
CMP 784, Fall 2024 - Practical 1
Hacettepe University, Department of Computer Engineering

CMP 784 – Practical 1: Learning Distributed Word Representations
Due date: Thursday, 31-10-2024, 11:59 PM.

Overview

The goal of this assignment is to get you familiarize with training neural networks, to learn dis-
tributed word representations1.

Problem

In this assignment we will learn about word embeddings and make neural networks learn about
words. We could try to match statistics about the words, or we could train a network that takes
a sequence of words as input and learns to predict the word that comes next.
This assignment will ask you to implement a linear embedding and then the backpropagation
computations for a neural language model and then run some experiments to analyze the learned
representation. The amount of code you have to write is very short but each line will require you
to think very carefully. You will need to derive the updates mathematically, and then implement
them using matrix and vector operations in NumPy.

Starter code and data

Download and extract the archive from the course web page https://web.cs.hacettepe.edu.
tr/˜erkut/cmp784.f24/practicals/practical1.zip.

Look at the file raw sentences.txt. It contains the sentences that we will be using for this as-
signment. These sentences are fairly simple ones and cover a vocabulary of only 250 words. We
have already extracted the 4-grams from this dataset and divided them into training, validation,
and test sets. To inspect this data, run the following within IPython:

import pickle
data = pickle.load(open(’data.pk’, ’rb’))

Now data is a Python dict which contains the vocabulary, as well as the inputs and targets
for all three splits of the data. data[’vocab’] is a list of the 250 words in the dictionary;
data[’vocab’][0] is the word with index 0, and so on. data[’train inputs’] is a 372,500 × 3
matrix where each row gives the indices of the 3 context words for one of the 372,500 training
cases. data[’train targets’] is a vector giving the index of the target word for each training
case. The validation and test sets are handled analogously.

Now look at the file language model.ipynb, which contains the starter code for the assignment.
Even though you only have to modify a few specific locations in the code, you may want to read
through this code before starting the assignment.

Part 1: Linear Embedding – GLoVE

In this section, we will be implementing a simplified version of GLoVE [Pennington et al., 2014].
Given a corpus with V distinct words, we define the co-occurrence matrix X ∈ V × V with entries
Xij representing the frequency of the i-th word and j-th word in the corpus appearing in the same
context - in our case the adjacent words. GLoVE aims to find a d-dimensional embedding of the

1Adapted from the practical developed by George E. Dahl for deep learning class

Page 1

https://web.cs.hacettepe.edu.tr/~erkut/cmp784.f24/practicals/practical1.zip
https://web.cs.hacettepe.edu.tr/~erkut/cmp784.f24/practicals/practical1.zip


CMP 784, Fall 2024 - Practical 1
Hacettepe University, Department of Computer Engineering

words that preserves properties of the co-occurrence matrix by representing the i-th word with a
d-dimensional vector wi ∈ Rd and a scalar bias bi ∈ R. This objective can be written as2:

L({wi, bi}V
i=1) =

V∑
i,j=1

(w⊤
i wj + bi + bj − log Xij)2 (1)

When the bias terms are omitted, then GLoVE corresponds to finding a rank-d symmetric factor-
ization of the co-occurrence matrix.

1. Given the vocabulary size V and embedding dimensionality d, how many trainable parameters
does the GLoVE model have?

2. Write the gradient of the loss function with respect to one parameter vector wi.

3. Implement the gradient update of GLoVE in language model.ipynb.

4. Train the model with varying dimensionality d. Which d leads to optimal validation perfor-
mance? Why does / doesn’t larger d always lead to better validation error?

Part 2: Network architecture

In this assignment, we will train a neural language model like the one we covered in lecture and
as in [Bengio et al., 2003]. It receives as input 3 consecutive words, and its aim is to predict a
distribution over the next word (the target word). We train the model using the cross-entropy
criterion, which is equivalent to maximizing the probability it assigns to the targets in the training
set. Hopefully it will also learn to make sensible predictions for sequences it hasn’t seen before.
The model architecture is as follows:

The network consists of an input layer, embedding layer, hidden layer and output layer. The input
consists of a sequence of 3 consecutive words, given as integer valued indices. (i.e., the 250 words

2We have simplified the objective by omitting the weighting function and the additional weight vector w̃ , due to
the symmetry of our co-occurrence matrix. For the complete algorithm please see [Pennington et al., 2004].

Page 2



CMP 784, Fall 2024 - Practical 1
Hacettepe University, Department of Computer Engineering

in our dictionary are arbitrarily assigned integer values from 0 to 249.) The embedding layer maps
each word to its corresponding vector representation. This layer has 3 × D units, where D is the
embedding dimension, and it essentially functions as a lookup table. We share the same lookup ta-
ble between all 3 positions, i.e. we don’t learn a separate word embedding for each context position.
The embedding layer is connected to the hidden layer, which uses a logistic nonlinearity. The hid-
den layer in turn is connected to the output layer. The output layer is a softmax over the 250 words.

As a warm-up, please answer the following question.

1. As above, assume we have 250 words in the dictionary and use the previous 3 words as inputs.
Suppose we use a 16-dimensional word embedding and a hidden layer with 128 units. The
trainable parameters of the model consist of 3 weight matrices and 2 sets of biases. What
is the total number of trainable parameters in the model? Which part of the model has the
largest number of trainable parameters?

Part 3: Training the Neural Network

In this part of the assignment, you implement a method which computes the gradient using back-
propagation. To start you out, the Model class contains several important methods used in training:

• compute activations computes the activations of all units on a given input batch

• compute loss computes the total cross-entropy loss on a mini-batch

• evaluate computes the average cross-entropy loss for a given set of inputs and targets

You will need to complete the implementation of two additional methods which are needed for
training:

• compute loss derivative computes the derivative of the loss function with respect to the
output layer inputs. In other words, if C is the cost function, and the softmax computation
is

yi = ezi∑
j ezj

(2)

this function should compute a B × NV matrix where the entries correspond to the partial
derivatives ∂C/∂zi

• back propagate is the function which computes the gradient of the loss with respect to model
parameters using backpropagation. It uses the derivatives computed by compute loss derivative.
Some parts are already filled in for you, but you need to compute the matrices of derivatives
for embed to hid weights, hid bias, hid to output weights, and output bias. These
matrices have the same sizes as the parameter matrices (see previous section).

In order to implement backpropagation efficiently, you need to express the computations in terms
of matrix operations, rather than for loops. You should first work through the derivatives on
pencil and paper. First, apply the chain rule to compute the derivatives with respect to individual
units, weights, and biases. Next, take the formulas you’ve derived, and express them in matrix
form. You should be able to express all of the required computations using only matrix multi-
plication, matrix transpose, and elementwise operations – no for loops! If you want inspiration,
read through the code for Model.compute activations and try to understand how the matrix
operations correspond to the computations performed by all the units in the network.

Page 3



CMP 784, Fall 2024 - Practical 1
Hacettepe University, Department of Computer Engineering

To make your life easier, we have provided the routine check gradients, which checks your gra-
dients using finite differences. You should make sure this check passes before continuing with the
assignment.

Once you’ve implemented the gradient computation, you’ll need to train the model. The function
train in language model.ipynb implements the main training procedure. It takes two arguments:

• embedding dim: The number of dimensions in the distributed representation

• num hid: The number of hidden units

For example, execute the following:

model = train(16, 128)

As the model trains, the script prints out some numbers that tell you how well the training is
going. It shows:

• The cross entropy on the last 100 mini-batches of the training set. This is shown after every
100 mini-batches.

• The cross entropy on the entire validation set every 1000 mini-batches of training.

At the end of training, this function shows the cross entropies on the training, validation and test
sets. It will return a Model instance. To convince us that you have correctly implemented the
gradient computations, please include the following with your assignment submission:

• You will submit language model.ipynb through e-mail. You do not need to modify any of
the code except the parts we asked you to implement.

• In your writeup, include the output of the function print gradients. This prints out part of
the gradients for a partially trained network which we have provided, and we will check them
against the correct outputs. Important: make sure to give the output of print gradients,
not check gradients.

Part 4: Analysis

In this part, you will analyze the representation learned by the network. You should first train a
model with a 16-dimensional embedding and 128 hidden units, as discussed in the previous section;
you’ll use this trained model for the remainder of this section. Important: if you’ve made any
fixes to your gradient code, you must reload the language model module and then re-run the train-
ing procedure. Python does not reload modules automatically, and you don’t want to accidentally
analyze an old version of your model.

These methods of the Model class can be used for analyzing the model after the training is done.

• display nearest words lists the words whose embedding vectors are nearest to the given
word

• word distance computes the distance between the embeddings of two words

• predict next word shows the possible next words the model considers most likely, along
with their probabilities

Page 4



CMP 784, Fall 2024 - Practical 1
Hacettepe University, Department of Computer Engineering

• tsne plot creates a 2-dimensional embedding of the distributed representation space using
an algorithm called t-SNE [van der Maaten and Hinton, 2008]. You don’t need to know what
this is for the assignment, but we may cover it later in the course. Nearby points in this 2-D
space are meant to correspond to nearby points in the 16-D space. From the learned model,
you can create pictures that are given above:

Using these methods, please answer the following questions.

1. Pick three words from the vocabulary that go well together (for example, ’government
of united’, ’city of new’, ’life in the’, ’he is the’ etc.). Use the model to pre-
dict the next word. Does the model give sensible predictions? Try to find an example
where it makes a plausible prediction even though the 4-gram wasn’t present in the dataset
(raw sentences.txt). To help you out, the function find occurrences lists the words that
appear after a given 3-gram in the training set.

2. Plot the 2-dimensional visualization using the method tsne plot representation. Look at
the plot and find a few clusters of related words. What do the words in each cluster have in
common? Plot the 2-dimensional visualization using the method tsne plot GLoVE representation
for a 256 dimensional embedding. How do the t-SNE embeddings for both models compare?
Plot the 2-dimensional visualization using the method plot 2d GLoVE representation. How
does this compare to the t-SNE embeddings? (You don’t need to include the plots with your
submission.)

3. Are the words ’new’ and ’york’ close together in the learned representation? Why or why
not?

4. Which pair of words is closer together in the learned representation: (’government’, ’political’),
or (’government’, ’university’)? Why do you think this is?

Page 5



CMP 784, Fall 2024 - Practical 1
Hacettepe University, Department of Computer Engineering

Grading

The assignment will be graded out of 4: 0 (no submission), 1 (an attempt at a solution), 2 (a
partially correct solution), 3 (a mostly correct solution), 4 (a correct solution), 5 (a particularly
creative or insightful solution).

What to Hand In

You are required to submit all your code along with a report in pdf format. The codes you
will submit should be well commented and in the form of a Jupyter notebook. Your report should
include the answers to the given questions and your observations about your experimental analysis.
Finally, prepare a ZIP file named name-surname(s)-practical1.zip containing

• Your code file language model.ipynb

• A pdf file titled practical1-report.pdf containing the following:

– Answers to the questions from Part 1
– Answer to the question from Part 2
– The output of print gradients()

– Answers to all four questions from Part 4

The ZIP file will be submitted via email to erkut@cs.hacettepe.edu.tr.

Late policy

You may use up to five slip days (in total) over the course of the semester for the programming
assignments. Late submission will not be allowed.

Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged
to discuss with your other classmates about the given assignments, but these discussions should
be carried out in an abstract way. That is, discussions related to a particular solution to a specific
problem (either in actual code or in the pseudocode) will not be tolerated. In short, turning in
someone else’s work, in whole or in part, as your own will be considered as a violation of academic
integrity. Please note that the former condition also holds for the material found on the web as
everything on the web has been written by someone else.

References

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vectors for Word
Representatio. Empirical Methods in Natural Language Processing (EMNLP), 2014.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A Neural Probabilistic
Language Model. Journal of Machine Learning Research, Vol 3, 1137-1155, February 2003.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine
Learning Research, Vol 9, 2579-2605, November 2008.

Page 6


