

2N

[ Encoder }
[]

Features

2N

[ Encoder J
]

Features

N

[ Encoder J
[]

Input x

93



Stacked
Autoencoders

e Remove decoders and use
feed-forward part.

e Standard, or convolutional neural
network architecture.

 Parameters can be fine-tuned
using backpropagation.

Class Labels

J

2N

[ Encoder }

L]

Features

2N

[ Encoder J

L]

Features

N

[ Encoder J

L]

Input x

9



Deep
Autoencoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pretraining

Decoder

. _Encoder —

Unrolling Fine—tuning
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Deep Autoencoders

e 25%x25 — 2000 - 1000 — 500 — 30 autoencoder to extract 30-D real-
valued codes for Oliver face patches.

'Tq") | N

—F w ' mxﬂr

 Top: Random samples from the test dataset.
« Middle: Reconstructions by the 30-dimensional deep autoencoder.
« Bottom: Reconstructions by the 30-dimensional PCA.

(Hinton and Salakhutdinov, Science 2006) gg



Information Retrieval

European Community

Interbank Markets Monetary/Economic 2-D LSA Space

.. Disasters and
-7 i¢  Accidents

Leading
Economic ¢ a3
Indicators . S an *
- o P ﬁ; X
RARS s 7
© Rl Government
Accounts/ * % ix Borrowings
Earnings ¥ 9

* The Reuters Corpus Volume |l contains 804,414 newswire stories (randomly split
into 402,207 training and 402,207 test).

« "Bag-of-words” representation: each article is represented as a vector containing

the counts of the most frequently used 2000 words in the training set.
(Hinton and Salakhutdinov, Science 2006) g7



Semantic Hashing

European Community g 099 Qo

Monetary/Economic e .0 “8eo @
° Ogoo%%@%%%@%% 5 -
Address Space ° oD 8 00 ) Disasters and
- o@%@ oo o 0 w7 Accidents
OO S > 7 > F..‘}t{ =0, 7 v

\

\ ++ L
® i Semantically ¥ ;ﬁf '
g Similar R
S/ Documents +HE 5
++
Semantic oF 5* el o S Sy v
Hashing R xxggfg Government
32 X
T 0P
XX X>>: XX %
Document Accounts/Earnings

* Learn to map documents into semantic 20-D binary codes.
* Retrieve similar documents stored at the nearby addresses with no search at all.

(Hinton and Salakhutdinov, Science 20006)

98



Searching Large Image Database using
Binary Codes

Input image 30-RBM 128—-RBM 256—RBM

* Map Images into el
binary codes for ;.
fast retrieval. 4

« Small Codes, Torralba, Fergus, Weiss, CVPR 2008

« Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
» Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011
* Norouzi and Fleet, ICML 2011
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[ Unsupervised Learning j

p
Non-probabilistic Models

e Sparse Coding
e Autoencoders

=

\

(Generative) Models

{ Probabilistic

I

(Tractable Models
e [ully observed

Belief Nets
S PixelRNN )

I
I
I
Il o NADE
I
I
I

G oEr o oGBS GBS GBS GBS GE GE GE GED GED GE GE GED GE GE GE GE GE GE GES 2GS

Explicit Density p(x)

e (Others (e.g. k—meanj)//
\_ J
(— ~ A

(Non—TractabIe Models

BoltzmannMachines
Variational
Autoencoders
Helmholtz Machines
Many others...

Generative
Adversarial
Networks
Moment
Matching
Networks

Implicit Density
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Autoregressive
Generative Models



Texture synthesis by non-parametric sampling

Synthesizing a pixe

Models

. non-parametric

sampling

Input Image

P(p|N(p))

[Efros & Leung 1999] o,



Texture synthesis with a deep net

Input partial
Image — — — — — —
Predicted color
of next pixel

*
.
.
I“‘
.t

[PixelRNN, PixelCNN, van der Oord et al. 2016];



Input partial :

image —1 1 1 [ B B

Predicted color
of next pixel

”‘
.

# # # D ‘II“

“white”

[PixelRNN, PixelCNN, van der Oord et al. 2016,



ldea: We can represent colors as discrete classes

y € ERI?EKI47><I(
Prediction for a single pixel i,

-110}-

E l E
| . . EEEEEEEE
: : NEEEEESNEE
55| N T
: TR

. AN
NN
, NN
; EEEENEEEENNEEEEEN |

S Op  EEEEEEESEEEEEEEEEE

55 |

110}

L(y, fo(x)) = H(y,softmax(fy(x)))
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And we can interpret the learner as modeling P(next pixel | previous pixels):

Softmax regression (a.k.a. multinomial logistic regression)

y=[P(Y =1X=x),...,P(Y = K|X =x)| <= predicted probability of each
class given input x

K
H(y,y) =— Z yr log . == picks out the -log likelihood
e—1 of the ground truth class y
under the model prediction y
N

f*=arg miHZH(yz’,S’z’) < max likelihood learner!
Fer =1
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Network output

Hi

C0000000]

blue

green

red

orange

white

black

l’-

P

P(next pixel | previous pixels)
» Pilpi, - ,pi-1)

probability
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Network output

Hi

(0JoJeJe] Jelelel

turquoise
blue
green
red
orange

white

black

probability

>

l'-

e

pi ~ P(pi|p1,-- ,pi—1)
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Network output

Hi

0JoJeI I Jelelel

turquoise
blue
green
red
orange

white

black

probability

>

l'-

pi ~ P(pi|p1,-- ,pi—1)
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Network output

Hi

10J0] oI Jelelel

turquoise
blue
green
red
orange

white

black

probability

l'-

pi ~ P(pi|p1,-- ,pi—1)

| I

>
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Network output

Hi

‘00000000

turquoise
blue
green
red
orange

white

black

probability

pi ~ P(pi|p1,-- ,pi—1)

i | R

>
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P3 P4 P2 D1

p1 ~ P(p1) [T T 1]

P2 ~~ P(Pz pl)
p3 ~ P(Ps p1,p2)
p4 ~ P(p4|p1,p2,P3)

{p17p27p37p4} ~ P(p4|p17p27p3)P(p3‘p17p2)P(p2Ipl)P(pl)

Pi ~~ P(pi\Ph ‘o ,pi—1)
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Autoregressive probability model

N
p~ Hp(pi|p1, ey Di—1)
i—1

N

P(p) = HP(pz-|p1, ...,DPi—1) <= General product rule
i=1

The sampling procedure we defined above takes exact samples from the
learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration
of pixels.
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Learning the Distribution of Natural Data

p(x) = [ p(ilxs)  px)=]]]]p@ilx<) p&) =TT ]]p@i k%)
i j E j 1

1D sequences such as text or sound 2D tensors such as images 3D tensors such as videos

 Fully visible belief networks

« NADE/MADE
* PixelRNN/PixelCNN (Images)

* Video Pixel Nets (Videos)
« ByteNet (Language/seqg2seq)
 WaveNet (Audio)

Slide adapted from Nal Kalchbrenner

[Frey et al.1996] [Frey, 1998]

[Larochelle and Murray, 2011] [Germain et al,, 2015]

[van den Oord, Kalchbrenner, Kavukcuoglu, 2016]
[van den Oord, Kalchbrenner, Vinyals, et al., 2016]

[Kalchbrenner, van den Oord, Simonyan, et al,, 2016]
[Kalchbrenner, Espeholt, Simonyan, et al., 2016]

[van den Oord, Dieleman, Zen, et al,, 2016]

14



PixelCNN

* approach the generation process
as sequence modeling problem

) * an explicit density model

Slide adapted from Nal Kalchbrenner 115



PixelCNN

Slide adapted from Nal Kalchbrenner 116



PixelCNN

By chain rule and using as variables,

P(X) = P(z1)P(es]z1) P(zs]z1, @) /‘#

Slide adapted from Nal Kalchbrenner 117




PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 118



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 119



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 120



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 121



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 122



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 123



PixelCNN

—

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 124



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 125



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 126



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 127



PixelCNN

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 128



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 129



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 130



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 131



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 132



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 133



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 134



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 135



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 136



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 137



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 138



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 139



Pixel CNN — Softmax Sampling

Slide adapted from
Oriol Vinyals and Navdeep Jaitly 140



PixelCNN

use masked convolutions
to enforce the
autoregressive
relationship

OO | = | = | =
O |1 O | = | = |~
anll el el N o B
el el el o B
anll el el N o B

Slide adapted from Nal Kalchbrenner 141



PixelCNN

use masked convolutions
to enforce the
autoregressive
relationship |

0 0

‘ Mask A
306

autoregressive over color channels

8
S
N

p(%‘ ! X<z') — p(l‘i,R ! X<i)p(fl?z',G \ $7;,R,X<7:)p(§1?7;,3 \ ZL’i,R,%;,G,X@;)
Slide adapted from Nal Kalchbrenner 142



PixelCNN

Multiple layers of masked convolutions . .
composing multiple

OO0 00O _layers increases the
O OO OO0 = context size
ONON | O
O O O

: only depends on pixel
| above and to the left
ool \e)e
O @ O
O® OO
0000 o@\
masked convolution

Slide adapted from Aaron Courville 143



Samples from PixelCNN

Topics: CIFAR-10
« Samples from a class-conditioned PixelCNN

.-4
: = . : '
: P, - .
. :
’ : 4
. 5 ) iR
. 'v* -
. .'\\
b ) e h
1. Ll r -
-
>N
¥ o
S
-
) )

Coral Reef

Slide credit: Nal Kalchbrenner 144



Samples from PixelCNN

Topics: CIFAR-10
« Samples from a class-conditioned PixelCNN

BRI 1 ER P T '
r
s . - W O

Sorrel horse

Slide credit: Nal Kalchbrenner 145



Samples from PixelCNN

Topics: CIFAR-10
« Samples from a class-conditioned PixelCNN

—
' " -
-
"y - -
\-v\.' -
[ .
-~ -
t‘..os’ Sasd
‘.
- o ' b -
VR e O
v » .
e .

Sandbar

Slide credit: Nal Kalchbrenner 146



Improving Pixel CNN

Vertical stack

_>

P

D — .--- Blind spot

el Horizontal stack
Stacking layers of masked Solution: use two stacks of
convolution creates a blindspot convolution, a vertical stack and

a horizontal stack
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Improving PixelCNN |

There I1s a problem with this
form of masked convolution.

1
1
1
0
0

1
1
1
0
0

O | OO |1 O = | =

1
1
0
0
0

1
1
0
0
0

P

<+ .--- Blind spot

Stacking layers of masked
convolution creates a blindspot
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Improving PixelCNN II

Use more expressive nonlinearity: hyy1 = tanh(Wy ¢ x hg) © (W 4 * hy)

This information flow (between
vertical and horizontal stacks)

preserves the correct pixel *

dependencies

Split feature maps

Vertical stack (out)

Horizontal stack (out)

1x1 _pé

1 x1

p = #feature maps

149



Convolutional Long Short-Term Memory

Row LSTM O

Stollenga et al, 2015
Oord, Kalchbrenner, Kavukcuoglu, 2016

150




Pixel RNN

Multiple
layers of

convolutional
LSTM

Oord, Kalchbrenner, Kavukcuoglu, 2016
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Slide credit:
Nal Kalchbrenner
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Samples from
PixelRNN

Slide credit: Nal Kalchbrenner

Wﬁﬂ*-
R e
'fﬁﬂlmamﬁl** §-
—— = . .l ; :
' .. i&!‘.ﬂﬂ

'~wnﬂ w llla
ﬁlﬂiﬂ@lawﬁilﬂﬁl
IIIE Emlu I

153



Image completions (conditional samples)
from PixelRNN

occluded completions original

H - - H “-
1 -
. ',.ﬂi

[PixelRNN, van der Oord et al. 2016] .
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Modeling Audio

p e §0 B D Pu e~

1 Second



Architecture for 1D sequences (Bytenet / Wavenet)

Deep RNN

Bytenet decoder

N
.

%

9 §§| <
% \//’ //'v |

« Stack of dilated, masked 1-D

convolutions in the decoder

* The architecture Is parallelizable

along the time dimension (during
training or scoring)

» Easy access to many states from the

past
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Causal Convolution
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Input
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Causal Convolution
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Input

158



Causal Convolution
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Input
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Causal Convolution
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Causal Convolution

Output

Hidden
Layer

Hidden
Layer

Hidden
Layer

Input
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Causal Dilated Convolution
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Causal Dilated Convolution
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Causal Dilated Convolution
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dilation=2
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Causal Dilated Convolution
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Input

OO OO0 000000000 O0

O O OO0 000 0 00 O0

O O O O O O O O

dilation=4

dilation=2

dilation=1

165



Causal Dilated Convolution
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Causal Dilated Convolution
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Sampling
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Sampling
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Video Pixel Net (VPN)
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masked convolution

: S - W dh. ¥
VPN Samples for Robotic Pushing
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Video Pixel Net (VPN)

PixelCNN
Decoders

Resolution Preserving
CNN Encoders
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Sparse Transformers
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Normal Sparse Sparse
Transformer Transformer Transformer

(strided) (fixed)

« Strided attention is roughly equivalent to each
position attending to its row and its column

* Fixed attention attends to a fixed column and the
elements after the latest column element
(especially used for text).

[Child, Gray, Radford, Sutskever, 2019] -,




Autoregressive Models

» Explicitly model conditional probabilities:
n

pmodel(w) — pmodel(xl) Hpmodel(xi | L1y... 73773—1)

1=2 "\ Each conditional can be
Adva ntageS' a complicated neural net

. . 4 n ' |
* Pmodel(X) 1S tractable (easy to train and samplﬁ_ o _ h
radatages e

« (Generation can be too costly W

- }! § -« .
» (Generation can not be controlled ai ﬂ LY

by a latent code Pixel CNN elephants-
(van den Ord et al. 2016) 174
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Next Lecture:
Deep Generative Models
Part 2



