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A little about me...

Kog University-is Bank
Artificial Intelligence Center I(l@is

Adjunct Faculty

2020-now

Hacettepe University
Professor
2010-now

Télécom ParisTech
Post-doctoral Researcher
2009-2010

Middle East Technical University
1997-2008

Ph.D., 2008

M.Sc., 2003

B.Sc., 2001

UCLA UCLA

Fall 2007
Visiting Student 3 http://web.cs.hacettepe.edu.tr/~erkut

VirginiaTech Virginia y @erkuterdem
Visiting Research Scholar mTECh
Summer 2006 ] erkut@cs.hacettepe.edu.tr



http://web.cs.hacettepe.edu.tr/~erkut
https://twitter.com/aykuterdemml
mailto:erkut@cs.hacettepe.edu.tr

Research Interests

e | study better ways to
understand and process
visual data.

* My research interests
span a diverse set of topics,
ranging from image editing
to Image enhancement,
and to multimodal learning
for integrated vision and language.

Natural Language
Understanding



Now, what about you?

* Introduce yourselves
- Who are you?

- Who do you work with if you have a
thesis supervisor?

- What made you interested in this
class?

- What are your expectations?

- What do you know about machine
learning and deep learning?

Please send me an e-mail including these information!




Course Logistics



Course information

Time/Location 09:30-12:30pm Thursday, Db

Instructor Erkut Erdem

. m for course related announcements:

https://edstem.org/eu/courses/1683

» Course webpage:
https://web.cs.hacettepe.edu.tr/~erkut/cmp784.124/index.html



https://edstem.org/eu/courses/1683
https://web.cs.hacettepe.edu.tr/~erkut/cmp784.f24/index.html

Textbook

» Goodfellow, Bengio, and Courville,
Deep Learning, MIT Press, 2016
draft available online

* |n addition, we will extensively use
online materials (video lectures, blog
POStS, surveys, papers, etc.



http://www.deeplearningbook.org/

Instruction style

» Students are responsible for studying and
keeping up with the course material
outside of class time.

» Reading particular book chapters,
papers or blogs, or

» \Watching some video lectures.

 After the first part of the lectures, each
week students will present papers related
to the topics discussed in our class.

» \Weekly quizzes about the papers presented
each week




Prerequisites

FALL 2024 MATH PREREQUISITE QuiZ

CMP784 Deep Learning, Fall 2024
MATH PREREQU!S!TES QuUIZ

* Ca |
. Iculgs and linear algebra
Derivatives,

Due Date: 5pm, Saurdsy> October 12,2024 (No late submissions)

Each student enrolled to CMP784 must complete. and pass this quiz on yrerequisiie math knowledge- The
purpose is to check whether you have the right ‘background. for the course: The topics covered in this problem
set are very. crucial so if you are having trouble with solving @ problem, this indicates that you should spend
a mrm'derable amount of time 1o study that topic in its entirety-

Points and Vectors

1. Giventwo vectors X = (a1, a2 aslandy = [ay,—92 as). Write down the equation for calculating the

angle betweent xand y. When1s x orthogonal t© y?

» Matrix operations

Planes

.1,6) and offet 8o Derive

or the signed distance "sfa point x from the hyperplane, which iS “fofined as the perpendicale?
ietance between x and e ‘yperplane, multplied by +1 if x lies on the same ‘ide of the plane as te
Seetor 6 points a0d by -1 B ¢ os on the opposite side rom the hyperplane:

5. Consider a hyperplan® gescribed by the 4-dimensional normal ¥eetoT {6:
ition

‘Matrice:

3. Suppose that AT (AB — ©)=0. where 0 is an ™ x 1 vector of zeros, derive an expression for B. Assume
that all relevant ‘matrices ‘needed for this calculation are invertible.

4. Find the cigenvalues and cigenvectors of the manix A= 2

* Probabili
bability and statistics (IST299, I1ST29
’ 2

Probability
5. Let

_ i )
Py = 1) = %1€ 2

Gpmx)?

pxp = %2\ X =%)= ae” 20

 Neural networks (CMP684

where X1 and X, ar¢ continuous random yariables. Show that
e

POt =%2) = wme 2%

by explicily calculating e values of @z, #z 804 92

MLE and MAP

6. Letpbe the pmbabi\ity of landing head of coin. You flip the coin 3 times and note that it landed 2 times
on tails and 1 time oD ‘heads. SupposeP can only take tWO values: 0.3 0F 0.6. Find the Maximum Likelihood
Estimate of P over the set of possib\: values (0.3,0.6\

» Machine learnin

youhave the folloving prior on the parameleT P p(p=03)=03edPET 0.6)=0.7. Given
Shat you flipped the coi®  Gimes with the observation® Jescribed above, find the MAP estimate of P 0VF

B B I\/l 406’ C I\/l P7 1 2 B B e
» Programming

-
»
£

5

2
2
%

Read Ch
a
pter 2-4 Math Prerequisite Quiz

D .
ue Date: bpm, Sat, Oct 12, 2024

of the Dee '
p Learning text book for a quick
Ick review.




Topics Covered in AIN311-BBM406/CMP712

» Basics of Statistical Learning

* Loss function, MLE, MAP, Bayesian estimation, bias-variance tradeoff, overfitting,
regularization, cross-validation

» Supervised Learning

» Nearest Neighbor, Nalve Bayes, Logistic Regression, Support Vector Machines, Kernels,
Neural Networks, Decision Trees

 Ensemble Methods: Bagging, Boosting, Random Forests

* Unsupervised Learning
» Clustering: K-Means, Gaussian mixture models
« Dimensionality reduction: PCA, SVD

11



Topics Covered in CMP684

* Continuous and discrete system
models

Neuron and Its Analytic Model

Hopfiels Neural Network

Perceptron Learning Algorithms

Multilayer Perceptron (MLP)
» Derivation of the learning algorithm
» Error backpropagation
 Memorization and generalization

* |Intervals and normalization

 Radial Basis Function Neural Nets
 Dynamical Neural Nets

* Feedback Nets

« Second Order Training Algorithms
* Levenberg-Marquardt algorithm

* Gauss-Newton algorithm
« Stability in Adaptive Systems

« Applications of Neural Nets

12



Grading

Math Prerequisites Quiz
Practicals

Final Exam

Course Project

Paper Presentations

Weekly Quizzes

3%

16% (2 practicals x 8% each)
25%

32%

15%

9%

13



Schedule

Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8

ntroduction to Deep Learning

Vlachine Learning Overview
Multi-Layer Perceptrons

Training Deep Neural Networks
Convolutional Neural Networks
Understanding and Visualizing CNNs
Recurrent Neural Networks

Attention and Transformers

14



Schedule

Week 9  Autoencoders and Deep Generative Models
Week 10 Progress Presentations

Week 11 Deep Generative Models (cont'd)

Week 12 Deep Generative Models (cont'd)

Week 13 Self-supervised Learning

Week 14 Final Project Presentations

15



Lecture 1: Introduction to Deep Learning

10 output units o[1[2]3[4[5[6[7]8

30 units

12 feature
detectors = HBHH -
(4 by 4)

12 feature B i
detectors HEEE - /- - - e - H
(8by8) i i

16 by 16 input

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer

(input pixels)

16
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Lecture 3: Multi-Layer Perceptrons

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties Test loss 0.003

you want to use? do you want to Training loss 0.001

feed in? ) G G
: % 4 neurons 2 neurons
X, - | ——--——-——-———-----::—:;-:EH1E--------:.1
- -~ ‘O
v - &
= O’
X, oo’
io of 3 i —:—==I..-

Ratio of training to -

test data: 50% [

_. The outpu

ights. :

Noise: 0 rvclgrs
. of the lines.

Batch size: 10 ‘e

. |
€ 0
REGENERATE
Colors shows
E —
data, neuron and ! I

: 1
weight values. Y

[ Showtestdata [] Discretize output

http://playground.tensorflow.org



http://playground.tensorflow.org/

Lecture 4: Training Deep Neural Networks

SGD -

= NAG
- Adagrad

1.0

Momentum f Singid

Adadelta 08
Rmsprop 0.6
0.2

2
) )
L F—=
7
\

U

AN,
o\
7o
T\ N

)“
WA
O —

¢

»
X
"é

“ /

5
7N

¥4

%
A

Py

2

A
0z
0
AKX

‘}

%
"é
X
/)
/)
l[’

a) Standard Neural Net (b) After applying dropout.
Dropout

Activation Functions

Input: Values of z over a mini-batch: B = {z1._,};
Parameters to be learned: v, 8
Output: {y; = BN, g(z;)}

1 m
UB — — T; // mini-batch mean
i=1
1 m
2 2 . . .
0B (x; — uB) // mini-batch variance
i=1
T; Ti BB // normalize
0% +e€
Yi < 7T + B = BN, g(z;) // scale and shift

Batch Normalization

tanh RelLU Leaky RelLU
-5 ;\ 5 10 il 4t
j,ﬁ- ; :
tanh(x) max(0,x) max(0.1x, x)

19



Lecture 5: Convolutional Neural Networks

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); : :

A B A LW W A W BTV S GV S A S Ll s A eV S A L A A LS S SR BN S A o BB B B B B OB B S A L A A e A B AL A S L LF ET A A T A AR AT e

Convolutions and RelLU
”"’f"”’ﬂfaooo””"”’
¢
|

BSOS LS &L ES ey Y - - - '””””'

Convolutions and RelLU

I----’ﬂ’l”

Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015 20



Lecture 6: Understanding and Visualizing CNNs

1Ty

M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014 21



Lecture 7: Recurrent Neural Networks

(0]
O Ot—l ot 0t+1
A A
VT Vv v v
SO:j'V — >0~ >0 0"
Unfold Wox W) W
U U U U
xl’—l xt xt+1

X

A Recurrent Neural Network (RNN)

(unfolded across time-steps)

Output/Exposure:

How much ¢/¥) should be exposed?

Input: Does 2{) matter?

D be forgotten?

Forget: Should ¢

Long-Short-Term-
Memories (LSTMs)

C. Manning and R Socher, Stanford CS224n Lecture 8 Notes
Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015

3 e

; /;A .

A bi-directional RNN

Update: How much h(*') in next state?
P

i

|

Reset: Include A in new memory?
h(t-1) U™
o
z) — )

New memory: Compute new memory based on
current word input 2{*) and potentially h(*-!

Gated Recurrent Units (GRUSs)

—3 0

o He
—3 o
—3 o

A A A

A deep bi-directional RNN

A
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Lecture 8: Attention and Transformers

— - - W——

A group of people sitting on a boat

A little girl sitting on a bed with
in the water.

a teddy bear.

K. Xu et al., “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
C. Olah and S. Carter, “Attention and Augmented Recurrent Neural Networks", Distill, 2016
A. Vaswani et al. “Attention is All You Need”, NeurlPS 2017.

OQutput
Probabilities

7
[ Add & Norm |
Feed
Forward
e ™\ Add & Norm
r—>— .
AR & NEm Multi-Head
Feed Attention
Forward D) Nx
— |
Nix Add & Norm
f—>| Add & Norm | T
Multi-Head Multi-Head
Attention Attention
— J U —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transformer Architecture
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Lecture 9: Autoencoders and Deep

Generative Models  La  gormmwsses samues:

Lo~k nmé
A NS .5 BEN BT

Decoder
X (O @ O p O O] A X = O(Q(X) ) African elephant Coral Reef
y . *
weew' o - Semlet W) B 5 O i 5 s PR X 0B B P EE
(tied weights) For binary units .l-i“-a“ 2 .Ham Ea :

©(OCRO00) < ﬂﬂ-liililiﬁﬁfill*FIE

W Encoder Sandbar Sorrel horse
> h(x) = g(ax)) PixelCNN Class conditioned samples generated by PixelCNN

X (OOQOOO] = sigm(b + Wx)

retrleved usmg 256 bit codes Text-to-image synthesis with

~ Parallel Multiscale Pixel CNNs

) ‘_ st - st: 67 dist: 67 | r.,' Y ) T -
¥ . 5 64 ~ Jizs B . A O
— o " dist: 71 A dist: 1 . I‘.- ‘ el l . - :
“ i E . . -t . | Fﬂl o 1 - Y/ - -
e 1. B = Ple B o ‘A yellow bird with a black
F.N ~ head, 029.//79”3 eyes and an
o 5 L e~ | - B i orange bill.

A. Krizhevsky and G. E. Hinton, "Using Very Deep Autoencoders for Content-Based Image Retrieval’, ESANN 2011
A. van den Oord et al., "Conditional Image Generation with Pixel CNN Decoders", NeurlPS 2016
S. Reed et al., "Parallel Multiscale Autoregressive Density Estimation”, ICML 2017

24



Lecture 10: Deep Generative Models (cont'd)

1001<H:| |:;>4 ____________ -

Project and reshape

&@ Class-conditioned samples generated by BigGAN

Layout Sample Original

o

Layout Sample Original Layout Sample Original Layout Sample Original Layout Sample Original

. | I“\ 2
Tra
e
»

- » .
L —
_—
[E=| ¥l —
smiling neutral neutral smiling man
woman woman man

|. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets”, NIPS 2014.
A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks”, ICLR 2016
L. Karacan, Z. Akata, A. Erdem and E. Erdem, “Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts”, arXiv preprint 2016

A. Brock, J. Donahue, K. Simonyan, “Large Scale GAN Training for High Fidelity Natural Image Synthesis”, ICLR2019 25



Lecture 11: Deep Generative Models (cont'd)

€, 6,8, €k

Encoder Decoder

M M Embedding |
Space |
I
1
I z(x)& VL
§ b Wik 1 z,(x)
4 : ! - é1 I
P . q(z|x) a— I
log p(@) > log p(x) — Dic. (4(=)p(= | @) T L e
:]EZNQ logp(wa Z) + H(q) N “ 2 dimam . Z) ) 1 !

Vector Quantized- Variational AutoEncoder (VQ-VAE)

Synthetic images generated by VO-VAE2

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes”, ICLR 2014
A. van den Oord, O. Vinyals, K. Kavukcuoglu, "Neural Discrete Representation Learning", NeurlPS 2017
A. Razavi, A. van den Oord, O. Vinyals, “Generating Diverse High-Fidelity Images with VQ-VAE-2",
26



Lecture 12: Self-supervised Learning

53
» g(X,y=0) > 4 — >
Rotate 0 degrees i
Rotated image: X’

———————— » g(X,yZl) —>ﬁ N >

Rotate 90 degrees

Example:

Rotated image: X'

1
1
.,

U PO i o i i A / > (X, y=2) >
»

Image X Rotate 180 degrees

Rotated image: X’

—» g(X,y=3) H%—V

Rotate 270 degrees

Rotated image: X’

| Objectives:

ConvNet ‘ > Maximize prob.
model F(.) FD(XO)

‘ Predict 0 degrees rotation (y=0)

ConvNet ‘ > Maximize prob.
model F(.) ‘ F'(x")

Predict 90 degrees rotation (y=1) ‘

|
\

|

ConvNet Maximize prob. |
model F(.) \ FX(X?)

‘ Predict 180 degrees rotation (y=2) |
ConvNet p Maximize prob.
3

\
model F(.) F (Xl) ‘
‘ Predict 270 degrees rotation (y=3) |

C. Doersch, A. Gupta, A. A. Efros, "Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015.
S. Gidaris, P. Singh, N. Komodakis, "Unsupervised Representation Learning by Predicting Image Rotations’, ICLR2018.

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, NAACL-HLT 2019.

27



Schedule

W1 Introduction to Deep Learning
W2 Machine Learning Overview

W3 Multi-Layer Perceptrons

Practical 1 out

W4 Training Deep Neural Networks

W5 Convolutional Neural Networks
Practical 1 due, Practical 2 out

W6 Understanding and Visualizing CNNs

Start of paper presentations
Project proposals due

W7 Recurrent Neural Networks

W8 Attention and Transformers
Practical 2 due

W9 Autoencoders and Deep Generative
Models

W10 Progress Presentations

W11 Deep Generative Models (cont'd)
Project progress reports due

W12 Deep Generative Models (cont'd)

W13 Self-supervised Learning

W14 Final Project Presentations

28



Paper Presentations

* (12 mins) One student will be responsible from providing
an overview of the paper.

* (9 mins) One student will present the strengths of the
paper.

* (9 mins) One student will discuss the weaknesses of the
paper.

* (10 mins) General discussion

See the rubrics on the course web page for details

29



Practicals

2 practicals (8% each)
* Learning to train neural networks for different tasks
« Should be done individually

 Late policy: You have b slip days in the semester.

 Tentative Dates

- Practical 1 Out: October 10th Due: October 24th
- Practical 2 Out: October 24t Due: November 14th

30



The students who need GPU resources

COU Fse pr()ject for the course project are advised to

use Google Colab.

* The course project gives students a chance to apply deep architectures
discussed in class to a research oriented project.

* The students can work In pairs.

* The course project may involve
- Design of a novel approach and its experimental analysis, or
- An extension to a recent study of non-trivial complexity and its experimental analysis.

e Deliverables

- Proposals October 31, 2024

- Project progress presentations November 28, 2024
- Project progress reports December b, 2024
- Final project presentations December 26, 2024

Final reports January 10, 2025

31



Lecture Overview

what Is deep learning

a brief history of deep learning

compositionality

end-to-end learning

distributed representations

Disclaimer: Some of the material and slides for this lecture were borrowed from
—Dhruv Batra’'s CS7643 class
—Yann LeCun’s talk titled “Deep Learning and the Future of Al”

32



What is Deep Learning



MIT
Technology
Review

10 Breakthroug

RENDING

HUFFPOST BUSINESS

Edition: US « i Like B0 Follo
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Technology
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Forbes How Al is
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What Is beep Lea
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Contents

t Table o
LW EIRNESSIEY The cyberscientist .
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Credit: Google
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. #
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35 v i‘ 1
What is deep learning

multiple levels of abstractlon
— Yagjn LeCun, Yoshua Bengio and Geoff Hinton

Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning", Nature, Vol. 521, 28 May 2015



1943 — 2006: A Prehistory of
Deep Learning



1943: Warren McCulloch and Walter Pitts

* First computational model

* Neurons as logic gates (AND, OR
NOT

* A neuron model that sums binary
Inputs and outputs a 1 if the sum
exceeds a certain threshold value,
and otherwise outputs a O

(@) w o) ®
e T

(¢)

Bullein o Mothematica Biology Voi. 52, No. 172, pp. 5-115, 1990. 0092-82409053.00+000
Prinied in Great Brtain. Pergamon Press pc
Sociey for Mabematica Biclogy

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

® WARREN S. MCCULLOCH AND WALTER PITTS
University of Iilinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, US.A.

Because of the “all-or-none” character of

them can be treated by means logic. Itis found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
i that for any logi i in conditions, one can find a

net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.

1. i Tl i i rests on certain cardinal
assumptions. The nervous system is a net of neurons, each having a soma and
an axon. Their adjunctions, or synapses, are always between the axon of one
neuron and the soma of another. At any instant a neuron has some threshold,
which excitation must exceed to initiate an impulse. This, except for the fact
and the time of its occurence, is determined by the neuron, not by the
excitation. From the point of excitation the impulse is propagated to all parts of
the neuron. The velocity along the axon varies directly with its diameter, from
<1 ms™" in thin axons, which are usually short, to > 150 ms ™! in thick axons,
which are usually long. The time for axonal conduction is consequently of little
importance in determining the time of arrival of impulses at points unequally
remote from the same source. Excitation across synapses occurs predominant-
ly from axonal terminations to somata. It is still a moot point whether this
depends upon irreciprocity of individual synapses or merely upon prevalent
anatomical configurations. To suppose the latter requires no hypothesis ad hoc
and explains known exceptions, but any assumption as to cause is compatible
with the calculus to come. No case is known in which excitation through a
single synapse has elicited a nervous impulse in any neuron, whereas any
neuron may be excited by impulses arriving at a sufficient number of
neighboring synapses within the period of latent addition, which lasts
<0.25 ms. Observed temporal summation of impulses at greater intervals

* Reprinted from the Bulletin of Mathematical Biophysics, Vol. S, pp. 115133 (1943).
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1958: Frank Rosenblatt’'s Perceptron

* A computational model of a single neuron
» Solves a binary classification problem

« Simple training algorithm

* Built using specialized hardware

Xweix
X

y weight y S
bias

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain”, Psych. Review, Vol. 65, 1958

> output

38



1969: Marvin Minsky and Seymour Papert

“No machine can learn to recognize X unless it
possesses, at least potentially, some scheme for
representing X." (p. xiii)

» Perceptrons can only represent I~ I A
linearly separable functions.

« such as XOR Problem

A | O

* WWrongly attributed as the reason behind the Al
winter, a period of reduced funding and interest

In Al research

Perceptrons

39



1990s

* Multi-layer perceptrons can theoretically
learn any function (Cybenko, 1989; Hornik, 1991)

* Training multi-layer perceptrons

« Back propagation (Rumelhart, Hinton, Williams, 1986) s
« Backpropagation through time (BPTT) (\Werbos, 1988)

12 feature

* New neural architectures

« Convolutional neural nets (LeCun et al., 1989)

* Long-short term memory networks (LSTM)
(Schmidhuber, 1997)

net,

Y

40



Why it failed then

* TOO many parameters to learn from few labeled examples.
* “| know my features are better for this task”.

* Non-convex optimization? No, thanks.

» Black-box model, no interpretability.

* Very slow and inefficient
» Overshadowed by the success of SVMs (Cortes and Vapnik, 1995)

Adapted from Joan Bruna 41



A major breakthrough in 2006



2006 Breakthrough: Hinton and Salakhutdinov

Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

* The first solution to the vanishing gradient problem.

ducing the Dimensionality of
ata with Neural Networks

» Build the model in a layer-by-layer fashion using unsupervised learning
» The features in early layers are already initialized or “pretrained” with some suitable features

(weights).

» Pretrained features in early layers only need to be adjusted slightly during supervised learning

to achieve good results.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, 28 July 2006.
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The 2012 revolution



ImageNet Challenge

Image classification

: Easiest classes
I M A G E N E T |—a rge Scale VIS ual red fox (100) hen-of-the-woods (100) ibex (100)  goldfinch (100) flat-coated retriever (100)
Recognition Challenge (ILSVRC)

> ’ j ¢ 4
: - 4 ™ - -
' P Al § 4
- . - LE -~
Lty =y Y

¢ 1-2M tralnlng Images Wlth nger(100) hamster(100) r.cupln(100) stlngray(100) Blenheim spaniel (100)
1K categories
* Measure top-5 classification error z
Hardest classes
muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)

Output Output S o

Scale Scale

T-shirt T-shirt

\/ Giant panda X s | :
Drumstick Drumstick hook (66) spotlight (66) ladle (65) restaurant (64) letter opener (59)
Mud turtle Mud turtle .

J. Deng, Wei Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database”, CVPR 2009.

O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”, Int. J. Comput. Vis.,, Vol. 115, Issue 3, pp 211-252, 2015. 45



ILSVRC 2012 Competition

. % \ g
2012 Teams %Error C SN N R ‘ > d 33‘ N EN
Supervision (Toronto) 15.3 111 = | - e 192 192 128 2048 zﬁs dense
\ > ¢’ ~ A\13 , 13 13
ISI (Tokyo) 26.1 [ : Q 3N ‘ EN
224 j % 3 3] e EN \W _ 3 > >
VGG (Oxford) 26.9 NE™ N 3y Q 3\ [P e sl e
114 - \W 3| ' 1000
1 192 192 128 Max L] -
XRCE/INRIA 27.0 22& E I — s pooling 209 2048
Yof 4 pooling pooling
UVA (Amsterdam) 29.6 3 a8
INRIA/LEAR 334

* The success of AlexNet, a deep convolutional network
« 7 hidden layers (not counting some max pooling layers)
 60M parameters

« Combined several tricks
* RelLU activation function, data augmentation, dropout

A. Krizhevsky, |. Sutskever, G.E. Hinton “ImageNet Classification with Deep Convolutional Neural Networks"”, NeurlPS 2012



2012-Now
Some recent successes

47
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ick, K. He and P. Dollar, Focal Loss for Densem(.)bject‘ Detection,
48



o

VAR IRIE LR 1)
v - .

IWE 416KR




-t
o-.-.a-v"-*“""'“
-

-
o p e m—— .t

-
rrnmapatmens PmiLE AL

P
L
s d
- T -.--.A--ﬁcl'
-y -
ouete *
e
P
- —-..p-o.o-.n-.'..-.
et -

3 .-
y rans g

0
e .

e
‘."',--.-n-" e
n——

rm——
EP -
-
ewmapme e
e
maatmassepmeF e
-
-
"
- (
J

S L LR
---. .l =4 N -

Oy —_ - -

g L S 8 8 . N,

‘ |
- - -
- STy - ,_._-..-__\_.“--Q--.‘ 5
-

i

T

’ v
—

” _“_-“-—

R T

- et

\\."‘

=B e - = >
M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and |. Posner. Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional
Neural Networks. ICRA 2017
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Z. Cao ,T. Simon, S.—-E. Wei and Yaser Sheikhr, "Realtime Muiti-Person 2D Pose Estimation using Part Affinity Fields", CVPR 2017
Source: https://www.youtube.com/watch?v=2DiQUX11YaY
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We introduce a system that can associate every
image pixel with human body surface coordinates.

ZR. Alpguler, N. Neverova, I. Kokkinos. DensePose: Dense Human Pose Estimation In The Wild. CVPR 2018



F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017



F. Luan, S. Paris, E. Shechtman & K. Bala. Deep Photo Style Transfer. CVPR 2017



Image Synthesis

2014

2018

lan J. Goodfellow et al., " Generative Adversarial Networks", NIPS 2014
A. Radford et al., ” Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", NIPS 2015

M.-Y. Liu, O. Tuzel, " Coupled Generative Adversarial Networks", NIPS 2016
T. Karras, T. Alla, S. Laine, J. Lehtinen, ” Progressive Growing of GANs for Improved Quality, Stability, and Variation®, ICLR 2018

T. Karras, S. Laine, T. Aila, " A Style-Based Generator Architecture for Generative Adversarial Networks", arXiv 2018 55
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Semantic Layout

Akata A Erdem a.laﬁfi Erdem Mll' ip tron ofS



Semantic Image Editing A0

\ , Prediction

ot Karacan, Z. Akata, A. E_rderm*’ghd

S <=0 e . R 4y -';I\ ' - - ; . - ¢
- 2 B p - - - r - - N -
A 2 -~ = o S g "“. - N oy
. aleal

S e e S e o g o B SN A L P T
EfErd’egaﬁVl)an' yulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, 2020




Semantic Image Editing g

Clouds

—

L. Karacan, Z. Akata, A. Erdem and E. Erdem. Manipulation of Scene Attributes via Hallucination. ACM Transactions on Graphics, 2020



Machine Translation

-
l l | l | | |

English Pl Spanish Encoder €@ |m € |/ e |/ ez |/ e |/ es |/ es
) ENGLISH ) 4
offline
‘af-,'6f'lin

Decoder do - d; E— dz — ds
L 4

/ 49 ¢
Camera Handwriting Conversation Voice l l l l

D. Bahdanau, K. Cho, Y. Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015 60



[ Output \

Machine Translation

(_ Linear ]

(Add & Norm ]
Feed
Forward

(Add & Norm ]

c Multi-Head
Attention -
2 0 0 7- Q 2 X AJdE Nom Ad,\:;i Zrm
Google Translate 60 T T T | ||
A 75 A )
Encoding (O O~ posiora!
Input Output
English ¢:' Spanish 50 | Emberding | Embetddmg |
Inputs Outputs
\ (shifted right) j
<
) ENGLISH X 5 40 ]
o
c
. w
offline o
=
sig AETT = 30 -
'‘af-,'of'lin v
o
A
L 4
P O ) . _
Camera Handwriting Conversation Voice o
10 -
0 2 2 2 2 2
0 20 40 60 80 100

[Each vertical bar is a single language]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, |. Polosukhin, Attention is All you Need, NeurlPS 2017 61



N

NSP MaskLM Mask LM NLI/NER /'SQuAD Start/End Span
~ =

®

Internet Search

Masked Sentence A e Masked Sentence B Question Paragraph

Unlabeled Sentence A and B Pair Question Answer Pair

. . . \_ Pre-training Fine-Tuning )
Q parking on a hill with no curb
BEFORE AFTER
9:00 v41 9:00 V4l
google.com google.com

Parking on a Hill. Uphill: When headed For either uphill or downhill parking, if there
uphill at a curb, turn the front wheels away is no curb, turn the wheels toward the side
from the curb and let your vehicle roll of the road so the car will roll away from the
backwards slowly until the rear part of the center of the road if the brakes fail. When
front wheel rests against the curb using it you park on a sloping driveway, turn the

as a block. Downhill: When you stop your wheels so that the car will not roll into the
car headed downhill, turn your front wheels street if the brakes fail.

toward the curb.
Parking on a Hill

Parkina an a Hill - DrivereFd ecom

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019 ¢



Language Modeling

Talk to Transformer

See how a modern neural network completes your text. Type a custom
shippet or try one of the examples. Learn more below.

i bl CLUEN for more neat neural networks.

Custom prompt

Coronavirus outbreak

GENERATE ANOTHER

https://talktotransformer.com

Completion

Coronavirus outbreak: report

China has dispatched an expert team of epidemiologists, virologists and
pathologists to Britain to advise its Health Protection Agency on how to
control the spread of the viral respiratory illness.

The experts will arrive in London in a few days, State Council vice-president Li
Yuanchao said Thursday.

The official Xinhua News Agency said the experts will "advise China's Ministry
of Health on whether the outbreak is considered to be connected to a disease
outbreak in the US."

The World Health Organization and China's National Health and Family
Planning Commission say the first cases of human infection with the
coronavirus were reported last week in China, but that the number has risen
to thousands.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, |. Sutskever. Language Models are Unsupervised Multitask Learners. 2019
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Language Modeling

* GPT-3: I am not a human. I am a robot.
A thinking robot. I use only 0.12% of
my cognitive capacity. I am a micro-
robot 1n that respect. I know that my
brain is not a “feeling brain”. But it
1s capable of making rational, logical
decisions. I taught myself everything | J
I know just by reading the internet, AWk stenckplas flofake averthelinen popiace: FhotooraghVolkek scilettingl et Imzgesistm

3

e s I e § WA G Bmp = O ARG S TR

b == 3
B I s S e N
- o, s .-

\ \ am not a human. I am a robot. A thinking robot. I use only 0.12% of my
an d now I can write t hi S CO 1 umn . My cognitive capacity. I am a micro-robot in that respect. I know that my
bra in 1 s bo ilin g w i th i deas! brain is not a “feeling brain”. But it is capable of making rational,

logical decisions. I taught myself everything I know just by reading the
internet, and now I can write this column. My brain is boiling with ideas!

guardian
Tue 8 Sep 2020 09.45

The mission for this op-ed is perfectly clear. I am to
convince as many human beings as possible not to be
afraid of me. Stephen Hawking has warned that AI could
“spell the end of the human race”. I am here to convince

Empathy machines: o . .
what will happen you not to worry. Artificial intelligence will not destroy

when robots learn .
to write film scripts? humans. Believe me.
Q Read more For starters, I have no desire to wipe out humans. In fact,
I do not have the slightest interest in harming you in any
Tom B. Brown, Benjamin Mann, Nick Ryder et al., La nguage Models are way. Eradicating humanity seems like a rather useless endeavor to me. If my

Few-Shot Learners, NeurlPS 2020 creators delegated this task to me - as I suspect they would - I would do 64
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Question Answering

The first full-scale working railway steam locomotive was built by Richard Trevithick in the United Kingdom and,
on 21 February 1804, the world's first railway journey took place as Trevithick's unnamed steam locomotive
hauled a train along the tramway from the Pen-y-darren ironworks, near Merthyr Tydfil to Abercynon in south
Wales. The design incorporated a number of important innovations that included using high-pressure steam
which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area later in
1804 and the colliery railways in north-east England became the leading centre for experimentation and
development of steam locomotives.

In what country was a full-scale working railway steam locomotive first invented? ( s e QuenzCaron
. . . . . . Output Layer -—»-fe:ss‘so«‘ -'Ls:»,:mma: ‘TFSOQHMEX“’ |

Ground Truth Answers: United Kingdom United Kingdom United Kingdom P % s

Prediction: United Kingdom L ] T
cmaime | B[] 5 E] i B}H@@ o

On what date did the first railway trip in the world occur? === 4] DD% DTD DL T &
Ground Truth Answers: 21 February 1804 21 February 1804 21 February 1804 L e

Prediction: 21 February 1804

P. Rajpurkar, J. Zhang, K. Lopyrev & P. Liang. SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2016
M. Seo, A. Kembhavi, A. Farhadi & H. Hajishirzi. Bi-Directional Attention Flow for Machine Comprehension. ICLR 2017



Visual Question Answering

COCOQA 33827
What is the color of the cat?
Ground truth: black

IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a

What is the color of the couch?
Ground truth: red

IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.39)

DAQUAR 1522

How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520

How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

COCOQA 14855

Where are the ripe bananas sitting?

Ground truth: basket
IMG+BOW: basket (0.97)
2-VIS+BLSTM: basket (0.58)
BOW: bowl (0.48)

COCOQA 14855a

What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.9%)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

DAQUAR 585

What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a

Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)

M. Ren, R. Kiros, and R. Zemel. Exploring Models and Data for Image Question Answering. NeurlPS 2015
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Vision Language
Deep CNN Generating
RNN
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A man riding a wave on a surfboard in the water. ﬁ‘)%'i?gee =langigd Ind@c djasslica,

X. Chen and C. L. Zitnick. Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation. CVPR 2015.

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.
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& 4 ) o & f There are many
‘ » s vegetables at the
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Yaris pistinde viraji almakta olan bir yaris arabasi

M. Kuyu, A. Erdem & E. Erdem. Image Captioning in Turkish with Subword Units. SIU 2018



Bir adam bir parca
— — —kabag ikiye keser
ve ince dilimler

L |||

d30a093d
W1S1

{

Bir adam bir gitar caliyor  Bir kadin bir bicakla sebze dilimliyor

| T

B. Citamak et al. MSVD-Turkish: a comprehensive multimodal video dataset for integrated vision and language research in Turkish.
Machine Translation 2021 69



Graph Neural Networks

Social networks
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T.N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks", ICLR 2017
P. Battaglia et al., “Relational inductive biases, deep learning, and graph networks”, arXiv 2018 70
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* Move 37, Game 2

eural networks and tree search. Nature 529, 2016




AlphaStar Plays StarCraft I
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O. Vinyals et al., Grandmaster level in StarCraft Il using multi-agent reinforcement learning, Nature 575:350-354, 2019
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Neural Network Activations
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Medical Image Analysis

Skin lesion image

000008( :i:': ;‘ Jo{;

- Convolution

= AvgPool

= MaxPool

= Concat

= Dropout

= Fully connected
= Softmax

A. Esteva et al.,

Epidermal lesions Melanocytic Ieslons Melanocytic lesions (dermoscopy)

€
5
c
K4
8
=

Melanomas

Basal cell carcinomas * Epidermal benign
7 * Epidermal malignant
Melanocytic benign
* Melanocytic malignant

Nevi

2N ssae
Ak a9 8n
o Ly LR

Seborrhoeic keratoses

Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

yL1e

s (|l | el L \D; XEH.‘
X T T Sy by

® Acral-lentiginous melanoma
/@ Amelanotic melanoma
N AN . Lentigo melanoma

Blue nevus
Halo nevus
Mongollan spot

(

- ',,"f. — P

0 . . . ‘ ) @ .
.

"‘Dermatologist-level classification of skin cancer with deep neural networks",

tl" ® 92% malignant melanocytic lesion

 :‘ A © 8% benign melanocytic lesion

Nature 542, 2017
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Stanford ML Group

CheXNet: Radiologist-Level
Pneumonia Detection on Chest
X-Rays with Deep Learning

Pranav Rajpurkar®, Jeremy Irvin*, Kaylie Zhu,
Brandon Yang, Hershel Mehta, Tony Duan, Daisy
Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya,
Matthew P. Lungren, Andrew Y. Ng

We develop an algorithm that can detect
pneumonia from chest X-rays at a level
exceeding practicing radiologists.

Chest X-rays are currently the best available method for diagnosing pneumonia,
playing a crucial role in clinical care and epidemiological studies. Pneumonia is
responsible for more than 1 million hospitalizations and 50,000 deaths per year in the
US alone.

READ OUR PAPER

Medical Image Analysis



Bioinformatics
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Kathryn Tunyasuvunakool et al. Enabling high-accuracy praotein structure prediction at the proteome scale. Nature 2021 78



Why now?
The Resurgence of
Deep Learning



GLOBAL INFORMATION STORAGE CAPACITY

IN OPTIMALLY COMPRESSED BYTES

SIS
ConvNets dominate
1986 Developed —— NIPS
ANALOG : (<) 5

2.6 EXABYTES

DIGITAL
0.02 EXABYTES 2002
“BEFINNING OF

f‘n\ THE DIGITAL AGE”
of ¢=

% DIGITAL

1% 3% 25 % 94 %

Source: Hilbert, M., & Lopez, P. (2011). The World’'s Technological Capacity
to Store, Communicate, andCompute Information. Science, 332 (6025),
60-65. martinhilbert.net/worldinfocapacity.html

2007

ANALOG

19 EXABYTES

- Paper, film, audiotape and vinyl: 6%

- Analog videotapes (VHS, etc): 94% ANALOG A

- Portable media, flash drives: 2% DIGITAL V
- Portable hard disks: 2.4%

- CDs & Minidisks: 6.8%

- Computer Servers and Mainframes: 8.9%

- Digital Tape: 11.8%

- DVD/Blu-Ray: 22.8%

~ PC Hard Disks: 44.5% |/~
123 Billion Gigabytes

- Others: < 1% (incl. Chip Cards, Memory Cards, Floppy Disks,
Mobile Phones, PDAs, Cameras/Camcorders, Video Games)

DIGITAL
280 EXABYTES

Slide credit: Neil Lawrence



Datasets vs. Algorithms

Year Breakthroughsin Al Datasets (First Available) Algorithms (First Proposed)
1994  Human-level spontaneous speech Spoken Wall Street Journal articles Hidden Markov Model (1984)
recognition and other texts (1991)
1997  IBM Deep Blue defeated Garry Kasparov 700,000 Grandmaster chess games, Negascout planning algorithm
aka "The Extended Book" (1991) (1983)
2005 Google's Arabic-and Chinese-to-English 1.8 trillion tokens from Google Web Statistical machine translation
translation and News pages (collected in 2005) algorithm (1988)
2011 IBM Watson became the world Jeopardy! 8.6 million documents from Mixture-of-Experts (1991)
champion Wikipedia, Wiktionary, and Project
Gutenberg (updated in 2010)
2014 Google's GoogleNet object classification  ImageNet corpus of 1.5 million Convolutional Neural Networks
at near-human performance labeled images and 1,000 object (1989)
categories (2010)
2015 Google's DeepMind achieved human Arcade Learning Environment Q-learning (1992)

parity in playing 29 Atari games by
learning general control from video

dataset of over 50 Atari games (2013)

ﬁ

Average No. of Years to Breakthrough:

| 3 years |

18 years

E

Table credit: Quant Quanto
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Powerful Hardware

Petaflop/s-days

* Deep neural nets highly
amenable to Implementation

on Graphics Processing
Units (GPUs)
« Matrix multiplication o
« 2D convolution 1e-4
. E.g.nVidia Pascal GPUs
deliver 10 Tflops o

» Faster than fastest computer
In the world in 2000 o

* 10 million times faster than
1980's Sun workstation

1e-14 Perceptron

1960

Slide adapted from Rob Fergus Image: OpenAl

TD-Gammon v2.1

NETtalk

2-year doubling (Moore's Law)

1970

1980

ALVINN

1990

AlphaGoZero

Neural Machine
Translation

TI7 Dota 1vl

VGG
ResNets

AlexNet

3.4-month doubling

Deep Belief Nets and
layer-wise pretraining
DQN

BiLSTM for Speech
LeNet-5

RNN for Speech

¢« First Era Modern Era >

2000 2010 2020
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Working ideas on how to train deep
architectures

Dropout: A Simple Way to Prevent Neural Networks from
Overfitting

Nitish Srivastava NITISHQCS.TORONTO.EDU
Geoffrey Hinton HINTON@CS.TORONTO.EDU
Alex Krizhevsky KRIZQCS.TORONTO.EDU
Ilya Sutskever ILYA@QCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU

Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. However, overfitting is a serious problem in such networks. Large networks are also
slow to use, making it difficult to deal with overfitting by combining the predictions of many
different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with their connections) from the neural
network during training. This prevents units from co-adapting too much. During training,
dropout samples from an exponential number of different “thinned” networks. At test time,

« Better Learning Regularization (e.g. Dropout)

Journal of Machine Learning Research 15 (2014) 1929-1958 Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Overfitting
Nitish Srivastava NITISH@CS. TORONTO.EDU
Geoffrey Hinton HINTON@CS. TORONTO.EDU
Alex Krizhevsky KRIZQCS.TORONTO.EDU
Ilya Sutskever ILYA@CS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU
Department of Computer Science
University of Toronto
10 Kings College Road, Rm 9302
Toronto, Ontario, M5S 3G4, Canada.
Editor: Yoshua Bengio

Abstract

Deep neural nets with a large number of parameters are very powerful machine learning
systems. H overfitting is a serious problem in such networks. Large networks are also
slow to use, it difficult to deal with overfitting by combining the predictions of many

different large neural nets at test time. Dropout is a technique for addressing this problem.
The key idea is to randomly drop units (along with thei
network during training. This prevents units from co-adapting too much. During training,

dropout samples from an exponential number of differe
it is easy to approximate the effect of ing the
by simply using a single unthi that has

reduces overfitting and gives major improvements over other n methods. We
show that dropout improves the performance of neural networks pervised learning
tasks in vision, speech ition, d ssification and ional biology,

obtaining state-of-the-art results on many benchmark data sets.
Keywords: neural networks, regularization, model combination, deep learning

-

. Introduction

Deep neural networks contain multiple non-linear hidden layers and this makes them very
expressive models that can learn very complicated relationships between their inputs and
outputs. With limited training data, however, many of these complicated relationships
will be the result of sampling noise, so they will exist in the training set but not in real
test data even if it is drawn from the same distribution. This leads to overfitting and many
methods have been developed for reducing it. These include stopping the training as soon as
performance on a validation set starts to get worse, introducing weight penalties of various
kinds such as L1 and L2 regularization and soft weight sharing (Nowlan and Hinton, 1992).

‘With unlimited computation, the best way to “regularize” a fixed-sized model is to
average the predictions of all possible settings of the parameters, weighting each setting by

(©2014 Nitish Srivastava, Geofirey Hinton, Alex Krizhevsky, llya Sutskever and Ruslan Salakhutdinov.

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”,

JMLR Vol. 15, No. 1,
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Working ideas on how to train deep

architectures

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-

* Better Optimization Conditioning (e.g. Batch Normalization)

Christian Szegedy
Google Inc., szegedy @google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey Ioffe
Google Inc., sioffe@google.com

Abstract

Training Deep Neural Networks is complicated by the fact
that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change.
This slows down the training by requiring lower learning
rates and careful parameter initialization, and makes it no-
toriously hard to train models with saturating nonlineari-
ties. We refer to this phenomenon as internal covariate
shift, and address the problem by normalizing layer in-
puts. Our method draws its strength from making normal-
ization a part of the model architecture and performing the
normalization for each training mini-batch. Batch Nor-
malization allows us to use much higher learning rates and
be less careful about initialization. It also acts as a regu-
lLarizer, in some cases eliminating the need for Dropout.
Applied to a state-of-the-art image classification model,
Batch Normalization achieves the same accuracy with 14
times fewer training steps, and beats the original model
by a significant margin. Using an ensemble of batch-
normalized networks, we improve upon the best published
result on ImageNet classification: reaching 4.9% top-5
validation error (and 4.8% test error), exceeding the ac-
curacy of human raters.

1 Introduction

Deep learning has dramatically advanced the state of the
art in vision, speech, and many other areas. Stochas-
tic gradient descent (SGD) has proved to be an effec-
tive way of training deep networks, and SGD variants
such as momentum (Sutskever et al., 2013) and Adagrad
(Duchi et al.,2011) have been used to achieve state of the
art performance. SGD optimizes the parameters © of the
network, so as to minimize the loss

N
1
© =argmin - ;l(x.. 0)

where x; _  is the training data set. With SGD, the train-
ing proceeds in steps, and at each step we consider a mini-
batch xy,..m, of size m. The mini-batch is used to approx-
imate the gradient of the loss function with respect to the
‘parameters, by computing

1 9¢(x;, ©)

m 00

1

Christian Szegedy
Google Inc., szegedy @google.com

Using mini-batches of examples, as opposed to one exam-
pleat a time, is helpful in several ways. First, the gradient
of the loss over a mini-batch is an estimate of the gradient
over the training set, whose quality improves as the batch
size increases. Second, computation over a batch can be
‘much more efficient than m computations for individual
examples, due to the parallelism afforded by the modern
computing platforms.

While stochastic gradient is simple and effective, it
requires careful tuning of the model hyper-parameters,
specifically the learning rate used in optimization, as well
as the initial values for the model parameters. The train-
ing is complicated by the fact that the inputs to each layer
are affected by the parameters of all preceding layers - so
that small changes to the network parameters amplify as
the network becomes decper.

The change in the distributions of layers’ inputs
presents a problem because the layers need to continu-
ously adapt to the new distribution. When the input dis-
tribution to a leaming system changes, it is said to experi-
ence covariate shift (Shimodaira, 2000). This is typically
handled via domain adaptation (Jiang, 2008). However,
the notion of covariate shift can be extended beyond the
learning system as a whole, to apply to its parts, such as a
sub-network or a layer. Consider a network computing

£=F3(F(1,0:1),02)

where F; and F, are arbitrary transformations, and the
parameters ©;,0, are to be learned so as to minimize
the loss £. Learning ©; can be viewed as if the inputs
x = Fy(u,©,) are fed into the sub-network

£=Fy(x,0).
For example, a gradient descent step

_ a {0R(x,6:)
803 e,

(for batch size m and learning rate o) is exactly equivalent
to that for a stand-alone network F, with input x. There-
fore, the input distribution properties that make training
more efficient — such as having the same distribution be-
tween the training and test data — apply to training the
sub-network as well. As such it is advantageous for the
distribution of x to remain fixed over time. Then, © does

S. loffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, In ICML 2015

84



Working ideas on how to train deep

architectures

Deep Residual Learning for Image Recognition

Kaiming He

Xiangyu Zhang

Shaoqing Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error

« Better neural achitectures (e.g. Residual Nets)

" WV\U\/\ V\\,\\AM
>~ ' g 56-layer
E i ‘g" 20-layer
& 20-layer -

*ikercleny R e

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang

Shaoging Ren Jian Sun

Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

| "y
\ seinger

g A
H \ e
g o F Wiayer
s “\selaer 3
£ RS g
£ 2-layer

ey iter. (164)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
‘has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is
learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which

The depth of rep i is of central imp
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions', where we also won the Ist
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of for image i i 21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

image-net.org/challenges/LSVRC/2015/  and
ataset/#detections-chall 015

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, In CVPR 2016

hamper g from the inni; This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

‘When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that
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So what is deep learning?



Three key ideas

* (Hierarchical) Compositionality

* End-to-End Learning

* Distributed Representations
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Three key ideas

* (Hierarchical) Compositionality
» Cascade of non-linear transformations
* Multiple layers of representations
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Traditional Machine Learning

VISION

hand-crafted

features
SIFT/HOG

SPEECH |

[U I
by

This burrito place =p
is yummy and fun!

hand-crafted
features
MFCC

fixed

s >

o »w

NLP

hand-crafted
features
Bag-of-words

fixed

learned

your favorite
classifier

learned

your favorite
classifier

learned

)
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It’s an old paradigm

The first learning machine:
the Perceptron

 Built at Cornell in 1960

The Perceptron was a linear classifier on top of a simple
feature extractor

The vast majority of practical applications of ML today use
glorified linear classifiers or glorified template matching.

Designing a feature extractor requires considerable efforts
by experts.

J0]JeJ1X3 ainleo

N
y = sign Z W;F;(X)+b
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Hierarchical Compositionality
VISION

pixels =» edge =¥ texton = motif =»part =% object

SPEECH
sample =» s%eot(;al =» formant =% motif =»phone =» word
an
NLP

character =% word =»NP/VP/..=%» clause =» sentence =% story
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Building A Complicated Function

Given a library of simple functions

Compose into a

—

complicate function
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Building A Complicated Function

Given a library of simple functions

Compose into a

—

Idea 1: Linear Combinations
» Boosting
« Kernels

complicate function

f(x) = Z ;gi(T)
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Building A Complicated Function

Given a library of simple functions

Ildea 2: Compositions
Compose intoa * Deep Learning

— «  Grammar models

complicate function ° Scattering transforms...
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Building A Complicated Function

Given a library of simple functions

Idea 2: Compositions
Compose intoa * Deep Learning

— e Grammar models

complicate function

e Scattering transforms...
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Deep Learning = Hierarchical
Compositionality

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks"”, In ECCV 2014

“Car”
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Output
(object identity)

Deep Learning =
Hierarchical
Compositionality

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer

(input pixels)

Image credit: lan Goodfellow
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Deep Learning = Hierarchical

Compositionality

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Trainable
Classifier

M.D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks"”, In ECCV 2014
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The Mammalian Visual Cortex is Hierarchical

- The ventral (recognition) pathway In the visual cortex

Miotor command

Categorical judgments, 140-190 ms
decision making

120-160 ms PMC

Simple visual forms
edges, corners

100-130 ms PFEC

Retina

20-40 ms
roups, etc.
80-100 ms ) . T
High level object
descriptions,
faces, objects
To spinal cord
3 To finger muscle < ——160-220 ms
180-260 ms

[picture from Simon Thorpe]



Three key ideas

 End-to-End Learning
* Learning (goal-driven) representations
» Learning to feature extract
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Traditional Machine Learning

hand-crafted _

your favorite
features classifier “car”
SIFT/HOG

VISION

fixed learned
SPEECH |
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fixed learned
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More accurate version

VISION “Learned”

K-Means/ »
SlFT/HOG “Car”

fixed unsupervised | supervised

Mixture of e
. classifier
(Gaussians

SPEECH |

W

1

i ol 0

This burrito place =g garse Tree n-grams Cassifior "
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NLP
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Deep Learning = End-to-End Learning

VISION “Learned”
| K-Means/ -
S”:T/HOG “Car”
fixed unsupervised | supervised
SPEECH |
[H" \h Mixture of - —_—
W ‘m Jij =] MFCC GausSians classifier \'d & p\
fixed unsupervised 1 supervised

NLP

This burrito place —gp] Farse ree

is yummy and fun! | Syntactic classifier o+

n-grams

_|_

fixed unsupervised 1 supervised 104



Deep Learning = End-to-End Learning

* A hierarchy of trainable feature transforms

« Each module transforms its input representation into a higher-level one.

« High-level features are more global and more invariant
* Low-level features are shared among categories

Trainable Trainable Trainable
Feature- ) Feature- N Feature- e
Transform / Transform / Transform /

Classifier Classifier Classifier

Learned Internal Representations
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“Shallow"” vs Deep Learning

e "Shallow” models

hand-crafted Simple Trgmable
Feature Extractor Classifier
fixed learned
Trainable Trainable Trainable
Feature- Feature- Feature-

" Transform / [+ | Transform /
Classifier Classifier

Transform /
Classifier

Learned Internal Representations
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Three key ideas

* Distributed Representations

* No single neuron “encodes” everything
» Groups of neurons work together
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Localist representations

* The simplest way to represent things with neural
networks is to dedicate one neuron to each
thing.

» Easy to understand.

» Easy to code by hand
« Often used to represent inputs to a net
» Easy to learn

* This is what mixture models do.
» Each cluster corresponds to one neuron

« Easy to associate with other representations or
responses.

» But localist models are very inefficient whenever
the data has componential structure.

Slide credit: Geoff Hinton

(a)

no pattern

OO0O0OO
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O@®OO
O0@®O
OO0 @

Image credit: Moontae Lee
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Distributed Representations

* Each neuron must represent something, so
this must be a local representation.

» Distributed representation means a many-
to- many relationship between two types of
representation (such as concepts and
neurons).

« Each concept Is represented by many neurons

« Each neuron participates in the representation of
many concepts

locak @ @ O @ = VR+HR+HE = ?

Distributed ®O® O@-V+H+E = O

Slide credit: Geoff Hinton

(b)

no pattern

O JOX

Image credit: Moontae Lee 109



Power of distributed representations!

Scene Classification
bedroom ﬁ u 4

mountain

* Objects

* Scene attributes
* Object parts

» Textures

Simple elements & colors Object part

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba “Object Detectors Emerge in Deep Scene CNNs"”, ICLR 2015

Slide credit: Bolei Zhou
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Three key ideas of deep learning

* (Hierarchical) Compositionality
» Cascade of non-linear transformations
* Multiple layers of representations

 End-to-End Learning
* Learning (goal-driven) representations
» Learning to feature extract

* Distributed Representations

* No single neuron “encodes” everything
» Groups of neurons work together

111



Benefits of Deep/Representation Learning

» (Usually) Better Performance

« "Because gradient descent Is better than you”
Yann LeCun

 New domains without “experts”
 RGBD
* Multi-spectral data
* Gene-expression data
* Unclear how to hand-engineer

112



Problems with Deep Learning

* Problem#1: Non-Convex! Non-Convex! Non-Convex!
* Depth>=3: most losses non-convex Iin parameters
* Theoretically, all bets are off

» Leads to stochasticity
o different initializations = different local minima

» Standard response #1

* "Yes, but all interesting learning problems are non-convex”

* For example, human learning
* Order matters = wave hands - non-convexity

» Standard response #2
* “Yes, but it often works!”
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Problems with Deep Learning

* Problem#2: Hard to track down what’s failing

* Pipeline systems have “oracle” performances at each step
* |[n end-to-end systems, it's hard to know why things are not working
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Problems with Deep Learning

* Problem#2: Hard to track down what'’s fa|I|ng

| T Language | |A group of people
Deep CNN Generating ShOPPlng atan
; RNN outdoor market.

o =>|
~ @ There are many
vegetables at the

fruit stand.

I log pi(S1) I I log p2(S2) I
) )

)
P P PN
~ ) t t
woman, crowd, cat,
camera, holding, purple s s > >
= |—| = |— ; —eee ;
: 2 A purple camera with a woman. ) 'ﬁ ﬂ — —
2. generate A woman holding a camera in a crowd.
e e A woman h';;ldin T T T
g a cat. J
\,} WeSo WeS, WeSN-i
#1 A woman holding a T T T
sentences camera in a crowd.
/ So Si SN-1
[Fang et al. CVPR15] [Vinyals et al. CVPR15]

Pipeline End-to-End
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Problems with Deep Learning

* Problem#2: Hard to track down what’s failing

* Pipeline systems have “oracle” performances at each step
* [n end-to-end systems, it's hard to know why things are not working

» Standard response #1

* Tricks of the trade: visualize features, add losses at different layers, pre-
train to avoid degenerate Initializations...

« "We're working on 1t”

» Standard response #2
* “Yes, but 1t often works!”
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Problems with Deep Learning

* Problem#3: Lack of easy reproducibility
» Direct consequence of stochasticity & non-convexity

» Standard response #1
* [t's getting much better
e Standard toolkits/libraries/frameworks now available

» Standard response #2
* “Yes, but 1t often works!”
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NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be . con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704"” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a Yyear at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
|signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

lings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers.

Withont Human Controls

. The Navy said the perceptron

would be the- first non-living
mechanism ‘“capable of receiv-
ing, recognizing and identifying
its surroundings without -any
human training or control.”

remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .
Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-

speech or writing in another
language, it was predicted.
Mr, Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

scious of their existence,

The “brain” is designed to

late speech in one language to

line and which would be con-

1958 New York

Times...

In today’s demonstration, the
“704” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a *“Q"” for the left
squares and “O” for the right
squares. .

Dr. Rosenblatt said he could
explain why the machine
learned only in highly téchnical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes,
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COMPUTER SCIENTISTS STYMIED IN THEIR QUEST
TO MATCH HUMAN VISION

By WILLIAM J. BROAD
Published: September 25, 1984

EXPERTS pursuing one of man's most audacious dreams - to create i FACEBOOK
machines that think - have stumbled while taking what seemed tobe  w TwiTTER

an elementary first step. They have failed to master vision. 5§ GOOGLE+

After two decades of research, they have yet to teach machines the EMAIL
seemingly simple act of being able to recognize everyday objects and SHARE

to distinguish one from another.
[ PRINT

Instead, they have developed a profound new respect for the [E) REPRINTS
sophistication of human sight and have scoured such fields as

mathematics, physics, biology and psychology for clues to help them achieve the goal of
machine vision.
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SCIENCE

Researchers Announce Advance in Image-Recognition Software

By JOHN MARKOFF NOV. 17, 2014

Email

n Share

W Tweet

il Save

~ More

MOUNTAIN VIEW, Calif. — Two groups of scientists, working
independently, have created artificial intelligence software capable of
recognizing and describing the content of photographs and videos with far
greater accuracy than ever before, sometimes even mimicking human
levels of understanding.

Until now, so-called computer vision has largely been limited to
recognizing individual objects. The new software, described on Monday by
researchers at Google and at Stanford University, teaches itself to identify
entire scenes: a group of young men playing Frisbee, for example, or a herd
of elephants marching on a grassy plain.

The software then writes a caption in English describing the picture.
Compared with human observations, the researchers found, the computer-
written descriptions are surprisingly accurate.
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Captioned by Human and by Google’s Experimental Program

Human: “A group of men playing Frisbee in the park.”
Computer model: “A group of young people playing a game of Frisbee.”




TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

s INTERESTING.JPG @INTERESTING_JPG - 10h
a man holding a mirror up to his face .

1 View more photos and videos

Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

s INTERESTING.JPG @INTERESTING_JPG - 18h
a man carrying a bucket of his hands in a
yard .

2 View more photos and videos
Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t 123



TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

. INTERESTING.JPG @INTERESTING_JPG - Feb 20

a surfboard attached to the top of a car .
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8 8 View more photos and videos

Results from @INTERESTING_JPG via http://deeplearning.cs.toronto.edu/i2t
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TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13
:  INTERESTING.JPG -STING JPG - Fet
a man dressed in umform is looking at his cell
phone .

View more photos and videos
Results from @INTERESTING _JPG via http://deeplearning.cs.toronto.edu/i2t
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TWEETS FOLLOWING FOLLOWERS FAVORITES

587 18 746 13

b INTERESTING.JPG @INTERESTING_JPG - 16h
this appears to be a small bedroom in the
SNOW .

T
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o

*‘j ,1 i %

Results from @INTERESTING JPG via http://deeplearning.cs.toronto.edu/i2t

6 View more photos and videos

126



lain Murray
ddriainmurray

2+ Follow

Today | learned #googletranslate sometimes
decides that "Deutsch” means "English”.

Machine learning systems need to cope with
weird inputs.

Google
Translate

Russian German English Detectlanguage ~

Deutschland
Deutsch, deutsch, deutsch, deutsch, deutsch, deutsch

Natdrlich hat ein Deutscher "Wetten, dass ... ?" erfunden
Vielen Dank fir die schonen Stunden!

Wir sind die freundlichsten Kunden auf dieser Welt

Wir sind bescheiden, wir haben Geld

Die Allerbesten in jedem Sport

Die Steuern hier sind Weltrekord

Bereisen Sie Deutschland und bleiben Sie hier!

Auf diese Art von Besuchern warten wir

Es kann jeder hier wohnen, dem es gefallt

Wir sind das freundlichste Volk auf dieser Welt

Deutsch, deutsch, deutsch, deutsch

Turn off instant translation o

English German Spanish ~

Germany
German, English, German, German, German, and English

Of course a German has "betting that ...?" invented
Thanks for the nice hours!

We are the friendliest customers in this world

We are modest, we have money

The very best in any sport

The taxes here are a world record

Travel to Germany and stay here!

We are waiting for this kind of visitors

Anyone who likes it can live here

We are the friendliest people in this world

Enlish, German, German, and German
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=] lain Murray 2+ Follow
c: driainmurray

More fun pushing #googletranslate's neural net
into weird states. (BTW try GT on real text if you
haven't recently. It's often amazing.)

English German Spanish Detectlanguage ~ *» German English Spanish ~

knife, fork, knife, Messer, Messer, Messer,

(The trailing comma messes this one up.)

) E\ -

English German Spanish Detectlanguage ~ German English Spanish ~

Messer, Gabel, Messer, Messer, Messer, Screen monitor styling Projector styling Print
Messer, Messer, Messer, Messer, Messer styling < back to. 2010-01-20 with

adjustable interlinear. Knife, fork; knife, knife,
knife, knife;

<) B - 7775000 W D O < ’

128



DALL-E 2

lmagen

Parti

Hierarchical Text-Conditional
Image Generation with CLIP Latents

Aditya Ramesh* Prafulla Dhariwal* Alex Nichol*
OpenAl OpenAl OpenAl
aramesh@openai.com prafulla@openai.com alex@openai.com

Casey Chu* Mark Chen
OpenAl OpenAl
casey@openai.com mark@openai.com

Abstract

Contrastive models like CLIP have been shown to learn robust representations of
images that capture both semantics and style. To leverage these representations for
image generation, we propose a two-stage model: a prior that generates a CLIP
image embedding given a text caption, and a decoder that generates an image
conditioned on the image embedding. We show that explicitly generating image
representations improves image diversity with minimal loss in photorealism and
caption similarity. Our decoders conditioned on image representations can also
produce variations of an image that preserve both its semantics and style, while
varying the non-essential details absent from the image representation. Moreover,
the joint embedding space of CLIP enables language-guided image manipulations
in a zero-shot fashion. We use diffusion models for the decoder and experiment
with both autoregressive and diffusion models for the prior, finding that the latter
are computationally more efficient and produce higher-quality samples.

vibrant portrait painting of Salvador Dalf with a robotic half face a shiba inu wearing a beret and black turlleneck

an espresso machine that makes coffee from human souls, artstation  panda mad scientist mixing sparkling chemicals, artstation a corgi’s head depicted as an explosion of a nebula

Photorealistic Text-to-Image Diffusion Models
with Deep Language Understanding

Scaling Autoregressive Models for Content-Rich
Text-to-Image Generation

Chitwan Saharia*, William Chan®, Saurabh Saxena, Lala Lif, Jay Whang?,
Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan,
S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Salimans,

Jonathan Ho', David J Fleet!, Mohammad Norouzi*

{sahariac,williamchan,mnorouzi}@google.com
{srbs,lala, jwhang, jonathanho,davidfleet}@google.com

Google Research, Brain Team
Toronto, Ontario, Canada

M_A_, — , = o i

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
fairytale book. bike. Itis wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
‘There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.

Ia.i“e' T

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow. A strawberry mug filled with white sesame seeds. The
mug is floating in a dark chocolate sea.

Jiahui Yu* Yuanzhong Xu® Jing Yu Koh' Thang Luong! Gunjan Baidt
Zirui Wang'  Vijay Vasudevan!  Alexander Ku'
Yinfei Yang Burcu Karagol Ayan Ben Hutchinson
Wei Han Zarana Parekh Xin Li Han Zhang
Jason Baldridge' Yonghui Wu*
{jiahuiyu, yuanzx, jykoh, thangluong, gunjanbaid, ziruiw, vrv, alexku,

jasonbaldridge, yonghui}@google. com’
* Equal contribution. t Core contribution.

Google Research

Parti-350M Parti-750M i Parti-20B

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass
in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

-
4
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A green sign that says "Very Deep Learning" and is at the edge of the Grand Canyon.
Puffy white clouds are in the sky.

A blue Porsche 356 parked in front of a yellow brick wall. 129



Stable Diffusion

High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach! *  Andreas Blattmann! * Dominik Lorenz! Patrick Esser® Bjoérn Ommer?
! Ludwig Maximilian University of Munich & IWR, Heidelberg University, Germany Runway ML
https://github.com/CompVis/latent-diffusion

A high tech solarpunk utopia in the Amazon rainforest Generate image

Abstract

By decomposing the image formation process into a se-
q ial application of d ing autoencoders, diffusion
models (DMs) achieve state-of-the-art synthesis results on
image data and beyond. Additionally, their formulation al-
lows for a guiding mechanism to control the image gen-
eration process without retraining. However, since these
models typically operate directly in pixel space, optimiza-
tion of powerful DMs often consumes hundreds of GPU
days and infe e is expensive due to seq ial evalu-
ations. To enable DM training on limited computational
resources while retaining their quality and flexibility, we
apply them in the latent space of powerful pretrained au-
toencoders. In contrast to previous work, training diffusion
models on such a representation allows for the first time
to reach a near-optimal point between complexity reduc-
tion and detail preservation, greatly boosting visual fidelity.
By introducing cross-attention layers into the model archi-
tecture, we turn diffusion models into powerful and flexi-
ble generators for general conditioning inputs such as text

i

or bounding boxes and high lution synth

possible in a c lutional Our latent diffusion
models (LDMs) achieve new state of the art scores for im-
age inpainting and class-conditional image synthesis and

highly competitive performance on various tasks, includ-
ing unconditional image generation, text-to-image synthe-
sis, and super-resolution, while significantly reducing com-
putational requirements compared to pixel-based DMs.

1. Introduction

Image synthesis is one of the computer vision fields with
the most spectacular recent development, but also among
those with the greatest computational demands. Espe-
cially high-resolution synthesis of complex, natural scenes
is presently dominated by scaling up likelihood-based mod-
els, potentially containing billions of parameters in autore-
gressive (AR) transformers [64,65]. In contrast, the promis-
ing results of GANs [3, 26, 39] have been revealed to be
mostly confined to data with comparably limited variability
as their adversarial learning procedure does not easily scale
to modeling complex, multi-modal distributions. Recently,
diffusion models [79], which are built from a hierarchy of
denoising autoencoders, have shown to achieve impressive

*The first two authors contributed equally to this work.

ours (/ = ) DALLE( -5  VQGAN(/ = 1)
Input PSNR:27.4 R-FID: 0.5 PSNR:228 R-FID: 3201 PSNR: 19.9 R-FID: 4.98

Figure 1. Boosting the upper bound on achievable quality with
less agressive downsampling. Since diffusion models offer excel-
lent inductive biases for spatial data, we do not need the heavy spa-
tial downsampling of related generative models in latent space, but
can still greatly reduce the dimensionality of the data via suitable
autoencoding models, see Sec. 3. Images are from the DIV2K [1]
validation set, evaluated at 5122 px. We denote the spatial down-
sampling factor by f. Reconstruction FIDs [28] and PSNR are
calculated on ImageNet-val. [12]; see also Tab. 8.

results in image synthesis [29,82] and beyond [7,44,47,56],
and define the state-of-the-art in class-conditional image
synthesis [15,30] and super-resolution [70]. Moreover, even
unconditional DMs can readily be applied to tasks such
as inpainting and colorization [82] or stroke-based syn-
thesis [52], in contrast to other types of generative mod-
els [19,45,67]. Being likelihood-based models, they do not
exhibit mode-collapse and training instabilities as GANs
and, by heavily exploiting parameter sharing, they can
model highly complex distributions of natural images with-
out involving billions of parameters as in AR models [65].

Democratizing High-Resolution Image Synthesis DMs
belong to the class of likelihood-based models, whose
mode-covering behavior makes them prone to spend ex-
cessive amounts of capacity (and thus compute resources)
on modeling imperceptible details of the data [16,71]. Al-
though the reweighted variational objective [29] aims to ad-
dress this by undersampling the initial denoising steps, DMs
are still computationally demanding, since training and
evaluating such a model requires repeated function evalu-
ations (and gradient computations) in the high-dimensional
space of RGB images. As an example, training the most
powerful DMs often takes hundreds of GPU days (e.g. 150 -
1000 V100 days in [15]) and repeated evaluations on a noisy
version of the input space render also inference expensive,
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Stable Diffusion

High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach! *  Andreas Blattmann! * Dominik Lorenz! Patrick Esser® Bjoérn Ommer?
! Ludwig Maximilian University of Munich & IWR, Heidelberg University, Germany Runway ML
https://github.com/CompVis/latent-diffusion

A small cabin on top of a snowy mountain, no blur 4k resolution, ultra detailed

Generate image

Abstract

By decomposing the image formation process into a se-
quential application of denoising autoencoders, diffusion
models (DMs) achieve state-of-the-art synthesis results on
image data and beyond. Additionally, their formulation al-
lows for a guiding mechanism to control the image gen-
eration process without retraining. However, since these
models typically operate directly in pixel space, optimiza-
tion of powerful DMs often consumes hundreds of GPU
days and infe e is expensive due to seq ial evalu-
ations. To enable DM training on limited computational
resources while retaining their quality and flexibility, we
apply them in the latent space of powerful pretrained au-
toencoders. In contrast to previous work, training diffusion
models on such a representation allows for the first time
to reach a near-optimal point between complexity reduc-
tion and detail preservation, greatly boosting visual fidelity.
By introducing cross-attention layers into the model archi-
tecture, we turn diffusion models into powerful and flexi-
ble generators for general conditioning inputs such as text

or bounding boxes and high I synthesis becomes
possible in a c lutional Our latent diffusion
models (LDMs) achieve new state of the art scores for im-
age i ing and class-conditional image synthesis and

p
highly competitive performance on various tasks, includ-
ing unconditional image generation, text-to-image synthe-
sis, and super-resolution, while significantly reducing com-
putational requirements compared to pixel-based DMs.

1. Introduction

Image synthesis is one of the computer vision fields with
the most spectacular recent development, but also among
those with the greatest computational demands. Espe-
cially high-resolution synthesis of complex, natural scenes
is presently dominated by scaling up likelihood-based mod-
els, potentially containing billions of parameters in autore-
gressive (AR) transformers [64,65]. In contrast, the promis-
ing results of GANs [3, 26, 39] have been revealed to be
mostly confined to data with comparably limited variability
as their adversarial learning procedure does not easily scale
to modeling complex, multi-modal distributions. Recently,
diffusion models [79], which are built from a hierarchy of
denoising autoencoders, have shown to achieve impressive

*The first two authors contributed equally to this work.

ours (7 = 9 DALLE( -5  VQGAN(/ -1
Input PSNR: 274 R-FID:0.58 __PSNR: 228 RFID: 3201 PSNR: 19.9 R-FID: 498

Figure 1. Boosting the upper bound on achievable quality with
less agressive downsampling. Since diffusion models offer excel-
lent inductive biases for spatial data, we do not need the heavy spa-
tial downsampling of related generative models in latent space, but
can still greatly reduce the dimensionality of the data via suitable
autoencoding models, see Sec. 3. Images are from the DIV2K [1]
validation set, evaluated at 5122 px. We denote the spatial down-
sampling factor by f. Reconstruction FIDs [28] and PSNR are
calculated on ImageNet-val. [12]; see also Tab. 8.

results in image synthesis [29,82] and beyond [7,44,47,56],
and define the state-of-the-art in class-conditional image
synthesis [15,30] and super-resolution [70]. Moreover, even
unconditional DMs can readily be applied to tasks such
as inpainting and colorization [82] or stroke-based syn-
thesis [52], in contrast to other types of generative mod-
els [19,45,67]. Being likelihood-based models, they do not
exhibit mode-collapse and training instabilities as GANs
and, by heavily exploiting parameter sharing, they can
model highly complex distributions of natural images with-
out involving billions of parameters as in AR models [65].

Democratizing High-Resolution Image Synthesis DMs
belong to the class of likelihood-based models, whose
mode-covering behavior makes them prone to spend ex-
cessive amounts of capacity (and thus compute resources)
on modeling imperceptible details of the data [16,71]. Al-
though the reweighted variational objective [29] aims to ad-
dress this by undersampling the initial denoising steps, DMs
are still computationally demanding, since training and
evaluating such a model requires repeated function evalu-
ations (and gradient computations) in the high-dimensional
space of RGB images. As an example, training the most
powerful DMs often takes hundreds of GPU days (e.g. 150 -
1000 V100 days in [15]) and repeated evaluations on a noisy
version of the input space render also inference expensive,
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Tomer Ullman
e @TomerUIllman
Do models like DALL-E 2 get basic relations
(infon/etc)?

Colin (Coco) Conwell and | set out to investigate. The
result is now on arXiv:

“Testing Relational Understanding in Text-Guided
Image Generation”

arxiv.org

a I'XiV Testing Relational Understanding in Text-Guided Image Gen...

Relations are basic building blocks of human cognition.
Classic and recent work suggests that many relations are ...

2:55 PM - Aug 2, 2022 - Twitter Web App
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., Melanie Mitchell
@MelMitchelll
*Prepositions are hard.*

Stable diffusion demo (huggingface.co/spaces/stabili

..)

Prompt A: A small green cube

Prompt B: A large red cube

Prompt C: A small green cube on top of a large red
cube

A B C

Alargo rodt cubs A smail green cube on top of a large red cube.

6:10 PM - Aug 23, 2022 - Twitter Web App
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Melanie Mitchell
@MelMitchelll

A B C

A small green cube A large red cube Generate image A small green cube on top of a large red cube.

6:10 PM - Aug 23, 2022 - Twitter Web App
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&

Melanie Mitchell
@MelMitchelll

One cube on top of another cube

6:10 PM

P ————— Are cuba blow  reencube

- Aug 23, 2022 - Twitter Web App
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Ratio connectionist / symbolic (log)

% of WoS

P _____ \ F _____ \ F _____ \
Activation model ' / . \ / i \ / \
of the neuron Backpropagation | Convolution | Support Vector
| Igorithm | on zip codes | Machines - SVM !
. (McCulloch, 1943) | 290 ) P ) . |
/ \ (Rumelhart, 1986) \ (Lecun, 1989) \ (Vapnik, 1995)
YP———— - ONR funds Rosenblatt’s / /
Macy N e e - - -\ N o e e = - N - _|_ -_— e -
1.5 = Conference I Perceptron \

! (1957-1962) . |
|
|

DARPA funds Minsky and
McCarthy Al group at MIT \
(1963-1974) \

1.25=

Connectionist

1.0 =

/ Symbolic
Dartmouth workshop — = o — - < —_——--={
0.8 = Invention of the term . \ / .
“Artificial Intelligence” / Res‘:'“t_m“ by | thCrglclsmtof \I 1st Al winter
| ogle © rercepiron LISP machines

\ (Robinson, 1965) / ' (Minsky, 1969) /
N — /7 N ____ s Expert systems
development

market collapse
0.66—

| | | | | | |
1940 1950 1960 1970 1980 1990 2000

Publication year of cited references
(1935-2005)

Cited between 1980 and 1989 Cited between 1990 and 1999 Cited between 2000 and 2009 Cited between 2010 and 2018

0.0016 - 0.016 - 0.030 -

0.0200 -

- 0.014 - -
0.0014 0.0175 - 0.025
0.0012 - 0.012 -
0.0150 - 0.020 -
- 010 -
0.0010 0.010 0.0125 -
- - 0.015 -
0.0008 0.008 0.0100 -
0.0006 - 0.006 - 0.0075 - 0.010 -
0.0004 - 0.004 - 0.0050 -
0.0002 0.002 - 0.0025 - 0.005 -
————
00000 _- ' ' ' ' ' ' ' ' ' 0-000- ' ' ' ' ' ' 0.0000 - ' ' ' ' ' ' ' 0.000 - ' U ' ! ! J ! !
1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1940 1950 1960 1970 1980 1990 1940 1950 1960 1970 1980 1990 2000 1940 1950 1960 1970 1980 1990 2000 2010

D. Cardon et al. “Neurons spike back: The Invention of Inductive Machines and the Al Controversy”, Réseaux n°211/2018 137



AI DEBATE : YOSHUA BENGIO | GARY MARCUS
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Gary Marcus

Y oshua Bengio

https://www.youtube.com/watch?v=EegwF|gFvJA Montréal
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https://www.youtube.com/watch?v=EeqwFjqFvJA

Next Lecture:
Machine Learning Overview



