
CMP 784, Fall 2024 - Practical 2
Hacettepe University, Department of Computer Engineering

CMP 784 – Practical 2: Convolutional Neural Networks
Due date: Thursday, 21-11-2024, 11:59 PM.

Overview

The goal of this assignment is to get you familiarize with convolutional neural networks (CNNs)1.

First, we will train a convolutional neural network for a task known as image colourization. Given a
grayscale image, we will predict the colour at each pixel. This a difficult problem for many reasons,
one of which being that it is ill-posed: for a single grayscale image, there can be multiple, equally
valid colourings. In the second half of the assignment, we will perform fine-tuning on a pre-trained
semantic segmentation model. Semantic segmentation attempts to clusters the areas of an image
which belongs to the same object (label), and treats each pixel as a classification problem. We will
fine-tune a pre-trained conv net featuring dilated convolution to segment flowers from the Oxford17
flower dataset2.

Setting Up

We recommend that you use Colab (https://colab.research.google.com/) for the assignment,
as all the assignment notebooks have been tested on Colab. Otherwise, if you are working on your
own environment, you will need to install Python, PyTorch (https://pytorch.org), iPython
Notebooks, SciPy, NumPy and scikit-learn. Check out the websites of the course and relevant
packages for more details.

Download the Python notebook file cnn.ipynb, which contains the starter code for the assignment,
from the course webpage. Even though you only have to modify a few specific locations in the
code, you may want to read through this code before starting the assignment. To setup the
Colab environment, you will need to upload this notebook file using the upload tab at https:
//colab.research.google.com/.

Part A: Colourization as Classification

In this section, we will perform image colourization using a convolutional neural network. Given a
grayscale image, we wish to predict the color of each pixel. We have provided a subset of 24 output
colours, selected using k-means clustering3. The colourization task will be framed as a pixel-wise
classification problem, where we will label each pixel with one of the 24 colours. For simplicity, we
measure distance in RGB space. This is not ideal but reduces the software dependencies for this
assignment.
We will use the CIFAR-10 data set, which consists of images of size 32×32 pixels. For most of the
questions we will use a subset of the dataset. The data loading script is included with the notebook,
and should download automatically the first time it is loaded. If you have trouble downloading the
file, you can also do so manually from:
http://www.cs.toronto.edu/˜kriz/cifar-10-python.tar.gz.
Helper code for Part A is provided in cnn.ipynb, which will define the main training loop as well
as utilities for data manipulation. Run the helper code to setup for this question and answer the
following questions.

1Adapted from the practical developed by Lisa Zhang for deep learning class
2http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/
3https://en.wikipedia.org/wiki/K-means_clustering

Page 1

https://colab.research.google.com/
https://pytorch.org
https://colab.research.google.com/
https://colab.research.google.com/
http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
https://en.wikipedia.org/wiki/K-means_clustering


CMP 784, Fall 2024 - Practical 2
Hacettepe University, Department of Computer Engineering

1. Complete the model CNN, following the diagram provided below. Use the PyTorch layers
nn.ReLU, nn.BatchNorm2d, nn.Upsample, and nn.MaxPool2d, but do not use nn.Conv2d. In-
stead, use the convolutional layer MyConv2d included in the file to better understand its inter-
nals. Your CNN should be configurable by parameters kernel, num filters, num colours,
and num in channels. In the diagram, num filters and num colours are denoted NF and
NC, respectively. Use the following parameterizations (if not specified, assume default pa-
rameters):

• MyConv2d: Number of output filters to use shown after the hyphen. For example,
MyConv2D-2NF has 2NF output filters. Set kernel size to parameter kernel. Set number
of input filters for first MyConv2d to num in channels.

• nn.BatchNorm2d: the number of features to use for a layer is shown after the hyphen.
• nn.Upsample: use scaling factor = 2

• nn.MaxPool2d: use kernel size = 2

Grouping layers according to the diagram (those not separated by white space) by using
nn.Sequential containers will aid implementation of the forward method.

2. Run main training loop of CNN. This will train the CNN for a few epochs using the crossentropy
objective. It will generate some images showing the trained result at the end. Do these results
look good to you? Why or why not?

3. Compute the number of weights, outputs, and connections in the model, as a function of
NF and NC. Compute these values when each input dimension (width/height) is doubled.
Report all 6 values.

4. Consider an pre-processing step where each input pixel is multiplied elementwise by scalar a,
and is shifted by some scalar b. That is, where the original pixel value is denoted x, the new
value is calculated y = ax + b. Assume this operation does not result in any overflows. How
does this pre-processing step affect the output of the conv net from Question 1 and 2?

Part B: Skip Connections

A skip connection in a neural network is a connection which skips one or more layer and connects
to a later layer. We will introduce skip connections to our previous model.

Page 2



CMP 784, Fall 2024 - Practical 2
Hacettepe University, Department of Computer Engineering

1. Add a skip connection from the first layer to the last, second layer to the second last, etc.
That is, the final convolution should have both the output of the previous layer and the initial
grayscale input as input. This type of skip-connection is introduced by Ronneberger et al.
(MICCAI 2015), and is called a “UNet”. Following the CNN class that you have completed,
complete the init and forward methods of the UNet class in Part B of the notebook.
Hint: You will need to use the function torch.cat.

2. Train the model for at least 25 epochs and plot the training curve using a batch size of 100.

3. How does the result compare to the previous model? Did skip connections improve the
validation loss and accuracy? Did the skip connections improve the output qualitatively?
How? Give at least two reasons why skip connections might improve the performance of our
CNN models.

4. Re-train a few more ”UNet” models using different mini batch sizes with a fixed number of
epochs. Describe the effect of batch sizes on the training/validation loss, and the final image
output.

Part C: Fine-tune Semantic Segmentation Model

In the previous two parts, we worked on training models for image colourization. Now we will
switch gears and perform semantic segmentation by fine-tuning a pre-trained model.
Semantic segmentation can be considered as a pixel-wise classification problem where we need to
predict the class label for each pixel. Fine-tuning is often used when you only have limited labeled
data.
Here, we take a pre-trained model on the Microsoft COCO [Lin et al., 2014] dataset and finetune
it to perform segmentation with the classes it was never trained on. To be more specific, we use
deeplabv3 [Chen et al., 2017]4 pre-trained model and fine-tune it on the Oxford17 [Nilsback and
Zisserman, 2008] flower dataset.
We simplify the task to be a binary semantic segmentation task (background and flower). In the
following code, you will first see some examples from the Oxford17 dataset and load the finetune
the model by truncating the last layer of the network and replacing it with a randomly initialized
convolutional layer. Note that we only update the weights of the newly introduced layer.

1. For this assignment, we want to fine-tune only the last layer in our downloaded deeplabv3.
We do this by keeping track of weights we want to update in learned parameters.
Use the PyTorch utility Model.named parameters()5, which returns an iterator over all the
weight matrices of the model.
The last layer weights have names prefix “classifier.4”. We will select the corresponding
weights then passing them to learned parameters.

Complete the train function in Part C of the notebook by adding 2-3 lines of code where
indicated.

2. For fine-tuning we also want to

• use Model.requires grad () to prevent back-prop through all the layers that should
be frozen.

• replace the last layer with a new nn.Conv2d layer with appropriate input output channels
and kernel sizes. Since we are performing binary segmentation for this assignment, this

45deeplabv3 details: https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
5See examples at https://pytorch.org/docs/stable/nn.html

Page 3

https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://pytorch.org/docs/stable/nn.html


CMP 784, Fall 2024 - Practical 2
Hacettepe University, Department of Computer Engineering

new layer should have 2 output channels.
Complete the script in Question 2 of Part C by adding around 2 lines of code and train
the model.

3. Visualize the predictions by running the helper code provided.

4. Consider a case of fine-tuning a pre-trained model with n number of layers. Each of the
layers have a similar number of parameters, so the total number of parameters for the model
is proportional to n. Describe the difference in memory complexity in terms of n between
fine-tuning an entire pre-trained model versus fine-tuning only the last layer (freezing all the
other layers). What about the computational complexity?

5. If we increase the height and the width of the input image by a factor of 2, how does this
affect the memory complexity of fine-tuning? What about the number of parameters?

Grading

The assignment will be graded out of 4: 0 (no submission), 1 (an attempt at a solution), 2 (a
partially correct solution), 3 (a mostly correct solution), 4 (a correct solution), 5 (a particularly
creative or insightful solution).

What to Hand In

You are required to submit all your code along with a report in pdf format. The codes you
will submit should be well commented and in the form of a Jupyter notebook. Your report should
include the answers to the given questions and your observations about your experimental analysis.
Finally, prepare a ZIP file named name-surname(s)-practical2.zip containing

• Your code file cnn.ipynb

• A pdf file titled practical2-report.pdf containing the following:

– Answers to the questions from Part A
– Answer to the question from Part B
– Answer to the question from Part C

The ZIP file will be submitted via email to erkut@cs.hacettepe.edu.tr.

Late policy

You may use up to five extension days (in total) over the course of the semester for the programming
assignments. Late submission will not be allowed.

Academic Integrity

All work on assignments must be done individually unless stated otherwise. You are encouraged
to discuss with your other classmates about the given assignments, but these discussions should
be carried out in an abstract way. That is, discussions related to a particular solution to a specific
problem (either in actual code or in the pseudocode) will not be tolerated. In short, turning in
someone else’s work, in whole or in part, as your own will be considered as a violation of academic
integrity. Please note that the former condition also holds for the material found on the web as
everything on the web has been written by someone else.

Page 4



CMP 784, Fall 2024 - Practical 2
Hacettepe University, Department of Computer Engineering

References

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical image computing and comput-
erassisted intervention, pages 234–241. Springer, 2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European con-
ference on computer vision, pages 740–755. Springer, 2014.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pages 722-729. IEEE, 2008.

Page 5


