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DEEP 
LEARNING



Welcome to CMP784
• An overview of various 

deep architectures and 
learning methods

• Develop fundamental and 
practical skills at applying 
deep learning 
to your research.
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A little about me…
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Research Interests

44

• I study better ways to
understand and process
visual data. 

• My research interests
span a diverse set of topics, 
ranging from image editing
to image enhancement, 
and to multimodal learning
for integrated vision and language.

Computer
Vision

Natural Language
Understanding

Image 
Processing



Now, what about you?
• Introduce yourselves 

- Who are you? 

- Who do you work with if you have a 
thesis supervisor?

- What made you interested in this 
class?

- What are your expectations?

- What do you know about machine 
learning and deep learning? 
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Please send me an e-mail including these information!



Course Logistics
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Course information
Time/Location 09:30-12:30pm Thursday, D5

Instructor Erkut Erdem 
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• for course related announcements:

https://edstem.org/eu/courses/1683

• Course webpage:
https://web.cs.hacettepe.edu.tr/~erkut/cmp784.f24/index.html

https://edstem.org/eu/courses/1683
https://web.cs.hacettepe.edu.tr/~erkut/cmp784.f24/index.html


Textbook
• Goodfellow, Bengio, and Courville, 

Deep Learning, MIT Press, 2016 
(draft available online)

• In addition, we will extensively use 
online materials (video lectures, blog 
posts, surveys, papers, etc.)

8

http://www.deeplearningbook.org/


Instruction style
• Students are responsible for studying and 

keeping up with the course material 
outside of class time. 
• Reading particular book chapters, 

papers or blogs, or
• Watching some video lectures. 

• After the first part of the lectures, each 
week students will present papers related 
to the topics discussed in our class.
• Weekly quizzes about the papers presented 

each week
9



Prerequisites
• Calculus and linear algebra

• Derivatives, 
• Matrix operations 

• Probability and statistics (IST299,  IST292)

• Neural networks (CMP684)

• Machine learning (BBM406, CMP712)

• Programming

10

Read Chapter 2-4 
of the Deep Learning text book for a quick review.

Math Prerequisite Quiz
Due Date: 5pm, Sat, Oct 12, 2024. 

Each student enrolled to CMP784 
must complete and pass this quiz!



Topics Covered in AIN311-BBM406/CMP712
• Basics of Statistical Learning

• Loss function, MLE, MAP, Bayesian estimation, bias-variance tradeoff, overfitting, 
regularization, cross-validation

• Supervised Learning
• Nearest Neighbor, Naïve Bayes, Logistic Regression, Support Vector Machines, Kernels, 

Neural Networks, Decision Trees

• Ensemble Methods: Bagging, Boosting, Random Forests 

• Unsupervised Learning
• Clustering: K-Means, Gaussian mixture models

• Dimensionality reduction: PCA, SVD
11



Topics Covered in CMP684
• Continuous and discrete system 

models

• Neuron and Its Analytic Model

• Hopfiels Neural Network

• Perceptron Learning Algorithms

• Multilayer Perceptron (MLP)
• Derivation of the learning algorithm

• Error backpropagation

• Memorization and generalization

• Intervals and normalization

• Radial Basis Function Neural Nets

• Dynamical Neural Nets

• Feedback Nets

• Second Order Training Algorithms
• Levenberg-Marquardt algorithm

• Gauss-Newton algorithm

• Stability in Adaptive Systems

• Applications of Neural Nets
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Grading

Math Prerequisites Quiz 3%

Practicals 16% (2 practicals x 8% each)

Final Exam 25%

Course Project 32%

Paper Presentations 15%

Weekly Quizzes 9%
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Schedule
Week 1 Introduction to Deep Learning

Week 2 Machine Learning Overview

Week 3 Multi-Layer Perceptrons

Week 4 Training Deep Neural Networks

Week 5 Convolutional Neural Networks

Week 6 Understanding and Visualizing CNNs

Week 7 Recurrent Neural Networks

Week 8 Attention and Transformers
14



Schedule
Week 9 Autoencoders and Deep Generative Models 

Week 10 Progress Presentations 

Week 11 Deep Generative Models (cont’d) 

Week 12 Deep Generative Models (cont’d)

Week 13 Self-supervised Learning

Week 14 Final Project Presentations

15



Lecture 1: Introduction to Deep Learning

16(Goodfellow 2016)

Depth: Repeated CompositionCHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).
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Figure 1.2



Lecture 2: Machine Learning Overview

17

Effect'of'stepNsize'α'

16%

Large%α%%=>%Fast%convergence%but%larger%residual%error%
%Also%possible%oscilla$ons%

%
Small%α%%=>%Slow%convergence%but%small%residual%error%

%%%%(Goodfellow 2016)

Machine Learning and AI

CHAPTER 1. INTRODUCTION

AI

Machine learning

Representation learning

Deep learning

Example:
Knowledge

bases

Example:
Logistic

regression

Example:
Shallow

autoencodersExample:
MLPs

Figure 1.4: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Each section of the Venn diagram includes an example of an AI technology.
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Figure 1.4

(Goodfellow 2016)

The MNIST Dataset
CHAPTER 1. INTRODUCTION

Figure 1.9: Example inputs from the MNIST dataset. The “NIST” stands for National
Institute of Standards and Technology, the agency that originally collected this data.
The “M” stands for “modified,” since the data has been preprocessed for easier use with
machine learning algorithms. The MNIST dataset consists of scans of handwritten digits
and associated labels describing which digit 0–9 is contained in each image. This simple
classification problem is one of the simplest and most widely used tests in deep learning
research. It remains popular despite being quite easy for modern techniques to solve.
Geoffrey Hinton has described it as “the drosophila of machine learning,” meaning that
it allows machine learning researchers to study their algorithms in controlled laboratory
conditions, much as biologists often study fruit flies.

22

Figure 1.9

Unsupervised	Learning	
The	goal	is	to	construct	staCsCcal	model	
that	finds	useful	representaCon	of	data:	
•  Clustering	
•  Dimensionality	reducCon	
•  Modeling	the	data	density		
•  Finding	hidden	causes	(useful	
explanaCon)	of	the	data	

Unsupervised	Learning	can	be	used	for:	
•  Structure	discovery	
•  Anomaly	detecCon	/	Outlier	detecCon	
•  Data	compression,	Data	visualizaCon	
•  Used	to	aid	classificaCon/regression	tasks	

Some	Fits	to	the	Data	

For	M=9,	we	have	fi0ed	the	training	data	perfectly.		



Lecture 3: Multi-Layer Perceptrons

18
http://playground.tensorflow.org

http://playground.tensorflow.org/


Lecture 4: Training Deep Neural Networks
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Dropout Batch Normalization

Optimizers

Activation Functions

Sigmoid tanh ReLU Leaky ReLU

tanh(x) max(0,x) max(0.1x, x)



Lecture 5: Convolutional Neural Networks

20
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015



Lecture 6: Understanding and Visualizing CNNs
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Layer 1 Layer 2 Layer 3

Layer 4 Layer 5

M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014



Lecture 7: Recurrent Neural Networks

22

C. Manning and R Socher, Stanford CS224n Lecture 8 Notes
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

A Recurrent Neural Network (RNN)
(unfolded across time-steps) A bi-directional RNN

A deep bi-directional RNN

Long-Short-Term-
Memories (LSTMs)

Gated Recurrent Units (GRUs)



Lecture 8: Attention and Transformers 

23

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
C. Olah and S. Carter, “Attention and Augmented Recurrent Neural Networks”, Distill, 2016
A. Vaswani et al. “Attention is All You Need”, NeurIPS 2017.

Transformer Architecture



Lecture 9: Autoencoders and Deep 
Generative Models

24

Autoencoders 
•  Feed-forward neural network trained to reproduce its input at the 
output layer 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Decoder 

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Encoder 

For binary units 

A. Krizhevsky and G. E. Hinton, "Using Very Deep Autoencoders for Content-Based Image Retrieval", ESANN 2011
A. van den Oord et al., "Conditional Image Generation with PixelCNN Decoders", NeurIPS 2016
S. Reed et al., "Parallel Multiscale Autoregressive Density Estimation", ICML 2017

retrieved using 256 bit codes 

retrieved using Euclidean distance in pixel intensity space 

Parallel Multiscale Autoregressive Density Estimation  
Scott Reed, Aaron vanden Oord, Nal Kalchbrenner,  Sergio Go ḿez Colmenarejo, Ziyu Wang, Dan Belov, Nando de Freitas (2017)

Can we speed up the generation time 
of PixelCNN? 

• Yes, via multiscale generation. 
• Also seems to help to provide 

better global structure

Parallel Multiscale Autoregressive Density Estimation

Scott Reed
1

Aäron van den Oord
1

Nal Kalchbrenner
1

Sergio Gómez Colmenarejo
1

Ziyu Wang
1

Dan Belov
1

Nando de Freitas
1

Abstract

PixelCNN achieves state-of-the-art results in
density estimation for natural images. Although
training is fast, inference is costly, requiring one
network evaluation per pixel; O(N) for N pix-
els. This can be sped up by caching activations,
but still involves generating each pixel sequen-
tially. In this work, we propose a parallelized
PixelCNN that allows more e�cient inference
by modeling certain pixel groups as condition-
ally independent. Our new PixelCNN model
achieves competitive density estimation and or-
ders of magnitude speedup - O(log N) sampling
instead of O(N) - enabling the practical genera-
tion of 512⇥ 512 images. We evaluate the model
on class-conditional image generation, text-to-
image synthesis, and action-conditional video
generation, showing that our model achieves the
best results among non-pixel-autoregressive den-
sity models that allow e�cient sampling.

1. Introduction

Many autoregressive image models factorize the joint dis-
tribution of images into per-pixel factors:

p(x1:T ) =
TY

t=1

p(xt |x1:t�1) (1)

For example PixelCNN (van den Oord et al., 2016b) uses
a deep convolutional network with carefully designed fil-
ter masking to preserve causal structure, so that all factors
in equation 1 can be learned in parallel for a given image.
However, a remaining di�culty is that due to the learned
causal structure, inference proceeds sequentially pixel-by-
pixel in raster order.

In the naive case, this requires a full network evaluation
per pixel. Caching hidden unit activations can be used to
reduce the amount of computation per pixel, as in the 1D

1DeepMind. Correspondence to: Scott Reed <reed-
scot@google.com>.
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Figure 1. Samples from our model at resolutions from 4 ⇥ 4 to
256⇥ 256, conditioned on text and bird part locations in the CUB
data set. See Fig. 4 and the supplement for more examples.

case for WaveNet (Oord et al., 2016; Ramachandran et al.,
2017). However, even with this optimization, generation is
still in serial order by pixel.

Ideally we would generate multiple pixels in parallel,
which could greatly accelerate sampling. In the autore-
gressive framework this only works if the pixels are mod-
eled as independent. Thus we need a way to judiciously
break weak dependencies among pixels; for example im-
mediately neighboring pixels should not be modeled as in-
dependent since they tend to be highly correlated.

Multiscale image generation provides one such way to
break weak dependencies. In particular, we can model cer-
tain groups of pixels as conditionally independent given a
lower resolution image and various types of context infor-
mation, such as preceding frames in a video. The basic idea
is obvious, but nontrivial design problems stand between
the idea and a workable implementation.

First, what is the right way to transmit global information
from a low-resolution image to each generated pixel of the
high-resolution image? Second, which pixels can we gen-
erate in parallel? And given that choice, how can we avoid
border artifacts when merging sets of pixels that were gen-
erated in parallel, blind to one another?
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"A yellow bird with a black 
head, orange eyes and an 
orange bill."

PixelCNN Class conditioned samples generated by PixelCNN

Text-to-image synthesis with 
Parallel Multiscale PixelCNNs



Lecture 10: Deep Generative Models (cont’d)

25

Unsupervised Representation Learning with Deep Convolutional Generative 
Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala

min
!
max
"

𝔼#~%[log𝐷" 𝑥 ] + 𝔼#~&![log(1 − 𝐷"(𝑥))]

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets”, NIPS 2014. 
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks”, ICLR 2016 
L. Karacan, Z. Akata, A. Erdem and E. Erdem, “Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts”, arXiv preprint 2016
A. Brock, J. Donahue, K. Simonyan, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR2019

BigGANs, Brock et al., 2018

16

Class-conditioned samples generated by BigGAN



Lecture 11: Deep Generative Models (cont’d)

26

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, ICLR 2014 
A. van den Oord, O. Vinyals, K. Kavukcuoglu, "Neural Discrete Representation Learning", NeurIPS 2017
A. Razavi, A. van den Oord, O. Vinyals, “Generating Diverse High-Fidelity Images with VQ-VAE-2”,

zz

xx

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

1

Vector Quantized- Variational AutoEncoder (VQ-VAE)

Synthetic images generated by VQ-VAE2



Lecture 12: Self-supervised Learning

27

C. Doersch, A. Gupta, A. A. Efros, "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015.
S. Gidaris, P. Singh, N. Komodakis, "Unsupervised Representation Learning by Predicting Image Rotations", ICLR2018.
J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL-HLT 2019. 



Schedule
W1 Introduction to Deep Learning

W2 Machine Learning Overview

W3 Multi-Layer Perceptrons

W4 Training Deep Neural Networks

W5 Convolutional Neural Networks

W6 Understanding and Visualizing CNNs

W7 Recurrent Neural Networks

28

W8 Attention and Transformers 

W9 Autoencoders and Deep Generative 
Models

W10 Progress Presentations

W11 Deep Generative Models (cont’d)

W12 Deep Generative Models (cont’d)

W13 Self-supervised Learning

W14 Final Project Presentations

Practical 1 out

Practical 1 due, Practical 2 out

Start of paper presentations
Project proposals due

Practical 2 due

Project progress reports due



Paper Presentations

• (12 mins) One student will be responsible from providing 
an overview of the paper. 

• (9 mins) One student will present the strengths of the 
paper.

• (9 mins) One student will discuss the weaknesses of the 
paper.

• (10 mins) General discussion

See the rubrics on the course web page for details
29



Practicals
• 2 practicals (8% each)

• Learning to train neural networks for different tasks

• Should be done individually

• Late policy: You have 5 slip days in the semester.

• Tentative Dates
- Practical 1 Out: October 10th, Due: October 24th

- Practical 2 Out: October 24th, Due: November 14th

30



Course project
• The course project gives students a chance to apply deep architectures 

discussed in class to a research oriented project.

• The students can work in pairs. 

• The course project may involve
- Design of a novel approach and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

• Deliverables
- Proposals October 31, 2024
- Project progress presentations November 28, 2024
- Project progress reports December 5, 2024
- Final project presentations December 26, 2024
- Final reports January 10, 2025

31

The students who need GPU resources
for the course project are advised to 
use Google Colab. 



Lecture Overview
• what is deep learning

• a brief history of deep learning

• compositionality

• end-to-end learning

• distributed representations

Disclaimer: Some of the material and slides for this lecture were borrowed from 
—Dhruv Batra’s CS7643 class

—Yann LeCun’s talk titled “Deep Learning and the Future of AI”

32



What is Deep Learning

33



34



Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

What is deep learning?
35

“Deep learning allows computational models 
that are composed of multiple processing 
layers to learn representations of data with 
multiple levels of abstraction.”
− Yann LeCun, Yoshua Bengio and Geoff Hinton



36

1943 – 2006: A Prehistory of 
Deep Learning 



1943: Warren McCulloch and Walter Pitts
• First computational model 

• Neurons as logic gates (AND, OR, 
NOT)

• A neuron model that sums binary 
inputs and outputs a 1 if the sum 
exceeds a certain threshold value, 
and otherwise outputs a 0

37

LOGICAL CALCULUS FOR NERVOUS ACTIVITY 105 

(e 

(i 1 

Figure 1. The neuron ci is always marked with the numeral i upon the body of the 
cell, and the corresponding action is denoted by “N” with is subscript, as in the text: 

(a) N*(t) .=.N,(t- 1); 
(b) N,(t).s.N,(t-l)vN,(t-1); 

(c) N3(t).s.N1(t-1).N2(t-1); 

(d) N3(t).= N,(t-l).-N,(t-1); 

(e) N,(t):=:N,(t-l).v.N,(t-3).-N,(t-2); 
N&).=.N2(t-2).N2(t-1); 

(f) N4(t):3: --N,(t-l).N,(t-l)vN,(t-l).v.N,(t-1). 
N,(t-l).N,(t-1) 
NJt):=: -N,(t-2).N,(t-2)vN,(t-2).v.N,(t-2). 
N,(t-2).N,(t-2); 

(g) N,(t).=.NN,(t-2).-N,(t-3); 
(h) N,(t).=.N,(t-l).N,(t-2); 
(i) N,(t):=:Nz(t-l).v.N,(t-l).(Ex)t-1 .N,(x).N,(x). 



1958: Frank Rosenblatt’s Perceptron
• A computational model of a single neuron

• Solves a binary classification problem

• Simple training algorithm 

• Built using specialized hardware 

38
F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psych. Review, Vol. 65, 1958



1969: Marvin Minsky and Seymour Papert
“No machine can learn to recognize X unless it 
possesses, at least potentially, some scheme for 
representing X.” (p. xiii)

• Perceptrons can only represent 
linearly separable functions.
• such as XOR Problem 

• Wrongly attributed as the reason behind the AI 
winter, a period of reduced funding and interest 
in AI research

39



1990s
• Multi-layer perceptrons can theoretically 

learn any function (Cybenko, 1989; Hornik, 1991)

• Training multi-layer perceptrons
• Back propagation (Rumelhart, Hinton, Williams, 1986)
• Backpropagation through time (BPTT) (Werbos, 1988)

• New neural architectures
• Convolutional neural nets (LeCun et al., 1989)
• Long-short term memory networks (LSTM) 

(Schmidhuber, 1997)

40



Why it failed then
• Too many parameters to learn from few labeled examples. 

• “I know my features are better for this task”. 

• Non-convex optimization? No, thanks.

• Black-box model, no interpretability.

• Very slow and inefficient

• Overshadowed by the success of SVMs (Cortes and Vapnik, 1995)

41Adapted from Joan Bruna 
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A major breakthrough in 2006



43

• The first solution to the vanishing gradient problem.
• Build the model in a layer-by-layer fashion using unsupervised learning

• The features in early layers are already initialized or “pretrained” with some suitable features 
(weights). 

• Pretrained features in early layers only need to be adjusted slightly during supervised learning 
to achieve good results.

2006 Breakthrough: Hinton and Salakhutdinov

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, 28 July 2006.



44

The 2012 revolution



ImageNet Challenge

• Large Scale Visual 
Recognition Challenge (ILSVRC)
• 1.2M training images with 

1K categories 
• Measure top-5 classification error 

45

Image classification
Easiest classes

Hardest classes

UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 93

o Yearly ImageNet competition 
◦ Automatically label 1.4M images with 1K objects
◦ Measure top-5 classification error

ImageNet Large Scale Visual Recognition Challenge

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

✔ ✗

93

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei , “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.
O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015.



ILSVRC 2012 Competition

• The success of AlexNet, a deep convolutional network 
• 7 hidden layers (not counting some max pooling layers)
• 60M parameters 

• Combined several tricks
• ReLU activation function, data augmentation, dropout

46

2012 Teams %Error

Supervision (Toronto) 15.3

ISI (Tokyo) 26.1

VGG (Oxford) 26.9

XRCE/INRIA 27.0

UvA (Amsterdam) 29.6

INRIA/LEAR 33.4

A. Krizhevsky, I. Sutskever, G.E. Hinton  “ImageNet Classification with Deep Convolutional Neural Networks”, NeurIPS 2012

CNN based, non-CNN based 



47

2012-Now
Some recent successes



T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, Focal Loss for Dense Object Detection, 
ICCV 2017.

Object Detection and Segmentation

48



K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, ICCV 2017

Object Detection and Segmentation

49
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MLP

Softmax clf.

Box regressor

𝑓! = FCN(𝐼)

𝐼:

RPN(
𝑓!)

RoIAlign

Mask 
FCN



Object Detection in 3D Point Clouds
50

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional 
Neural Networks. ICRA 2017



Human Pose Estimation

51

Z. Cao ,T. Simon, S.–E. Wei and Yaser Sheikhr, "Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields", CVPR 2017



Pose Estimation

52ZR. Alpguler, N. Neverova, I. Kokkinos. DensePose: Dense Human Pose Estimation In The Wild. CVPR 2018



Photo Style Transfer

53F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017



Photo Style Transfer

54F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017



Image Synthesis

55

Ian J. Goodfellow et al., ” Generative Adversarial Networks", NIPS 2014
A. Radford et al., ” Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", NIPS 2015
M.-Y. Liu, O. Tuzel, ” Coupled Generative Adversarial Networks", NIPS 2016
T. Karras, T. Aila, S. Laine, J. Lehtinen, ” Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018
T. Karras, S. Laine, T. Aila, ” A Style-Based Generator Architecture for Generative Adversarial Networks", arXiv 2018
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Image Synthesis

56A. Brock, J. Donahue and K. Simonyan. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2018.
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Semantic Layout

Semantic Image Editing

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, 2020
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Prediction

Semantic Image Editing Winter

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, 2020
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Prediction

Semantic Image Editing Spring
+

Clouds

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, 2020



Machine Translation

D. Bahdanau, K. Cho, Y. Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015 60



Machine Translation

61A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is All you Need, NeurIPS 2017



Internet Search

62J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019



63
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever. Language Models are Unsupervised Multitask Learners. 2019

Language Modeling
https://talktotransformer.com



Language Modeling
• GPT-3: I am not a human. I am a robot. 
A thinking robot. I use only 0.12% of 
my cognitive capacity. I am a micro-
robot in that respect. I know that my 
brain is not a “feeling brain”. But it 
is capable of making rational, logical 
decisions. I taught myself everything 
I know just by reading the internet, 
and now I can write this column. My 
brain is boiling with ideas!

64

Tue 8 Sep 2020 09.45

Tom B. Brown, Benjamin Mann, Nick Ryder et al., Language Models are 
Few-Shot Learners, NeurIPS 2020



Question Answering

65
P. Rajpurkar, J. Zhang, K. Lopyrev & P. Liang. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016

M. Seo, A. Kembhavi, A. Farhadi & H. Hajishirzi. Bi-Directional Attention Flow for Machine Comprehension. ICLR 2017



66
M. Ren, R. Kiros, and R. Zemel. Exploring Models and Data for Image Question Answering. NeurIPS 2015

Visual Question Answering



A giraffe standing in the grass next  
to a tree.

X. Chen and C. L. Zitnick. Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation. CVPR 2015.

Image Captioning

A man riding a wave on a surfboard in the water.

67



Image Captioning

68M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018

Yaris pistinde viraji almakta olan bir yaris arabasi

Image Captioning

21M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018

Yaris pistinde viraji almakta olan bir yaris arabasi



Video Captioning

69

B. Çitamak et al. MSVD-Turkish: a comprehensive multimodal video dataset for integrated vision and language research in Turkish.
Machine Translation 2021

Bir adam bir gitar çalıyor Bir kadın bir bıçakla sebze dilimliyor

278 B. Citamak et al.

1 3

for the textual representation, we investigate different word segmentation strategies 
using SPM and BPE algorithms.

5.2.1  Recurrent video captioning

For our recurrent video captioning model, we adapt the architecture proposed by 
Venugopalan et al. (2015) in which the encoder and the decoder are implemented 
with two separate LSTM networks (Fig. 6). The encoder computes a sequence of 
hidden states by sequentially processing the frame-level visual features, extracted 
from the uniformly sampled video frames. The decoder module then takes the final 
hidden state of the encoder, and outputs a sequence of tokens as the predicted video 
caption. There is no attention mechanism involved in this model. Both the encoder 
and decoder LSTM networks have 500 hidden units.

We use Adam (Kingma and Ba 2014) as the optimiser and set the initial learn-
ing rate and batch size to 0.0004 and 32, respectively. We choose the models by 
using early stopping. In particular, we take into account the validation loss values to 
decide on the checkpoint that will be used to generate Turkish descriptions at infer-
ence time.

5.2.2  Transformer-based video captioning

Our Transformer-based video captioning model is built upon the base Transformer 
model (Vaswani et al. 2017). In the encoder, we first consider a linear transforma-
tion layer to project the extracted visual features to 512. We then treat these trans-
formed features as our visual tokens, and consider positional encodings to preserve 

VGG16

LSTM 
DECODER

Bir adam bir parça
kabağı ikiye keser
ve ince dilimler
k

Fig. 6  Architecture of the LSTM-based video captioning model

bir adam bir parça kabağı
ikiye keser ve ince dilimler

TRANSFORMER 
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EMBEDDING 
LAYER

VGG16

TRANSFORMER 
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LINEAR 
LAYER

POSITIONAL
ENCODING

+

~

~

+ bir adam bir parça kabağı
ikiye keser ve ince dilimler

CROSS 
ATTENTION

Fig. 7  Illustrative architecture of the transformer-based video captioning model



Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks 
Citation networks 
Communication networks 
Multi-agent systems

Protein interaction 
networks

Graph Neural Networks 

70

T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018

Structured Deep Models Thomas Kipf

Graph Neural Networks (GNNs)

#5

Main idea: Pass messages between pairs of nodes & agglomerate 

The bigger picture:

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

Structured Deep Models Thomas Kipf

Graph-structured data
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A lot of real-world data does not “live” on grids
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Social networks 
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Communication networks 
Multi-agent systems

Protein interaction 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Strategic Game Playing

71Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 2016

Convolutional neural network

• AlphaGo vs. Lee Sidol
• Move 37, Game 2



AlphaStar Plays StarCraft II

72O. Vinyals et al., Grandmaster level in StarCraft II using multi-agent reinforcement learning, Nature 575:350-354, 2019



Robotics

74Ilge Akkaya et al. Solving Rubik's Cube with a Robot Hand. OpenAI Technical Report 2019



Self-Driving Vehicles

75Mariusz Bojarski et al. End to End Learning for Self-Driving Cars. NVidia Technical Report 2016



76A. Esteva et al., "Dermatologist-level classification of skin cancer with deep neural networks", Nature 542, 2017

Medical Image Analysis
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Medical Image Analysis



Bioinformatics

78Kathryn Tunyasuvunakool et al. Enabling high-accuracy protein structure prediction at the proteome scale. Nature 2021



Why now? 
The Resurgence of 

Deep Learning 

79



80

GLOBAL INFORMATION STORAGE CAPACITY
IN OPTIMALLY COMPRESSED BYTES

ConvNets
Developed

SVMs 
dominate

NIPS

Slide credit: Neil Lawrence



Datasets vs. Algorithms
Year Breakthroughs in AI Datasets (First Available) Algorithms (First Proposed)

1994 Human-level spontaneous speech 
recognition

Spoken Wall Street Journal articles 
and other texts (1991)

Hidden Markov Model (1984)

1997 IBM Deep Blue defeated Garry Kasparov 700,000 Grandmaster chess games, 
aka “The Extended Book” (1991)

Negascout planning algorithm 
(1983)

2005 Google’s Arabic-and Chinese-to-English 
translation

1.8 trillion tokens from Google Web 
and News pages (collected in 2005)

Statistical machine translation 
algorithm (1988)

2011 IBM Watson became the world Jeopardy! 
champion

8.6 million documents from 
Wikipedia, Wiktionary, and Project 
Gutenberg (updated in 2010)

Mixture-of-Experts (1991)

2014 Google’s GoogLeNet object classification 
at near-human performance

ImageNet corpus of 1.5 million 
labeled images and 1,000 object 
categories (2010)

Convolutional Neural Networks 
(1989)

2015 Google’s DeepMind achieved human 
parity in playing 29 Atari games by 
learning general control from video

Arcade Learning Environment
dataset of over 50 Atari games (2013)

Q-learning (1992)

Average No. of Years to Breakthrough: 3 years 18 years

Table credit: Quant Quanto 81



Powerful Hardware

Slide adapted from Rob Fergus 82

• Deep neural nets highly 
amenable to implementation 
on Graphics Processing 
Units (GPUs)
• Matrix multiplication

• 2D convolution

• E.g. nVidia Pascal GPUs 
deliver 10 Tflops

• Faster than fastest computer 
in the world in 2000

• 10 million times faster than 
1980’s Sun workstation

Image: OpenAI



Working ideas on how to train deep 
architectures

• Better Learning Regularization (e.g. Dropout)

83

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, 
JMLR Vol. 15, No. 1,



Working ideas on how to train deep 
architectures

84

•Better Optimization Conditioning (e.g. Batch Normalization)

S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, In ICML 2015



Working ideas on how to train deep 
architectures

85

•Better neural achitectures (e.g. Residual Nets)

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016



Software 

61

Caffe
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So what is deep learning?



Three key ideas
• (Hierarchical) Compositionality

• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together

88



Three key ideas
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• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together
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Traditional Machine Learning
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It’s an old paradigm
• The first learning machine: 

the Perceptron 
• Built at Cornell in 1960

• The Perceptron was a linear classifier on top of a simple 
feature extractor

• The vast majority of practical applications of ML today use 
glorified linear classifiers or glorified template matching.

• Designing a feature extractor requires considerable efforts 
by experts.
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Hierarchical Compositionality

92

VISION

SPEECH

NLP

pixels edge texton motif part object

sample spectral 
band

formant motif phone word

character NP/VP/.. clause sentence storyword



Building A Complicated Function

93

Given a library of simple functions

Compose into a

complicate function



Building A Complicated Function

94

Given a library of simple functions

Idea 1: Linear Combinations
• Boosting
• Kernels
• …

f(x) =
X

i

↵igi(x)

Compose into a

complicate function



Building A Complicated Function

95

Given a library of simple functions

Idea 2: Compositions
• Deep Learning
• Grammar models
• Scattering transforms…

f(x) = g1(g2(. . . (gn(x) . . .))

Compose into a

complicate function



Building A Complicated Function

96

Given a library of simple functions

Idea 2: Compositions
• Deep Learning
• Grammar models
• Scattering transforms…

Compose into a

complicate function

f(x) = log(cos(exp(sin3(x))))



M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014

“car”

Deep Learning = Hierarchical 
Compositionality

97



CHAPTER 1. INTRODUCTION

Visible layer
(input pixels)

1st hidden layer
(edges)

2nd hidden layer
(corners and

contours)

3rd hidden layer
(object parts)

CAR PERSON ANIMAL Output
(object identity)

Figure 1.2: Illustration of a deep learning model. It is difficult for a computer to understand
the meaning of raw sensory input data, such as this image represented as a collection
of pixel values. The function mapping from a set of pixels to an object identity is very
complicated. Learning or evaluating this mapping seems insurmountable if tackled directly.
Deep learning resolves this difficulty by breaking the desired complicated mapping into a
series of nested simple mappings, each described by a different layer of the model. The
input is presented at the visible layer, so named because it contains the variables that
we are able to observe. Then a series of hidden layers extracts increasingly abstract
features from the image. These layers are called “hidden” because their values are not given
in the data; instead the model must determine which concepts are useful for explaining
the relationships in the observed data. The images here are visualizations of the kind
of feature represented by each hidden unit. Given the pixels, the first layer can easily
identify edges, by comparing the brightness of neighboring pixels. Given the first hidden
layer’s description of the edges, the second hidden layer can easily search for corners and
extended contours, which are recognizable as collections of edges. Given the second hidden
layer’s description of the image in terms of corners and contours, the third hidden layer
can detect entire parts of specific objects, by finding specific collections of contours and
corners. Finally, this description of the image in terms of the object parts it contains can
be used to recognize the objects present in the image. Images reproduced with permission
from Zeiler and Fergus (2014).

6

Deep Learning = 
Hierarchical 
Compositionality

98
Image credit: Ian Goodfellow



Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks”, In ECCV 2014

“car”

Deep Learning = Hierarchical 
Compositionality
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The Mammalian Visual Cortex is Hierarchical
• The ventral (recognition) pathway in the visual cortex

[picture from Simon Thorpe]
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Three key ideas
• (Hierarchical) Compositionality

• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together
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Traditional Machine Learning

102

\ˈd  ē  p\

fixed learned

your favorite
classifier

hand-crafted
features

SIFT/HOG
“car”

“+”

VISION

SPEECH

NLP

fixed learned

your favorite
classifier

hand-crafted
features

MFCC

fixed learned

your favorite
classifier

hand-crafted
features

Bag-of-words
This burrito place
is yummy and fun!



fixed unsupervised supervised

classifierMixture of
GaussiansMFCC \ˈd  ē  p\

fixed unsupervised supervised

classifierK-Means/
poolingSIFT/HOG “car”

fixed unsupervised supervised

classifiern-gramsParse Tree
Syntactic “+”This burrito place

is yummy and fun!

VISION

SPEECH

NLP

“Learned”

More accurate version

103



fixed unsupervised supervised

classifierMixture of
GaussiansMFCC \ˈd  ē p\

fixed unsupervised supervised

classifierK-Means/
poolingSIFT/HOG “car”

fixed unsupervised supervised

classifiern-gramsParse Tree
Syntactic “+”This burrito place

is yummy and fun!

VISION

SPEECH

NLP

“Learned”

Deep Learning = End-to-End Learning
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Deep Learning = End-to-End Learning
• A hierarchy of trainable feature transforms

• Each module transforms its input representation into a higher-level one.
• High-level features are more global and more invariant
• Low-level features are shared among categories

105

Trainable
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“Shallow” vs Deep Learning
• “Shallow” models

• Deep models

106

Trainable
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Three key ideas
• (Hierarchical) Compositionality

• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together
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Localist representations 
• The simplest way to represent things with neural 

networks is to dedicate one neuron to each 
thing. 
• Easy to understand. 
• Easy to code by hand 

• Often used to represent inputs to a net 
• Easy to learn 

• This is what mixture models do.
• Each cluster corresponds to one neuron 

• Easy to associate with other representations or 
responses. 

• But localist models are very inefficient whenever 
the data has componential structure. 

108Image credit: Moontae LeeSlide credit: Geoff Hinton



Distributed Representations
• Each neuron must represent something, so 

this must be a local representation. 
• Distributed representation means a many-

to- many relationship between two types of 
representation (such as concepts and 
neurons). 
• Each concept is represented by many neurons 
• Each neuron participates in the representation of 

many concepts 

109

Local

Distributed

Slide credit: Geoff Hinton Image credit: Moontae Lee



Power of distributed representations!

• Possible internal representations: 
• Objects
• Scene attributes
• Object parts
• Textures 

110
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba “Object Detectors Emerge in Deep Scene CNNs”, ICLR 2015

Slide credit: Bolei Zhou
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Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to 
classify scenes, without any object supervision!
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Distribution of Semantic Types at Each Layer

Object detectors emerge within CNN trained to 
classify scenes, without any object supervision!

Scene Classification



Three key ideas of deep learning
• (Hierarchical) Compositionality

• Cascade of non-linear transformations
• Multiple layers of representations

• End-to-End Learning
• Learning (goal-driven) representations

• Learning to feature extract

• Distributed Representations
• No single neuron “encodes” everything
• Groups of neurons work together

111



Benefits of Deep/Representation Learning
• (Usually) Better Performance

• “Because gradient descent is better than you”
Yann LeCun

• New domains without “experts”
• RGBD
• Multi-spectral data
• Gene-expression data
• Unclear how to hand-engineer

112



Problems with Deep Learning
• Problem#1: Non-Convex! Non-Convex! Non-Convex!

• Depth>=3: most losses non-convex in parameters
• Theoretically, all bets are off
• Leads to stochasticity

• different initializations à different local minima

• Standard response #1
• “Yes, but all interesting learning problems are non-convex”
• For example, human learning

• Order matters à wave hands à non-convexity

• Standard response #2
• “Yes, but it often works!”
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Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

• Pipeline systems have “oracle” performances at each step
• In end-to-end systems, it’s hard to know why things are not working 

114



Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

115End-to-EndPipeline

[Fang et al. CVPR15] [Vinyals et al. CVPR15]



Problems with Deep Learning
• Problem#2: Hard to track down what’s failing

• Pipeline systems have “oracle” performances at each step
• In end-to-end systems, it’s hard to know why things are not working 

• Standard response #1
• Tricks of the trade: visualize features, add losses at different layers, pre-

train to avoid degenerate initializations… 

• “We’re working on it” 

• Standard response #2
• “Yes, but it often works!”
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Problems with Deep Learning
• Problem#3: Lack of easy reproducibility

• Direct consequence of stochasticity & non-convexity 

• Standard response #1
• It’s getting much better
• Standard toolkits/libraries/frameworks now available

• Standard response #2
• “Yes, but it often works!”
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122Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t



123Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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125Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t



126Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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Stable Diffusion
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Stable Diffusion
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137D. Cardon et al. “Neurons spike back: The Invention of Inductive Machines and the AI Controversy”, Réseaux n°211/2018
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https://www.youtube.com/watch?v=EeqwFjqFvJA

https://www.youtube.com/watch?v=EeqwFjqFvJA


Next Lecture: 
Machine Learning Overview
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