
Lecture #9 – Deep Generative Models – Part 1

Erkut Erdem // Hacettepe University // Fall 2023

Video: Samples from "cooking" subset of Kinetics, Weissenborn et al. 

CMP784
DEEP LEARNING



• Content-based attention

• Location-based attention

• Soft vs. hard attention

• Show, Attend 
and Tell

• Self-attention and 
Transformer networks

• Vision Transformers

• Pretraining during transformers
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Previously on CMP784
Illustration: DeepMind



Lecture overview
• Supervised vs. Unsupervised Learning
• Generative Modeling
• Basic Foundations

–Sparse Coding
–Autoencoders

• Autoregressive Generative Models

Disclaimer: Much of the material and slides for this lecture were borrowed from 
— Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas’ Berkeley CS294-158 class
—Ruslan Salakhutdinov’s talk titled “Unsupervised Learning: Learning Deep Generative Models”
— Yoshua Bengio’s IDT6266 class
—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
—Nal Kalchbrenner’s talks on “Generative Modelling as Sequence Learning” and “Generative Models of Language and Images”
— Justin Johnson’s EECS 498/598 class
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Cat

Classification

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



DOG, DOG, CAT

Object Detection

Supervised vs Unsupervised Learning

5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Semantic Segmentation

GRASS, CAT, TREE, SKY

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Image captioning

A cat sitting on a 
suitcase on the floor

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



👍

Supervised vs Unsupervised Learning
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“This Movie is amazing. 
It has a great plot and
talented actors, and 
the supporting cast is 
really good as well.“

Sentiment Analysis
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Clustering
(e.g. K-Means)

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Dimensionality Reduction
(e.g. Principal Components Analysis)

3D 2D

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Feature Learning
(e.g. autoencoders)

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Density Estimation

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, 
sentiment analysis, etc.



Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y) Cat

Data: x

Label: y

Discriminative vs Generative Models

15



Cat

Data: x

Label: y

Probability Recap:

Density Function
p(x) assigns a positive 
number to each possible x; 
higher numbers mean x is 
more likely

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density functions 
are normalized:

Different values of x 
compete for density 

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Data: x

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number to 
each possible x; higher numbers 
mean x is more likely

Density functions 
are normalized:

P(cat|.      )

P(dog|.      )

Discriminative vs Generative Models

17

Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y) Different values of x 

compete for density 



P(cat|.      )

P(dog|.      )

P(cat|      )

P(dog|       )

Discriminative model: the possible labels for 
each input ”compete” for probability mass. 
But no competition between images

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



P(cat|      )

P(dog|      )

Discriminative model: No way for the model to 
handle unreasonable inputs; it must give label 
distributions for all images

P(cat|      )

P(dog|       )

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



P(cat|      )

P(dog|      )

Discriminative model: No way for the model to 
handle unreasonable inputs; it must give label 
distributions for all images

P(cat|      )
P(dog|      )

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Generative model: All possible images compete 
with each other for probability mass

P(       )

P(       )

P(      )
P(       )

…

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Generative model: All possible images compete with each other 
for probability mass

Requires deep image understanding! Is a dog more likely to sit or 
stand? How about 3-legged dog vs 3-armed monkey?

P(       )

P(       )

P(      )
P(       )

…

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Generative model: All possible images compete with each other 
for probability mass

Model can “reject” unreasonable inputs by assigning them small 
values

P(       )

P(       )

P(      )
P(       )

…

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Conditional Generative Model: Each possible label 
induces a competition among all images

P(      |cat)
P(      |cat)

P(      |cat)

P(       |cat)

…

P(      |dog)
P(      |dog)

P(      |dog)
P(      |dog)

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



We can build a conditional generative 
model from other components!

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)
Conditional 

Generative Model

Discriminative Model

Prior over labels

(Unconditional) 
Generative Model

Discriminative vs Generative Models
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)

Recall Bayes’ Rule:



Assign labels to data
Feature learning (with labels)

What can we do with a discriminative model?
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

What can we do with a discriminative model?
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels

What can we do with a discriminative model?
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Discriminative 
Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional 
Generative Model:
Learn p(x|y)



Generative Modeling

• Goal: Learn some underlying hidden structure of the training samples 
to generate novel samples from same data distribution

30

P
pdata

pmodel

Slide adapted from Sebastian Nowozin



Learning a generative model
• We are given a training set of examples, e.g., images of dogs

• We want to learn a probability distribution p(x) over images x s.t. 
– Generation: If we sample xnew ∼ p(x), xnew should look like a dog (sampling)
– Density estimation: p(x) should be high if x looks like a dog, and low

otherwise (anomaly detection) 
– Unsupervised representation learning: We should be able to learn what

these images have in common, e.g., ears, tail, etc. (features) 
31Slide adapted from Stefano Ermon, Aditya Grover

Model family



Generate Images

[Deep Belief Nets, Hinton, Osindero, Teh, 2006] 32



Generate Images

[VAE, Kingma and Welling, 2013] 33



Generate Images

[GAN, Goodfellow et al. 2014]
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Generate Images

[DCGAN, Radford, Metz, Chintala 2015]
35



Generate Images

[DCGAN, Radford, Metz, Chintala 2015] 36



Generate Images

[Ledig, Theis, Huszar et al, 2017] 37



Generate Images

[CycleGAN: Zhu, Park, Isola & Efros, 2017] 38



Generate Images

[BigGAN, Brock, Donahue, Simonyan, 2018] 39



Generate Images

[StyleGAN, Karras, Laine, Aila, 2018] 40



Generate Images

[Latent Diffusion, Rombach, Blattmann, Lorenz, Esser, Ommer, 2022] 41

Appendix

Figure 13. Convolutional samples from the semantic landscapes model as in Sec. 4.3.2, finetuned on 5122 images.
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Generate Images

[Latent Diffusion, Rombach, Blattmann, Lorenz, Esser, Ommer, 2022] 42

Appendix

Figure 13. Convolutional samples from the semantic landscapes model as in Sec. 4.3.2, finetuned on 5122 images.
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Generate Audio

Parametric WaveNet

[WaveNet, Oord et al., 2018] 43

https://storage.googleapis.com/deepmind-media/pixie/us-english/parametric-1.wav
https://storage.googleapis.com/deepmind-media/pixie/us-english/wavenet-1.wav


Generate Video

DVD-GAN: Adversarial Video Generation on Complex Datasets, Clark, 
Donahue, Simonyan, 2019

44



Generate Video

45[Video Diffusion Models, Ho, Salimans, Gritsenko, Chan, Norouzi, Fleet, 2022]



Generate Video

46[Video Diffusion Models, Ho, Salimans, Gritsenko, Chan, Norouzi, Fleet, 2022]



Generate Text
PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

[Char-rnn, karpathy, 2015] 47



Generate Math
\begin{proof}
We may assume that $\mathcal{I}$ is an abelian sheaf on 
$\mathcal{C}$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on 
$X$.
Let $\mathcal{F}$ be a fibered complex. Let $\mathcal{F}$ be a 
category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on 
$\mathcal{C}$.
Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.
\item The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an $\mathcal{O}_X$-module.
\end{lemma}

[Char-rnn, karpathy, 2015] 48



Generate Text
Prompt [human written]: A train carriage containing controlled nuclear materials was stolen in Cincinnati 
today. Its whereabouts are unknown.

GPT-2: The incident occurred on the downtown train line, which runs from Covington and Ashland stations. 
In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal 
Railroad Administration to find the thief.

‘The theft of this nuclear material will have significant negative consequences on public and 
environmental health, our workforce and the economy of our nation,’ said Tom Hicks, the U.S. Energy 
Secretary, in a statement. ‘Our top priority is to secure the theft and ensure it doesn’t happen again.’

The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear research 
site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information. According to the release, 
the U.S. Department of Energy’s Office of Nuclear Material Safety and Security is leading that team’s 
investigation.

‘The safety of people, the environment and the nation’s nuclear stockpile is our highest priority,’ Hicks 
said. ‘We will get to the bottom of this and make no excuses.’

[OpenAI’s GPT2 -- Radford, Wu, Child, Luan, Amodei, Sutskever, 2019]
49



Generate Text
Prompt (human written): Recycling is good for the world, no, you could not be 
more wrong.

GPT-2: Recycling is NOT good for the world. It is bad for the environment, it 
is bad for our health, and it is bad for our economy. I’m not kidding. 
Recycling is not good for the environment. It is destructive to the earth and 
it is a major contributor to global warming. Recycling is not good for our 
health. It contributes to obesity and diseases like heart disease and cancer. 
Recycling is bad for our economy. It increases the cost of a product, and in 
turn, the price of everything that is made with that product. Recycling is 
not good for our nation. We pay a tremendous price for the privilege of 
having the world’s most advanced and efficient recycling system. Recycling is 
a huge, colossal waste of time, energy, money, and resources.

[OpenAI’s GPT2 -- Radford, Wu, Child, Luan, Amodei, Sutskever, 2019]
50



Try it yourself

https://talktotransformer.com/
51

https://talktotransformer.com/


Try it yourself

https://openai.com/api/
52



Compression - Lossless

Generative models provide better 
bit-rates than distribution-unaware 
compression methods like JPEG, 
etc.

53



Compression - Lossy
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Downstream Task - Sentiment Detection

55[Radford et al., 2017]



Downstream Tasks - NLP (BERT Revolution)

[https://super.gluebenchmark.com/leaderboard] 56



Downstream Tasks - Vision (Contrastive)

"If, by the first day of autumn (Sept 23) of 
2015, a method will exist that can match or 
beat the performance of R-CNN on Pascal 
VOC detection, without the use of any extra, 
human annotations (e.g. ImageNet) as pre-
training, Mr. Malik promises to buy Mr. Efros
one (1) gelato (2 scoops: one chocolate, one 
vanilla)."

Table: Data-Efficient Image Recognition 
using CPC

[Henaff, Srinivas, et al.] 57



Why Unsupervised Learning?
• Given high-dimensional data                               , we want to find a 

low-dimensional model characterizing the population. 

• Recent progress mostly in supervised DL 

• Real challenges for unsupervised DL 

• Potential benefits: 
−Exploit tons of unlabeled data
−Answer new questions about the variables observed
−Regularizer – transfer learning – domain adaptation
−Easier optimization (divide and conquer)
− Joint (structured) outputs 

58

Unsupervised Learning
•Given high-dimensional data                        , we want to 

estimate a low-dimensional model characterizing the 
population.

•Why is this an important problem?
• It is an essential building block in most high-dimensional 

prediction tasks. 
– Inverse Problems (super-resolution, inpainting, denoising, 

etc.).
– Structured Output Prediction (translation, Q&A, pose 

estimation, etc.)
– “Disentangling” or Posterior Inference.
– Learning with few labeled examples

X = (x1, . . . , xn)

21



Why Latent Factors & Unsupervised 
Representation Learning? Because of 
Causality.
• If Ys of interest are among the causal factors of X, then

is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X|Y), i.e. 

• The best possible model of X (unsupervised learning) MUST involve Y 
as a latent factor, implicitly or explicitly. 

• Representation learning SEEKS the latent variables H that explain the 
variations of X, making it likely to also uncover Y. 

59On causal and anticausal learning, Janzing et al. ICML 2012

Why Latent Factors & Unsupervised 
Representation Learning? Because of 
Causality. 

•  If	Ys	of	interest	are	among	the	causal	factors	of	X,	then	

is	Eed	to	P(X)	and	P(X|Y),	and	P(X)	is	defined	in	terms	of	P(X|Y),	i.e.	
•  The	best	possible	model	of	X	(unsupervised	learning)	MUST	

involve	Y	as	a	latent	factor,	implicitly	or	explicitly.	
•  RepresentaEon	learning	SEEKS	the	latent	variables	H	that	explain	

the	variaEons	of	X,	making	it	likely	to	also	uncover	Y.	
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P (Y |X) =
P (X|Y )P (Y )

P (X)

On	causal	and	anNcausal	learning,	(Janzing	et	al	ICML	2012)			



If Y is a Cause of X, Semi-Supervised 
Learning Works
• Just observing the x-density 

reveals the causes y (cluster ID) 

• After learning p(x) as a mixture, 
a single labeled example per 
class suffices to learn p(y|x) 

60
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p
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y=1 y=2 y=3

Mixture model

If Y is a Cause of X, Semi-Supervised 
Learning Works 
•  Just	observing	the	x-density	reveals	the	causes	y	(cluster	ID)	
•  Aser	learning	p(x)	as	a	mixture,	a	single	labeled	example	per	class	

suffices	to	learn	p(y|x)	

21	



Invariance & Disentangling 
Underlying Factors 
• Invariant features 

• Which invariances? 

• Alternative: learning to disentangle factors, i.e. keep all the explanatory 
factors in the representation 

• Good disentangling ➞ avoid the curse of dimensionality 

• Emerges from representation learning 

61

Invariance & Disentangling 
Underlying Factors 
•  Invariant	features	
•  Which	invariances?	

•  AlternaEve:	learning	to	disentangle	factors,	i.e.	
keep	all	the	explanatory	factors	in	the	
representaEon	

•  Good	disentangling	à		
	avoid	the	curse	of	dimensionality	

•  Emerges	from	representaEon	learning						
(Goodfellow	et	al.	2009,	Glorot	et	al.	2011)	

22	

(Goodfellow et al. 2009, Glorot et al. 2011) 



Curse of Dimensionality
• Challenge: How to model                                         for 

large N ? 

• An existing hypothesis is that, although the ambient 
dimensionality is high, the intrinsic dimensionality of     is 
low. 

23

p(x) , x 2 RN ( or x 2 ⌦N )

x

figure from Carter et al.
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p(x) , x 2 RN ( or x 2 ⌦N )

x

figure from Carter et al.

Curse of Dimensionality 
• Challenge: How to model                                                       for large N? 

• An existing hypothesis is that, although the ambient dimensionality is 
high, the intrinsic dimensionality of x is low. 

62Slide credit: Joan Bruna

Curse of Dimensionality
• Challenge: How to model                                         for 

large N ? 

• An existing hypothesis is that, although the ambient 
dimensionality is high, the intrinsic dimensionality of     is 
low. 

23

p(x) , x 2 RN ( or x 2 ⌦N )

x

figure from Carter et al.
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Explicit Density p(x) 

Unsupervised Learning

Non-probabilistic Models
• Sparse Coding
• Autoencoders
• Others (e.g. k-means)

Probabilistic 
(Generative) Models

Tractable Models
• Fully observed 

Belief Nets
• NADE
• PixelRNN

Non-Tractable Models
• BoltzmannMachines
• Variational 

Autoencoders
• Helmholtz Machines
• Many others...

Implicit Density

• Generative 
Adversarial 
Networks

• Moment 
Matching 
Networks



Unsupervised Learning
• Basic Building Blocks:

• Sparse Coding 
• Autoencoders

• Autoregressive Generative Models 

• Generative Adversarial Networks

• Variational Autoencoders

• Normalizing Flow Models

• Diffusion Models
64



Sparse Coding
• Sparse coding (Olshausen & Field, 1996). Originally developed to explain early 

visual processing in the brain (edge detection).

• Objective: Given a set of input data vectors                         , learn a dictionary of 
bases, such that: 

• Each data vector is represented as a sparse linear combination of bases. 

65

Sparse	Coding	
• 	Sparse	coding	(Olshausen	&	Field,	1996).	Originally	developed	
to	explain	early	visual	processing	in	the	brain	(edge	detecAon).		

• 	ObjecAve:	Given	a	set	of	input	data	vectors																														
learn	a	dicAonary	of	bases																																such	that:					

• 	Each	data	vector	is	represented	as	a	sparse	linear	combinaAon	
of	bases.	

Sparse:	mostly	zeros	

xn =
KX

k=1

ank�k

Sparse: mostly zeros



Sparse Coding

[0.0, 0.0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation) 
66

				Natural	Images	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representaAon)		

New	example 

Sparse	Coding	
Learned	bases:		“Edges”	

     x      = 0.8 *       						         +  0.3 *        					
          

+ 0.5 *       	

Slide	Credit:	Honglak	Lee	

= 0.8 *                   + 0.3 *                     + 0.5 * 

Natural Images Learned bases: “Edges”

New example

Slide Credit: Honglak Lee 



Sparse Coding: Training
• Input image patches: 
• Learn dictionary of bases: 

• Alternating Optimization: 
1. Fix dictionary of bases and solve for activations a (a standard Lasso 

problem). 
2. Fix activations a, optimize the dictionary of bases (convex QP problem). 
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Sparse	Coding:	Training	
• 	Input	image	patches:		
• 	Learn	dicAonary	of	bases:	

ReconstrucAon	error	 Sparsity	penalty	

• 	AlternaAng	OpAmizaAon:	

1.  Fix	dicAonary	of	bases																											and	solve	for	
acAvaAons	a	(a	standard	Lasso	problem).			

2.  Fix	acAvaAons	a,	opAmize	the	dicAonary	of	bases	(convex	
QP	problem).		
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• 	Input	image	patches:		
• 	Learn	dicAonary	of	bases:	

ReconstrucAon	error	 Sparsity	penalty	

• 	AlternaAng	OpAmizaAon:	

1.  Fix	dicAonary	of	bases																											and	solve	for	
acAvaAons	a	(a	standard	Lasso	problem).			

2.  Fix	acAvaAons	a,	opAmize	the	dicAonary	of	bases	(convex	
QP	problem).		

Reconstruction error Sparsity penalty



Sparse Coding: Testing Time
• Input: a new image patch x* , and K learned bases 

• Output: sparse representation a of an image patch x*. 
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Image Classification
• Evaluated on Caltech101 object category dataset.
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Evaluated	on	Caltech101	object	category	dataset.	

Classification 
Algorithm 

(SVM) 

Algorithm	 Accuracy	
Baseline	(Fei-Fei	et	al.,	2004)	 16%	

PCA	 37%	
Sparse	Coding	 47%	

Input	Image Features	(coefficients) 
Learned		
bases 

Image	ClassificaAon	

	9K	images,	101	classes	

(Lee, Battle, Raina, Ng, NIPS 2007)Slide	Credit:	Honglak	Lee	

Input Image Learned
bases Features (coefficients) 9K images, 101 classes



Modeling Image Patches 
• Natural image patches: 

⎯ small image regions extracted from an image of nature (forest, grass, …)
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Modeling Image Patches 
•  Natural image patches: 

Ø  small image regions extracted from an image of nature (forest, 

grass, ...) 

LETTERS

Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, New York, New York, USA (Y.K.); Electrical Engineering and Computer Science Department, Case Western University, Cleveland, Ohio, USA and Wissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).

ba

c

Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.

doi:10.1038/nature07481

1
 ©2008 Macmillan Publishers Limited. All rights reserved

Image	taken	from:		
Emergence	of	complex	cell	properDes		
by	learning	to	generalize	in	natural	scenes.	
Karklin	and	Lewicki,	2009	 36 

Image taken from:  Emergence of complex cell properties by learning to generalize in natural scenes. Karklin and Lewicki, 2009 



Relationship to V1 
• When trained on natural image 

patches
⎯ the dictionary columns (‘‘atoms’’) look 

like edge detectors 

⎯ each atom is tuned to a particular 
position, orientation and spatial 
frequency 

⎯ V1 neurons in the mammalian brain 
have a similar behavior 

72Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996
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Relationship to V1 
• Suggests that the brain might be 

learning a sparse code of visual 
stimulus 

⎯ Since then, many other models have 
been shown to learn similar features

⎯ they usually all incorporate a notion of 
sparsity 
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Interpreting Sparse Coding
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InterpreAng	Sparse	Coding	

x’	
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Linear	
Decoding	
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�(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representaAon	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	funcAon	of	x.		
• 	ReconstrucAon	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	
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Interpreting Sparse Coding

• Sparse, over-complete representation a.

• Encoding a = f(x) is implicit and nonlinear function of x.

• Reconstruction (or decoding) x’ = g(a) is linear and explicit. 
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Autoencoder
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Autoencoder	

Encoder Decoder 

Input Image 

Feature Representation 

Feed-back, 
generative, 
top-down 
path	

Feed-forward,  
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	maler!	
• 	Need	constraints	to	avoid	learning	an	idenAty.		

Feed-back,
generative,
top-down

Feed-forward,
bottom-up



Autoencoder

• Details of what goes insider the encoder and decoder matter! 

• Need constraints to avoid learning an identity. 
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Autoencoder
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Autoencoder
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Decoder
Filters D

Encoder
filters W

Sigmoid
function

• Need additional constraints to avoid learning an identity.

• Relates to Restricted Boltzmann Machines (later). 

Autoencoder	

z=σ(Wx) σ(WTz) 

Binary Input x 

 Binary Features z 

Decoder 
filters D 
path	

Encoder 
filters W. 

Sigmoid 
function	

• 	Relates	to	Restricted	Boltzmann	Machines	(later).		
• 	Need	addiAonal	constraints	to	avoid	learning	an	idenAty.		
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Autoencoder
• Feed-forward neural network trained to reproduce its input at the 

output layer
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Autoencoders	
• 	Feed-forward	neural	network	trained	to	reproduce	its	input	at	the	output	
layer	

Autoencoders
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hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))
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Loss Function
• Loss function for binary inputs

⎯ Cross-entropy error function (reconstruction loss) 

• Loss function for real-valued inputs

⎯ sum of squared differences (reconstruction loss)
⎯we use a linear activation function at the output
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Département d’informatique
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•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2

1



Autoencoder

• With nonlinear hidden units, we have a nonlinear generalization of PCA. 
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Autoencoder	
• 		If	the	hidden	and	output	layers	
are	linear,	it	will	learn	hidden	units	
that	are	a	linear	funcAon	of	the	data	
and	minimize	the	squared	error.	

• 	The	K	hidden	units	will	span	the	
same	space	as	the	first	k	principal	
components.	The	weight	vectors	
may	not	be	orthogonal.		

z=Wx Wz 

Input Image x 

 Linear Features z 

• 	With	nonlinear	hidden	units,	we	have	a	nonlinear	
generalizaAon	of	PCA.	

• If the hidden and output layers are 
linear, it will learn hidden units that 
are a linear function of the data and 
minimize the squared error. 

• The K hidden units will span the 
same space as the first k principal 
components. The weight vectors 
may not be orthogonal. 



Denoising Autoencoder
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Denoising Autoencoder 
•  Idea: representation should be robust to introduction of noise: 

Ø  random assignment of subset of 

inputs to 0, with probability 

Ø  Similar to dropouts on the input layer 

Ø  Gaussian additive noise 
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•  Reconstruction     computed 
from the corrupted input 

•  Loss function compares 
reconstruction with the noiseless 
input 

�x
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p( eX|X) = qD( eX|X). p(Y ) is a uniform prior over
Y 2 [0, 1]d

0
. This defines a generative model with pa-

rameter set ✓0 = {W0,b0
}. We will use the previ-

ously defined q0(X, eX,Y ) = q0(X)qD( eX|X)�f✓( eX)(Y )
(equation 4) as an auxiliary model in the context of
a variational approximation of the log-likelihood of
p( eX). Note that we abuse notation to make it lighter,
and use the same letters X, eX and Y for di↵erent
sets of random variables representing the same quan-
tity under di↵erent distributions: p or q0. Keep in
mind that whereas we had the dependency structure
X ! eX ! Y for q or q0, we have Y ! X ! eX for p.

Since p contains a corruption operation at the last
generative stage, we propose to fit p( eX) to corrupted
training samples. Performing maximum likelihood fit-
ting for samples drawn from q0( eX) corresponds to min-
imizing the cross-entropy, or maximizing

H = max
✓0

{�IH(q0( eX)kp( eX))}

= max
✓0

{EEq0( eX)[log p( eX)]}. (6)

Let q?(X, Y | eX) be a conditional density, the quan-
tity L(q?, eX) = EEq?(X,Y | eX)

h
log p(X, eX,Y )

q?(X,Y | eX)

i
is a lower

bound on log p( eX) since the following can be shown to
be true for any q?:

log p( eX) = L(q?, eX) + IDKL(q?(X, Y | eX)kp(X, Y | eX))

Also it is easy to verify that the bound is tight when
q?(X, Y | eX) = p(X, Y | eX), where the IDKL becomes 0.
We can thus write log p( eX) = maxq? L(q?, eX), and
consequently rewrite equation 6 as

H = max
✓0

{EEq0( eX)[max
q?

L(q?, eX)]}

= max
✓0,q?

{EEq0( eX)[L(q?, eX)]} (7)

x

x

x̃

x̃
qD(x̃|x)

g✓0(f✓(x̃))

Figure 2. Manifold learning perspective. Suppose
training data (⇥) concentrate near a low-dimensional man-
ifold. Corrupted examples (.) obtained by applying cor-

ruption process qD( eX|X) will lie farther from the manifold.

The model learns with p(X| eX) to “project them back” onto
the manifold. Intermediate representation Y can be inter-
preted as a coordinate system for points on the manifold.

where we moved the maximization outside of the ex-
pectation because an unconstrained q?(X, Y | eX) can
in principle perfectly model the conditional distribu-
tion needed to maximize L(q?, eX) for any eX. Now
if we replace the maximization over an unconstrained
q? by the maximization over the parameters ✓ of our
q0 (appearing in f✓ that maps an x to a y), we get
a lower bound on H: H � max✓0,✓{EEq0( eX)[L(q0, eX)]}
Maximizing this lower bound, we find

arg max
✓,✓0

{EEq0( eX)[L(q0, eX)]}

=arg max
✓,✓0

EEq0(X, eX,Y )

"
log

p(X, eX,Y )
q0(X, Y | eX)

#

=arg max
✓,✓0

EEq0(X, eX,Y)

h
log p(X, eX,Y)

i

+ EEq0( eX)

h
IH[q0(X, Y | eX)]

i

=arg max
✓,✓0

EEq0(X, eX,Y )

h
log p(X, eX,Y )

i
.

Note that ✓ only occurs in Y = f✓( eX), and ✓0 only
occurs in p(X|Y ). The last line is therefore obtained
because q0(X| eX) / qD( eX|X)q0(X) (none of which de-
pends on (✓, ✓0)), and q0(Y | eX) is deterministic, i.e., its
entropy is constant, irrespective of (✓, ✓0). Hence the
entropy of q0(X, Y | eX) = q0(Y | eX)q0(X| eX), does not
vary with (✓, ✓0). Finally, following from above, we
obtain our training criterion (eq. 5):

arg max
✓,✓0

EEq0( eX)[L(q0, eX)]

= arg max
✓,✓0

EEq0(X, eX,Y )[log[p(Y )p(X|Y )p( eX|X)]]

= arg max
✓,✓0

EEq0(X, eX,Y )[log p(X|Y )]

= arg max
✓,✓0

EEq0(X, eX)[log p(X|Y = f✓( eX))]

= arg min
✓,✓0

EEq0(X, eX)

h
LIH

⇣
X, g✓0(f✓( eX))

⌘i

where the third line is obtained because (✓, ✓0)
have no influence on EEq0(X, eX,Y )[log p(Y )] because
we chose p(Y ) uniform, i.e. constant, nor on
EEq0(X, eX)[log p( eX|X)], and the last line is obtained
by inspection of the definition of LIH in eq. 2, when
p(X|Y = f✓( eX)) is a Bg✓0 (f✓( eX)).

4.3. Other Theoretical Perspectives

Information Theoretic Perspective: Consider
X ⇠ q(X), q unknown, Y = f✓( eX). It can easily
be shown (Vincent et al., 2008) that minimizing the
expected reconstruction error amounts to maximizing

x
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Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.

Dataset SVMrbf SVMpoly DBN-1 SAA-3 DBN-3 SdA-3 (�)
basic 3.03±0.15 3.69±0.17 3.94±0.17 3.46±0.16 3.11±0.15 2.80±0.14 (10%)
rot 11.11±0.28 15.42±0.32 14.69±0.31 10.30±0.27 10.30±0.27 10.29±0.27 (10%)
bg-rand 14.58±0.31 16.62±0.33 9.80±0.26 11.28±0.28 6.73±0.22 10.38±0.27 (40%)
bg-img 22.61±0.37 24.01±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
rot-bg-img 55.18±0.44 56.41±0.43 52.21±0.44 51.93±0.44 47.39±0.44 44.49±0.44 (25%)
rect 2.15±0.13 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 24.05±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.82±0.35 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)

(a) No destroyed inputs (b) 25% destruction (c) 50% destruction

(d) Neuron A (0%, 10%, 20%, 50% destruction) (e) Neuron B (0%, 10%, 20%, 50% destruction)

Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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Table 1. Comparison of stacked denoising autoencoders (SdA-3) with other models.
Test error rate on all considered classification problems is reported together with a 95% confidence interval. Best performer
is in bold, as well as those for which confidence intervals overlap. SdA-3 appears to achieve performance superior or
equivalent to the best other model on all problems except bg-rand. For SdA-3, we also indicate the fraction � of destroyed
input components, as chosen by proper model selection. Note that SAA-3 is equivalent to SdA-3 with � = 0%.
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Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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were started from the same random initialization point.
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Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
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from local blob detectors, to stroke detectors, and some full character detectors at the higher noise levels.
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Figure 3. Filters obtained after training the first denoising autoencoder.
(a-c) show some of the filters obtained after training a denoising autoencoder on MNIST samples, with increasing
destruction levels �. The filters at the same position in the three images are related only by the fact that the autoencoders
were started from the same random initialization point.
(d) and (e) zoom in on the filters obtained for two of the neurons, again for increasing destruction levels.
As can be seen, with no noise, many filters remain similarly uninteresting (undistinctive almost uniform grey patches).
As we increase the noise level, denoising training forces the filters to di�erentiate more, and capture more distinctive
features. Higher noise levels tend to induce less local filters, as expected. One can distinguish di�erent kinds of filters,
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Encoder 

Encoder 
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convoluAonal	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagaAon.		

• Remove decoders and use 
feed-forward part. 

• Standard, or convolutional neural 
network architecture. 

• Parameters can be fine-tuned 
using backpropagation. 
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Deep Autoencoders
• 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D real-

valued codes for Oliver face patches. 

• Top: Random samples from the test dataset.
• Middle: Reconstructions by the 30-dimensional deep autoencoder. 
• Bottom: Reconstructions by the 30-dimensional PCA. 

96(Hinton and Salakhutdinov, Science 2006) 
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InformaAon	Retrieval	
2-D	LSA	space	
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Disasters and 
Accidents     

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representaAon:	each	arAcle	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	 (Hinton and Salakhutdinov, Science 2006)

Information Retrieval

• The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split 
into 402,207 training and 402,207 test). 

• “Bag-of-words” representation: each article is represented as a vector containing 
the counts of the most frequently used 2000 words in the training set. 

97(Hinton and Salakhutdinov, Science 2006) 

2-D LSA space



Semantic Hashing

• Learn to map documents into semantic 20-D binary codes. 

• Retrieve similar documents stored at the nearby addresses with no search at all. 

98(Hinton and Salakhutdinov, Science 2006) 

SemanAc	Hashing	

• 	Learn	to	map	documents	into	semanFc	20-D	binary	codes.	

• 	Retrieve	similar	documents	stored	at	the	nearby	addresses	with	no	
search	at	all.	
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Monetary/Economic

Disasters and 
Accidents

Energy Markets

Semantically
Similar
Documents

Document 

Address Space

Semantic
Hashing
Function

(Salakhutdinov and Hinton, SIGIR 2007)



Searching Large Image Database using 
Binary Codes
• Map images into 

binary codes for 
fast retrieval. 

• Small Codes, Torralba, Fergus, Weiss, CVPR 2008
• Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
• Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011 
• Norouzi and Fleet, ICML 2011 99

Searching	Large	Image	Database	
using	Binary	Codes	

• 	Map	images	into	binary	codes	for	fast	retrieval.	

• 	Small Codes, Torralba, Fergus, Weiss, CVPR 2008
•  Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
•  Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011
•  Norouzi and Fleet, ICML 2011,
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Explicit Density p(x) 

Unsupervised Learning

Non-probabilistic Models
• Sparse Coding
• Autoencoders
• Others (e.g. k-means)

Probabilistic 
(Generative) Models

Tractable Models
• Fully observed 

Belief Nets
• NADE
• PixelRNN

Non-Tractable Models
• BoltzmannMachines
• Variational 

Autoencoders
• Helmholtz Machines
• Many others...

Implicit Density

• Generative 
Adversarial 
Networks

• Moment 
Matching 
Networks



Autoregressive 
Generative Models
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p

Synthesizing a pixel

non-parametric
sampling

Input image 

[Efros & Leung 1999]

Models

Texture synthesis by non-parametric sampling
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[PixelRNN, PixelCNN, van der Oord et al. 2016] 

Input partial 
image

“white”

Predicted color 
of next pixel

Texture synthesis with a deep net
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Input partial 
image

Predicted color 
of next pixel

“white”

…

104[PixelRNN, PixelCNN, van der Oord et al. 2016] 
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Idea: We can represent colors as discrete classes
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Softmax regression (a.k.a. multinomial logistic regression)

predicted probability of each 
class given input x

max likelihood learner!

picks out the -log likelihood 
of the ground truth class 
under the model prediction 

And we can interpret the learner as modeling P(next pixel | previous pixels): 
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General product rule

The sampling procedure we defined above takes exact samples from the 
learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration 
of pixels.

Autoregressive probability model
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Learning the Distribution of Natural Data

114Slide  adapted from Nal Kalchbrenner

• Fully visible belief networks [Frey et al.,1996] [Frey, 1998] 

• NADE/MADE [Larochelle and Murray, 2011] [Germain et al., 2015] 

• PixelRNN/PixelCNN (Images) [van den Oord, Kalchbrenner, Kavukcuoglu, 2016]
[van den Oord, Kalchbrenner, Vinyals, et al., 2016]

• Video Pixel Nets (Videos) [Kalchbrenner, van den Oord, Simonyan, et al., 2016]

• ByteNet (Language/seq2seq) [Kalchbrenner, Espeholt, Simonyan, et al., 2016]

• WaveNet (Audio) [van den Oord, Dieleman, Zen, et al., 2016]

p(x) =
Y

k

Y

j

Y

i

p(xi,j,k|x<)p(x) =
Y

j

Y

i

p(xi,j |x<)p(x) =
Y

i

p(xi|x<)

1D sequences such as text or sound 2D tensors such as images 3D tensors such as videos



PixelCNN
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Neural Image Model: Pixel RNN

P(                 )

Slide  adapted from Nal Kalchbrenner

• approach the generation process 
as sequence modeling problem

• an explicit density model



PixelCNN
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Neural Image Model: Pixel RNN

P(                 )

Slide  adapted from Nal Kalchbrenner

Neural Image Model: Pixel RNN

P(                 )
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Neural Image Model: Pixel RNN

P(                 )

Slide  adapted from Nal Kalchbrenner

Neural Image Model: Pixel RNN

P(                 )

x1

xi

xn

xn2

By chain rule and using pixels as variables,

PixelCNN

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel recurrent neural networks.” 
arXiv preprint arXiv:1601.06759 (2016).

Idea: use masked convolutions to enforce the autoregressive relationship 
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel xi the model can only condition on the previously generated pixels
x1, . . . xi�1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

combine the strengths of both models by introducing a gated variant of PixelCNN (Gated PixelCNN)
that matches the log-likelihood of PixelRNN on both CIFAR and ImageNet, while requiring less than
half the training time.

We also introduce a conditional variant of the Gated PixelCNN (Conditional PixelCNN) that allows
us to model the complex conditional distributions of natural images given a latent vector embedding.
We show that a single Conditional PixelCNN model can be used to generate images from diverse
classes such as dogs, lawn mowers and coral reefs, by simply conditioning on a one-hot encoding
of the class. Similarly one can use embeddings that capture high level information of an image to
generate a large variety of images with similar features. This gives us insight into the invariances
encoded in the embeddings — e.g., we can generate different poses of the same person based on a
single image. The same framework can also be used to analyse and interpret different layers and
activations in deep neural networks.

2 Gated PixelCNN

PixelCNNs (and PixelRNNs) [30] model the joint distribution of pixels over an image x as the
following product of conditional distributions, where xi is a single pixel:

p(x) =
n2Y

i=1

p(xi|x1, ..., xi�1). (1)

The ordering of the pixel dependencies is in raster scan order: row by row and pixel by pixel within
every row. Every pixel therefore depends on all the pixels above and to the left of it, and not on any
of other pixels. The dependency field of a pixel is visualized in Figure 1 (left).

A similar setup has been used by other autoregressive models such as NADE [14] and RIDE [26].
The difference lies in the way the conditional distributions p(xi|x1, ..., xi�1) are constructed. In
PixelCNN every conditional distribution is modelled by a convolutional neural network. To make
sure the CNN can only use information about pixels above and to the left of the current pixel, the
filters of the convolution are masked as shown in Figure 1 (middle). For each pixel the three colour
channels (R, G, B) are modelled successively, with B conditioned on (R, G), and G conditioned on R.
This is achieved by splitting the feature maps at every layer of the network into three and adjusting the
centre values of the mask tensors. The 256 possible values for each colour channel are then modelled
using a softmax.

PixelCNN typically consists of a stack of masked convolutional layers that takes an N x N x 3 image
as input and produces N x N x 3 x 256 predictions as output. The use of convolutions allows the
predictions for all the pixels to be made in parallel during training (all conditional distributions from
Equation 1). During sampling the predictions are sequential: every time a pixel is predicted, it is

2



118
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly

PixelCNN



119
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly

PixelCNN



PixelCNN

120
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

121
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

122
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

123
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

124
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

125
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

126
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

127
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

128
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

129
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

130
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

131
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

132
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

133
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

134
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

135
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

136
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

137
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

138
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

139
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN – Softmax Sampling

140
Slide  adapted from 
Oriol Vinyals and  Navdeep Jaitly



PixelCNN

141

PixelCNN

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.
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Pixel Recurrent Neural Networks

In the literature it is currently best practice to add real-
valued noise to the pixel values to dequantize the data when
using density functions (Uria et al., 2013). When uniform
noise is added (with values in the interval [0, 1]), then the
log-likelihoods of continuous and discrete models are di-
rectly comparable (Theis et al., 2015). In our case, we can
use the values from the discrete distribution as a piecewise-
uniform continuous function that has a constant value for
every interval [i, i + 1], i = 1, 2, . . . 256. This correspond-
ing distribution will have the same log-likelihood (on data
with added noise) as the original discrete distribution (on
discrete data).

For MNIST we report the negative log-likelihood in nats
as it is common practice in literature. For CIFAR-10 and
ImageNet we report negative log-likelihoods in bits per di-
mension. The total discrete log-likelihood is normalized by
the dimensionality of the images (e.g., 32⇥ 32⇥ 3 = 3072
for CIFAR-10). These numbers are interpretable as the
number of bits that a compression scheme based on this
model would need to compress every RGB color value
(van den Oord & Schrauwen, 2014b; Theis et al., 2015);
in practice there is also a small overhead due to arithmetic
coding.

5.2. Training Details

Our models are trained on GPUs using the Torch toolbox.
From the different parameter update rules tried, RMSProp
gives best convergence performance and is used for all ex-
periments. The learning rate schedules were manually set
for every dataset to the highest values that allowed fast con-
vergence. The batch sizes also vary for different datasets.
For smaller datasets such as MNIST and CIFAR-10 we use
smaller batch sizes of 16 images as this seems to regularize
the models. For ImageNet we use as large a batch size as
allowed by the GPU memory; this corresponds to 64 im-
ages/batch for 32 ⇥ 32 ImageNet, and 32 images/batch for
64 ⇥ 64 ImageNet. Apart from scaling and centering the
images at the input of the network, we don’t use any other
preprocessing or augmentation. For the multinomial loss
function we use the raw pixel color values as categories.
For all the PixelRNN models, we learn the initial recurrent
state of the network.

5.3. Discrete Softmax Distribution

Apart from being intuitive and easy to implement, we find
that using a softmax on discrete pixel values instead of a
mixture density approach on continuous pixel values gives
better results. For the Row LSTM model with a softmax
output distribution we obtain 3.06 bits/dim on the CIFAR-
10 validation set. For the same model with a Mixture of
Conditional Gaussian Scale Mixtures (MCGSM) (Theis &
Bethge, 2015) we obtain 3.22 bits/dim.

In Figure 6 we show a few softmax activations from the
model. Although we don’t embed prior information about
the meaning or relations of the 256 color categories, e.g.
that pixel values 51 and 52 are neighbors, the distributions
predicted by the model are meaningful and can be multi-
modal, skewed, peaked or long tailed. Also note that values
0 and 255 often get a much higher probability as they are
more frequent. Another advantage of the discrete distribu-
tion is that we do not worry about parts of the distribution
mass lying outside the interval [0, 255], which is something
that typically happens with continuous distributions.

 0  50  100  150  200  250  0  50  100  150  200  250

 0  50  100  150  200  250  0  50  100  150  200  250

 0                                                                               255

0                                                                            255 0                                                                               255  0                                                                               255

 0                                                                               255

Figure 6. Example softmax activations from the model. The top
left shows the distribution of the first pixel red value (first value
to sample).

5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
skip connections; using both is also effective and preserves
the advantage.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

When using both the residual and skip connections, we see
in Table 3 that performance of the Row LSTM improves
with increased depth. This holds for up to the 12 LSTM
layers that we tried.
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10 validation set. For the same model with a Mixture of
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5.4. Residual Connections

Another core component of the networks is residual con-
nections. In Table 2 we show the results of having residual
connections, having standard skip connections or having
both, in the 12-layer CIFAR-10 Row LSTM model. We
see that using residual connections is as effective as using
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders 
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016

African elephant Coral Reef

Sandbar Sorrel horse

Lhasa Apso (dog) Lawn mower

Brown bear Robin (bird)

Figure 3: Class-Conditional samples from the Conditional PixelCNN.

Figure 4: Left: source image. Right: new portraits generated from high-level latent representation.

Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.
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Topics: CIFAR-10
• Samples from a class-conditional PixelCNN

Conditional Image Generation with PixelCNN Decoders 
van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, Kavukcuoglu, NIPS 2016
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Figure 5: Linear interpolations in the embedding space decoded by the PixelCNN. Embeddings from
leftmost and rightmost images are used for endpoints of the interpolation.
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Stacking layers of masked 
convolution creates a blindspot

Solution: use two stacks of 
convolution, a vertical stack and 
a horizontal stack

van den Oord, Aaron, et al. "Conditional image generation with PixelCNN decoders.” 
Advances in Neural Information Processing Systems. 2016.
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[PixelRNN, van der Oord et al. 2016] 

Image completions (conditional samples) 
from PixelRNN
occluded completions original
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Architecture for 1D sequences (Bytenet / Wavenet)

• Stack of dilated, masked 1-D 
convolutions in the decoder

• The architecture is parallelizable
along the time dimension (during 
training or scoring)

• Easy access to many states from the 
past
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Deep RNN

Bytenet decoder
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Multiple Stacks
• Improved receptive field with 

dilated convolutions

• Gated Residual block with 
skip connections
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Sparse Transformers

• Strided attention is roughly equivalent to each 
position attending to its row and its column 

• Fixed attention attends to a fixed column and the 
elements after the latest column element 
(especially used for text).
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Generating Long Sequences with Sparse Transformers

Figure 2. Learned attention patterns from a 128-layer network on CIFAR-10 trained with full attention. White highlights denote attention
weights for a head while generating a given pixel, and black denotes the autoregressive mask. Layers are able to learn a variety of
specialized sparse structures, which may explain their ability to adapt to different domains. a) Many early layers in the network learn
locally connected patterns, which resemble convolution. b) In layers 19 and 20, the network learned to split the attention across a
row attention and column attention, effectively factorizing the global attention calculation. c) Several attention layers showed global,
data-dependent access patterns. d) Typical layers in layers 64-128 exhibited high sparsity, with positions activating rarely and only for
specific input patterns.

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)

Figure 3. Two 2d factorized attention schemes we evaluated in comparison to the full attention of a standard Transformer (a). The top
row indicates, for an example 6x6 image, which positions two attention heads receive as input when computing a given output. The
bottom row shows the connectivity matrix (not to scale) between all such outputs (rows) and inputs (columns). Sparsity in the connectivity
matrix can lead to significantly faster computation. In (b) and (c), full connectivity between elements is preserved when the two heads are
computed sequentially. We tested whether such factorizations could match in performance the rich connectivity patterns of Figure 2.

[Child, Gray, Radford, Sutskever, 2019]
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Autoregressive Models
• Explicitly model conditional probabilities:

Advantages:
• pmodel(x) is tractable (easy to train and sample)

Disadvantages:
• Generation can be too costly
• Generation can not be controlled 

by a latent code PixelCNN elephants
(van den Ord et al. 2016)
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Next Lecture: 
Deep Generative Models

Part 2

175


