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Previously on CMP784
• Supervised vs. Unsupervised 

Learning

• Generative Modeling

• Basic Foundations
• Sparse Coding
• Autoencoders

• Autoregressive Generative Models
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Video: Samples from "cooking" subset of Kinetics, Weissenborn et al. 



Lecture overview
• Generative Adversarial Networks (GANs)

Disclaimer: Some of the material and slides for this lecture were borrowed from 

—Ian Goodfellow’s tutorial on “Generative Adversarial Networks”

—Aaron Courville’s IFT6135 class

—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class
4



Discriminative vs. Generative Models
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Generative Modeling
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Generative Modeling
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Generative Modeling
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pdata

pmodel

Slide adapted from Sebastian Nowozin

Assumptions on     :
• tractable sampling
• tractable likelihood function
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Broad Categories of Generative Models
• Autoregressive Models

•Generative Adversarial Networks (GANs)

• Flow-based Models 

• Variational Autoencoders

• Energy-based Models
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Autoregressive Models
• Explicitly model conditional probabilities:

Disadvantages:
• Generation can be too costly

• Generation can not be controlled 
by a latent code

PixelCNN elephants
(van den Ord et al. 2016)

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

1
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Each conditional can be 
a complicated neural net

Neural Image Model: Pixel RNN
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Another way to train a latent variable model 
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Generative Adversarial 
Networks



Generative Adversarial Networks (GANs)

• A game-theoretic 
likelihood free model

Advantages:
• Uses a latent code

• No Markov chains 
needed

• Produces the best 
looking samples
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Noise 
(random input)

𝑧 ~ Uniform!""

Generative
Model

(Goodfellow et al., 2014)

think of this as 
a transformation 



Generative Adversarial Networks (GANs)

• A game between a generator             and a discriminator      
§Generator tries to fool discriminator (i.e. generate realistic samples)
§Discriminator tries to distinguish fake from real samples

Noise

D!

{x1, . . . ,xn} ⇠ pdata

G✓(z) D!(x)

Generator 

z
G✓

xfake

Discriminator fake

real

(Goodfellow et al., 2014)
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Intuition behind GANs
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Training Procedure
•Use SGD on two minibatches simultaneously:

§A minibatch of training examples 

§A minibatch of generated samples 
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(Goodfellow et al., 2014)
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)
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GAN Training: Minimax Game
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min
✓

max
!

Ex⇠pdata [logD!(x)] + Ez⇠pz [log (1�D!(G✓(z)))]

Real data Noise vector used 
to generate data

(Goodfellow 2016)

Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))
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(Goodfellow 2016)

Non-Saturating Game
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples

(Goodfellow et al., 2014)

Cross-entropy 
loss for binary 
classification

Generator maximizes the log-probability 
of the discriminator being mistaken 

• Equilibrium of the game

• Minimizes the Jensen-Shannon divergence between pdata and px



GAN Training: Minimax Game
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
being mistaken 
-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples

(Goodfellow et al., 2014)

Cross-entropy 
loss for binary 
classification

Generator maximizes the log-probability 
of the discriminator being mistaken 

• Equilibrium of the game

• Minimizes the Jensen-Shannon divergence

Important question is 
“Does this converge??”



Training Procedure
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Source: Alec Radford

Generating 1D points

(Goodfellow et al., 2014)

Generating images

Source: OpenAI blog



Training Procedure
•Use SGD on two minibatches simultaneously:

§A minibatch of training examples 

§A minibatch of generated samples 
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(Goodfellow et al., 2014)
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transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
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pdata(x).
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The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is
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Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.
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CIFAR10 samples CIFAR10 samples
(fully-connected model) (convolutional discriminator, 

deconvolutional generator)

(Goodfellow et al., 2014)

• The generator uses 
a mixture of 
rectifier linear 
activations and/or 
sigmoid activations

• The discriminator 
net used maxout
activations. 



Deep Convolutional GANs (DCGAN)
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• No fully connected layers

• Batch Normalization
(Ioffe and Szegedy, 2015)

• Leaky Rectifier in D

• Use Adam (Kingma and Ba, 2015)

• Tweak Adam hyperparameters a bit 
(lr=0.0002, b1=0.5)

• Idea: Tricks to make GAN training more stable
(Radford et al., 2015)
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(Radford et al., 
2015)

64×64 pixels 
~3M images
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(Radford et al., 2015)

• Interpolation 
suggests 
non-overfitting 
behavior
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Cartoon of the Image manifold

31

Cartoon of the Image manifold

x1

x2

 13
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GAN Failures: Mode Collapse

•D in inner loop: convergence to correct distribution

•G in inner loop: place all mass on most likely point

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

Under review as a conference paper at ICLR 2017

Figure 1: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant mass to a
single data mode at once.

responding to. This extra information helps the generator spread its mass to make the next D step
less effective instead of collapsing to a point.

In principle, a surrogate loss function could be used for both D and G. In the case of 1-step unrolled
optimization this is known to lead to convergence for games in which gradient descent (ascent) fails
(Zhang & Lesser, 2010). However, the motivation for using the surrogate generator loss in Section
2.2, of unrolling the inner of two nested min and max functions, does not apply to using a surrogate
discriminator loss. Additionally, it is more common for the discriminator to overpower the generator
than vice-versa when training a GAN. Giving more information to G by allowing it to ‘see into the
future’ may thus help the two models be more balanced.

3 EXPERIMENTS

In this section we demonstrate improved mode coverage and stability by applying this technique
to three datasets of increasing complexity. Evaluation of generative models is a notoriously hard
problem (Theis et al., 2016). As such the de facto standard in GAN literature has become sample
quality as evaluated by a human and/or evaluated by a heuristic (Inception score for example, (Sal-
imans et al., 2016)). While these evaluation metrics do a reasonable job capturing sample quality,
they fail to capture sample diversity. In our first 2 experiments diversity is easily evaluated via visual
inspection. In our last experiment this is not the case, and we will introduce new methods to quantify
coverage of samples.

When doing stochastic optimization, we must choose which minibatches to use in the unrolling
updates in Eq. 7. We experimented with both a fixed minibatch and re-sampled minibatches for
each unrolling step, and found it did not significantly impact the result. We use fixed minibatches
for all experiments in this section.

3.1 MIXTURE OF GAUSSIANS DATASET

To illustrate the impact of discriminator unrolling, we train a simple GAN architecture on a 2D
mixture of 8 Gaussians arranged in a circle. For a detailed list of architecture and hyperparameters
see Appendix A. Figure 1 shows the dynamics of this model through time. Without unrolling the
generator rotates around the valid modes of the data distribution but is never able to spread out
mass. When adding in unrolling steps G quickly learns to spread probability mass and the system
converges to the data distribution.

3.2 PATHOLOGICAL MODELS

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNN). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel

5

(Metz et al., 2016) 33



Mode Collapse: Solutions
• Unrolled GANs (Metz et al 2016): Prevents mode collapse by 

backproping through a set of (k) updates of the discriminator to update 
generator parameters

• VEEGAN (Srivastava et al 2017): Introduce a reconstructor network 
which is learned both to map the true data distribution p(x) to a 
Gaussian and to approximately invert the generator network.
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Mode Collapse: Solutions

(Goodfellow 2016)

Unrolled GANs
Under review as a conference paper at ICLR 2017
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• Backprop through k updates of the discriminator to 
prevent mode collapse:
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• Unrolled GANs (Metz et al 2016): Prevents mode collapse by 
backproping through a set of (k) updates of the discriminator to 
update generator parameters. 

• VEEGAN (Srivastava et al 2017): Introduce a reconstructor network 
which is learned both to map the true data distribution p(x) to a 
Gaussian and to approximately invert the generator network.



Mode Collapse: Solutions
• Minibatch Discrimination (Salimans et al 2016): Add minibatch 

features that classify each example by comparing it to other members 
of the minibatch (Salimans et al 2016)

• PacGAN: The power of two samples in generative adversarial 
networks (Lin et al 2017): Also uses multisample discrimination.
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Mode Collapse: Solutions
• Minibatch Discrimination (Salimans et al 2016): Add minibatch 

features that classify each example by comparing it to other 
members of the minibatch (Salimans et al 2016)  

• PacGAN: The power of two samples in generative adversarial 
networks (Lin et al 2017): Also uses multisample discrimination.

Figure 1: PacGAN(m) augments the input layer by a factor of m. The number of edges between
the first two layers are increased accordingly to preserve the connectivity of the mother architecture
(typically fully-connected). Packed samples are fed to the input layer in a concatenated fashion;
the grid-patterned nodes represent input nodes for the second input sample.

in the mother architecture. The grid-patterned nodes in Figure 1 represent input nodes for the
second sample.

Similarly, when packing a DCGAN, which uses convolutional neural networks for both the
generator and the discriminator, we simply stack the images into a tensor of depth m. For instance,
the discriminator for PacDCGAN5 on the MNIST dataset of handwritten images [24] would take
an input of size 28 ⇥ 28 ⇥ 5, since each individual black-and-white MNIST image is 28 ⇥ 28 pixels.
Only the input layer and the number of weights in the corresponding first convolutional layer will
increase in depth by a factor of five. By modifying only the input dimension and fixing the number
of hidden and output nodes in the discriminator, we can focus purely on the e↵ects of packing in
our numerical experiments in Section 3.

How to train a packed discriminator. Just as in standard GANs, we train the packed dis-
criminator with a bag of samples from the real data and the generator. However, each minibatch
in the stochastic gradient descent now consists of packed samples. Each packed sample is of the
form (X1, X2, . . . , Xm, Y ), where the label is Y = 1 for real data and Y = 0 for generated data,
and the m independent samples from either class are jointly treated as a single, higher-dimensional
feature (X1, . . . , Xm). The discriminator learns to classify m packed samples jointly. Intuitively,
packing helps the discriminator detect mode collapse because lack of diversity is more obvious in a
set of samples than in a single sample. Fundamentally, packing allows the discriminator to observe
samples from product distributions, which highlight mode collapse more clearly than unmodified
data and generator distributions. We make this statement precise in Section 4.

Notice that the computational overhead of PacGAN training is marginal, since only the input
layer of the discriminator gains new parameters. Furthermore, we keep all training hyperparame-
ters identical to the mother architecture, including the stochastic gradient descent minibatch size,
weight decay, learning rate, and the number of training epochs. This is in contrast with other
approaches for mitigating mode collapse that require significant computational overhead and/or
delicate hyperparameter selection [11, 10, 37, 40, 30].

Computational complexity. The exact computational complexity overhead of PacGAN (com-
pared to GANs) is architecture-dependent, but can be computed in a straightforward manner. For
example, consider a discriminator with w fully-connected layers, each containing g nodes. Since the
discriminator has a binary output, the (w + 1)th layer has a single node, and is fully connected to

5
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networks (Lin et al 2017): Also uses multisample discrimination.

36

Mode Collapse: Solutions
• PacGAN: The power of two samples in generative adversarial 

networks (Lin et al 2017)

To examine real data, we use the MNIST dataset [24], which consists of 70,000 images of
handwritten digits, each 28 ⇥ 28 pixels. Unmodified, this dataset has 10 modes, one for each digit.
As done in Mode-regularized GANs [6], Unrolled GANs [30] and VEEGAN [40], we augment the
number of modes by stacking the images. That is, we generate a new dataset of 128,000 images,
in which each image consists of three randomly-selected MNIST images that are stacked into a
28⇥28⇥3 image in RGB. This new dataset has (with high probability) 1000 = 10⇥10⇥10 modes.
We refer to this as the stacked MNIST dataset.

3.1 Synthetic data experiments from VEEGAN [40]

Our first experiment evaluates the number of modes and the number of high-quality samples for
the 2D-ring and the 2D-grid. Results are reported in Table 1. The first four rows are copied
directly from Table 1 in [40]. The last three rows contain our own implementation of PacGANs.
We do not make any choices in the hyper-parameters, the generator architecture, the discriminator
architecture, and the loss. Our implementation attempts to reproduce the VEEGAN architecture
to the best of our knowledge, as described below.

Target distribution GAN PacGAN2

Figure 2: Scatter plot of the 2D samples from the true distribution (left) of 2D-grid and the learned
generators using GAN (middle) and PacGAN2 (right). PacGAN2 captures all of the 25 modes.

Architecture and hyper-parameters. All of the GANs we implemented in this experiment
use the same overall architecture, which is chosen to match the architecture in VEEGAN’s code
[40]. The generators have two hidden layers, 128 units per layer with ReLU activation, trained
with batch normalization [16]. The input noise is a two dimensional spherical Gaussian with zero
mean and unit variance. The discriminator has one hidden layer, 128 units on that layer. The
hidden layer uses LinearMaxout with 5 maxout pieces, and no batch normalization is used in the
discriminator.

We train each GAN with 100,000 total samples, and a mini-batch size of 100 samples; training
is run for 200 epochs. The discriminator’s loss function is log(1 + exp(�D(real data))) + log(1 +
exp(D(generated data))), except for VEEGAN which has an additional regularization term. The
generator’s loss function is log(1 + exp(D(real data))) + log(1 + exp(�D(generated data))). Adam
[21] stochastic gradient descent is applied with the generator weights and the discriminator weights

7



GAN Evaluation
• Quantitatively evaluating GANs is not straightforward:
• Max Likelihood is a poor indication of sample quality

• Some evaluation metrics
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GAN Evaluation
• Quantitatively evaluating GANs is not straightforward: 

- Max Likelihood is a poor indication of sample quality. 

• Evaluation metrics (selected) 
- Inception Score (IS): 

y = labels given gen. image. p(y|x) is from classifier - InceptionNet 

- Fréchet inception distance (FID): (Currently most popular) 
Estimate mean m and covariance C from classifier output - InceptionNet

- Kernel MMD (Maximum Mean Discrepancy):

Under review as a conference paper at ICLR 2018

The Inception Score is arguably the most widely adopted metric in the literature. It uses a image
classification model M, the Google Inception network (Szegedy et al., 2016), pre-trained on the
ImageNet (Deng et al., 2009) dataset, to compute

IS(Pg) = e
Ex⇠Pg [KL(pM(y|x)||pM(y))]

, (2)

where pM(y|x) denotes the label distribution of x as predicted by M, and pM(y) =
R
x pM(y|x) dPg ,

i.e. the marginal of pM(y|x) over the probability measure Pg. The expectation and the integral in
pM(y|x) can be approximated with i.i.d. samples from Pg. A higher IS has pM(y|x) close to a
point mass, which happens when the Inception network is very confident that the image belongs
to a particular ImageNet category, and has pM(y) close to uniform, i.e. all categories are equally
represented. This suggests that the generative model has both high quality and diversity. Salimans
et al. (2016) show that the Inception Score has a reasonable correlation with human judgment of
image quality. We would like to highlight two specific properties: 1) the distributions on both sides
of the KL are dependent on M, and 2) the distribution of the real data Pr, or even samples thereof,
are not used anywhere.

The Mode Score is an improved version of the Inception Score. Formally, it is given by

MS(Pg) = e
Ex⇠Pg [KL(pM(y|x)||pM(y))]�KL(pM(y)||pM(y⇤))

, (3)

where pM(y⇤) =
R
x pM(y|x) dPr is the marginal label distribution for the samples from the real

data distribution. Unlike the Inception Score, it is able to measure the dissimilarity between the real
distribution Pr and generated distribution Pg through the term KL(pM(y)||pM(y⇤)).

The Kernel MMD (Maximum Mean Discrepancy), defined as

MMD(Pr,Pg) =
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measures the dissimilarity between Pr and Pg for some fixed kernel function k. Given two sets of
samples from Pr and Pg, the empirical MMD between the two distributions can be computed with
finite sample approximation of the expectation. A lower MMD means that Pg is closer to Pr. The
Parzen window estimate (Gretton et al., 2007) can be viewed as a specialization of Kernel MMD.

The Wasserstein distance between Pr and Pg is defined as

WD(Pr,Pg) = inf
�2�(Pr,Pg)

E(xr,xg)⇠� [d(x
r
,xg)] , (5)

where �(Pr,Pg) denotes the set of all joint distributions (i.e. probabilistic couplings) whose marginals
are respectively Pr and Pg, and d(xr

,xg) denotes the base distance between the two samples. For
discrete distributions with densities pr and pg, the Wasserstein distance is often referred to as the
Earth Mover’s Distance (EMD), and corresponds to the solution to the optimal transport problem
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(6)
This is the finite sample approximation of WD(Pr,Pg) used in practice. Similar to MMD, the
Wasserstein distance is lower when two distributions are more similar.

The Fréchet Inception Distance (FID) was recently introduced by Heusel et al. (2017) to evaluate
GANs. Formally, it is given by

FID(Pr,Pg) = kµr � µgk+ Tr(Cr +Cg � 2(CrCg)
1/2), (7)

where µr (µg) and Cr (Cg) are the mean and covariance of the real (generated) distribution, respec-
tively. Note that under the Gaussian assumption on both Pr and Pg , the Fréchet distance is equivalent
to the Wasserstein-2 distance.

The 1-Nearest Neighbor classifier is used in two-sample tests to assess whether two distributions
are identical. Given two sets of samples Sr ⇠ Pn

r and Sg ⇠ Pm
g , with |Sr| = |Sg|, one can compute

the leave-one-out (LOO) accuracy of a 1-NN classifier trained on Sr and Sg with positive labels
for Sr and negative labels for Sg. Different from the most common use of accuracy, here the 1-NN
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Figure 3: FID is evaluated for upper left: Gaussian noise, upper middle: Gaussian blur, upper
right: implanted black rectangles, lower left: swirled images, lower middle: salt and pepper noise,
and lower right: CelebA dataset contaminated by ImageNet images. The disturbance level rises
from zero and increases to the highest level. The FID captures the disturbance level very well by
monotonically increasing.

is difficult [55]. The best known measure is the likelihood, which can be estimated by annealed
importance sampling [59]. However, the likelihood heavily depends on the noise assumptions for
the real data and can be dominated by single samples [55]. Other approaches like density estimates
have drawbacks, too [55]. A well-performing approach to measure the performance of GANs is the
“Inception Score” which correlates with human judgment [53]. Generated samples are fed into an
inception model that was trained on ImageNet. Images with meaningful objects are supposed to
have low label (output) entropy, that is, they belong to few object classes. On the other hand, the
entropy across images should be high, that is, the variance over the images should be large. Drawback
of the Inception Score is that the statistics of real world samples are not used and compared to the
statistics of synthetic samples. Next, we improve the Inception Score. The equality p(.) = pw(.)

holds except for a non-measurable set if and only if
R

p(.)f(x)dx =
R

pw(.)f(x)dx for a basis f(.)

spanning the function space in which p(.) and pw(.) live. These equalities of expectations are used
to describe distributions by moments or cumulants, where f(x) are polynomials of the data x. We
generalize these polynomials by replacing x by the coding layer of an inception model in order to
obtain vision-relevant features. For practical reasons we only consider the first two polynomials, that
is, the first two moments: mean and covariance. The Gaussian is the maximum entropy distribution
for given mean and covariance, therefore we assume the coding units to follow a multidimensional
Gaussian. The difference of two Gaussians (synthetic and real-world images) is measured by the
Fréchet distance [16] also known as Wasserstein-2 distance [58]. We call the Fréchet distance d(., .)

between the Gaussian with mean (m,C) obtained from p(.) and the Gaussian with mean (mw,Cw)

obtained from pw(.) the “Fréchet Inception Distance” (FID), which is given by [15]:

d
2
((m,C), (mw,Cw)) = km � mwk2

2 + Tr
�
C + Cw � 2

�
CCw

�1/2�
. (6)

Next we show that the FID is consistent with increasing disturbances and human judgment. Fig. 3
evaluates the FID for Gaussian noise, Gaussian blur, implanted black rectangles, swirled images,
salt and pepper noise, and CelebA dataset contaminated by ImageNet images. The FID captures the
disturbance level very well. In the experiments we used the FID to evaluate the performance of GANs.
For more details and a comparison between FID and Inception Score see Appendix Section A1,
where we show that FID is more consistent with the noise level than the Inception Score.

Model Selection and Evaluation. We compare the two time-scale update rule (TTUR) for GANs
with the original GAN training to see whether TTUR improves the convergence speed and per-
formance of GANs. We have selected Adam stochastic optimization to reduce the risk of mode
collapsing. The advantage of Adam has been confirmed by MNIST experiments, where Adam indeed

6
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Vanilla GAN
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(Goodfellow et al., 2014)

DCGAN (Radford et al., 2015)



Conditional GAN
• Add conditional variables y into G and D

40

(Mirza and Osindero, 2014)

In the generator the prior input noise pz(z), and y are combined in joint hidden representation, and
the adversarial training framework allows for considerable flexibility in how this hidden representa-
tion is composed. 1

In the discriminator x and y are presented as inputs and to a discriminative function (embodied
again by a MLP in this case).

The objective function of a two-player minimax game would be as Eq 2

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x|y)] + Ez⇠pz(z)[log(1�D(G(z|y)))]. (2)

Fig 1 illustrates the structure of a simple conditional adversarial net.

Figure 1: Conditional adversarial net

4 Experimental Results

4.1 Unimodal

We trained a conditional adversarial net on MNIST images conditioned on their class labels, encoded
as one-hot vectors.

In the generator net, a noise prior z with dimensionality 100 was drawn from a uniform distribution
within the unit hypercube. Both z and y are mapped to hidden layers with Rectified Linear Unit
(ReLu) activation [4, 11], with layer sizes 200 and 1000 respectively, before both being mapped to
second, combined hidden ReLu layer of dimensionality 1200. We then have a final sigmoid unit
layer as our output for generating the 784-dimensional MNIST samples.

1For now we simply have the conditioning input and prior noise as inputs to a single hidden layer of a MLP,
but one could imagine using higher order interactions allowing for complex generation mechanisms that would
be extremely difficult to work with in a traditional generative framework.
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Auxiliary Classifier GAN
• Every generated sample has a corresponding 

class label

•D is trained to maximize LS + LC
•G is trained to maximize LC − LS

• Learns a representation for z that is 
independent of class label 

41

(Odena et al., 2016)
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Figure 2: A comparison of several GAN architectures with the proposed AC-GAN architecture.

3 AC-GANS

We propose a variant of the GAN architecture which we call an auxiliary classifier GAN (or AC-
GAN - see Figure 2). In the AC-GAN, every generated sample has a corresponding class label, c ⇠
pc in addition to the noise z. G uses both to generate images Xfake = G(c, z). The discriminator
gives both a probability distribution over sources and a probability distribution over the class labels,
P (S | X), P (C | X) = D(X). The objective function has two parts: the log-likelihood of the
correct source, LS , and the log-likelihood of the correct class, LC .

LS = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]
LC = E[logP (C = c | Xreal)] + E[logP (C = c | Xfake)]

D is trained to maximize LS + LC while G is trained to maximize LC � LS . AC-GANs learn a
representation for z that is independent of class label (e.g. Kingma et al. (2014)).

Early experiments demonstrated that increasing the number of classes trained on while holding the
model fixed decreased the quality of the model outputs (Appendix D). The structure of the AC-
GAN model permits separating large datasets into subsets by class and training a generator and
discriminator for each subset. We exploit this property in our experiments to train across the entire
ImageNet data set.

4 RESULTS

We train several AC-GAN models on the ImageNet data set (Russakovsky et al., 2015). Broadly
speaking, the architecture of the generator G is a series of ‘deconvolution’ layers that transform the
noise z and class c into an image (Odena et al., 2016). We train two variants of the model architecture
for generating images at 128 ⇥ 128 and 64 ⇥ 64 spatial resolutions. The discriminator D is a deep
convolutional neural network with a Leaky ReLU nonlinearity (Maas et al., 2013). See Appendix A
for more details. As mentioned earlier, we find that reducing the variability introduced by all 1000
classes of ImageNet significantly improves the quality of training. We train 100 AC-GAN models –
each on images from just 10 classes – for 50000 mini-batches of size 100.

Evaluating the quality of image synthesis models is challenging due to the variety of probabilis-
tic criteria (Theis et al., 2015) and the lack of a perceptually meaningful image similarity metric.
Nonetheless, in subsequent sections we attempt to measure the quality of the AC-GAN by building
several ad-hoc measures for image sample discriminability and diversity. Our hope is that this work
might provide quantitative measures that may be used to aid training and subsequent development
of image synthesis models.

1 Alternatively, one can force the discriminator to work with the joint distribution (X, z) and train a separate
inference network that computes q(z|X) (Dumoulin et al., 2016; Donahue et al., 2016).
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1 Alternatively, one can force the discriminator to work with the joint distribution (X, z) and train a separate
inference network that computes q(z|X) (Dumoulin et al., 2016; Donahue et al., 2016).
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Auxiliary Classifier GAN
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monarch butterfly goldfinch daisy grey whaleredshank

Figure 1: 128⇥128 resolution samples from 5 classes taken from an AC-GAN trained on the ImageNet dataset.
Note that the classes shown have been selected to highlight the success of the model and are not representative.
Samples from all ImageNet classes are in the Appendix.

In this work we demonstrate that that adding more structure to the GAN latent space along with
a specialized cost function results in higher quality samples. We exhibit 128 ⇥ 128 pixel samples
from all classes of the ImageNet dataset (Russakovsky et al., 2015) with increased global coherence
(Figure 1). Importantly, we demonstrate quantitatively that our high resolution samples are not just
naive resizings of low resolution samples. In particular, downsampling our 128 ⇥ 128 samples
to 32 ⇥ 32 leads to a 50% decrease in visual discriminability. We also introduce a new metric
for assessing the variability across image samples and employ this metric to demonstrate that our
synthesized images exhibit diversity comparable to training data for a large fraction (84.7%) of
ImageNet classes.

2 BACKGROUND

A generative adversarial network (GAN) consists of two neural networks trained in opposition to
one another. The generator G takes as input a random noise vector z and outputs an image Xfake =
G(z). The discriminator D receives as input either a training image or a synthesized image from
the generator and outputs a probability distribution P (S |X) = D(X) over possible image sources.
The discriminator is trained to maximize the log-likelihood it assigns to the correct source:

L = E[logP (S = real | Xreal)] + E[logP (S = fake | Xfake)]

The generator is trained to minimize that same quantity.

The basic GAN framework can be augmented using side information. One strategy is to supply
both the generator and discriminator with class labels in order to produce class conditional samples
(Mirza & Osindero, 2014). Class conditional synthesis can significantly improve the quality of
generated samples (van den Oord et al., 2016b). Richer side information such as image captions and
bounding box localizations may improve sample quality further (Reed et al., 2016a;b).

Instead of feeding side information to the discriminator, one can task the discriminator with re-
constructing side information. This is done by modifying the discriminator to contain an auxiliary
decoder network1 that outputs the class label for the training data (Odena, 2016; Salimans et al.,
2016) or a subset of the latent variables from which the samples are generated (Chen et al., 2016).
Forcing a model to perform additional tasks is known to improve performance on the original task
(e.g. Sutskever et al. (2014); Szegedy et al. (2014); Ramsundar et al. (2016)). In addition, an auxil-
iary decoder could leverage pre-trained discriminators (e.g. image classifiers) for further improving
the synthesized images (Nguyen et al., 2016). Motivated by these considerations, we introduce a
model that combines both strategies for leveraging side information. That is, the model proposed
below is class conditional, but with an auxiliary decoder that is tasked with reconstructing class
labels.

2

128×128 resolution samples from 5 classes taken from an AC-GAN 
trained on the ImageNet



Bidirectional GAN
• Jointly learns a generator network and an inference 

network using an adversarial process.
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(Donahue et al., 2016; Dumoulin et al., 2016)
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x ⇠ q(x)

ẑ ⇠ q(z | x)

D(x, z)

x̃ ⇠ p(x | z)
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Figure 1: The adversarially learned inference (ALI) game.

2015; Lamb et al., 2016; Dosovitskiy & Brox, 2016). While this is certainly a promising research
direction, VAE-GAN hybrids tend to manifest a compromise of the strengths and weaknesses of both
approaches.

In this paper, we propose a novel approach to integrate efficient inference within the GAN framework.
Our approach, called Adversarially Learned Inference (ALI), casts the learning of both an inference
machine (or encoder) and a deep directed generative model (or decoder) in an GAN-like adversarial
framework. A discriminator is trained to discriminate joint samples of the data and the corresponding
latent variable from the encoder (or approximate posterior) from joint samples from the decoder while
in opposition, the encoder and the decoder are trained together to fool the discriminator. Not only are
we asking the discriminator to distinguish synthetic samples from real data, but we are requiring it to
distinguish between two joint distributions over the data space and the latent variables.

With experiments on the Street View House Numbers (SVHN) dataset (Netzer et al., 2011), the
CIFAR-10 object recognition dataset (Krizhevsky & Hinton, 2009), the CelebA face dataset (Liu
et al., 2015) and a downsampled version of the ImageNet dataset (Russakovsky et al., 2015), we show
qualitatively that we maintain the high sample fidelity associated with the GAN framework, while
gaining the ability to perform efficient inference. We show that the learned representation is useful
for auxiliary tasks by achieving results competitive with the state-of-the-art on the semi-supervised
SVHN and CIFAR10 tasks.

2 ADVERSARIALLY LEARNED INFERENCE

Consider the two following probability distributions over x and z:

• the encoder joint distribution q(x, z) = q(x)q(z | x),
• the decoder joint distribution p(x, z) = p(z)p(x | z).

These two distributions have marginals that are known to us: the encoder marginal q(x) is the
empirical data distribution and the decoder marginal p(z) is usually defined to be a simple, factorized
distribution, such as the standard Normal distribution p(z) = N (0, I). As such, the generative
process between q(x, z) and p(x, z) is reversed.

ALI’s objective is to match the two joint distributions. If this is achieved, then we are ensured that all
marginals match and all conditional distributions also match. In particular, we are assured that the
conditional q(z | x) matches the posterior p(z | x).
In order to match the joint distributions, an adversarial game is played. Joint pairs (x, z) are drawn
either from q(x, z) or p(x, z), and a discriminator network learns to discriminate between the two,
while the encoder and decoder networks are trained to fool the discriminator.

The value function describing the game is given by:
min
G

max
D

V (D,G) = Eq(x)[log(D(x, Gz(x)))] + Ep(z)[log(1�D(Gx(z), z))]

=

ZZ
q(x)q(z | x) log(D(x, z))dxdz

+

ZZ
p(z)p(x | z) log(1�D(x, z))dxdz.

(1)

2
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(a) SVHN samples. (b) SVHN reconstructions.

Figure 2: Samples and reconstructions on the SVHN dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 3: Samples and reconstructions on the CelebA dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 4: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

5

CelebA reconstructions
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Bidirectional GAN
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(Donahue et al., 2016; 
Dumoulin et al., 2016)

PixelVAE: not so bad!

LSUN bedroom scenes ImageNet (small)

LSUN bedrooms Tiny ImageNet



Wasserstein GAN
• Objective based on Earth-Mover or Wassertein distance:

• Provides nice gradients over real and fake samples

(Arjovsky et al., 2016)
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Wasserstein GAN
• Wasserstein loss seems to correlate well with image quality.

(Arjovsky et al., 2016)

Figure 3: Training curves and samples at di↵erent stages of training. We can see a clear

correlation between lower error and better sample quality. Upper left: the generator is an

MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently as

training progresses and sample quality increases. Upper right: the generator is a standard

DCGAN. The loss decreases quickly and sample quality increases as well. In both upper

plots the critic is a DCGAN without the sigmoid so losses can be subjected to comparison.

Lower half: both the generator and the discriminator are MLPs with substantially high

learning rates (so training failed). Loss is constant and samples are constant as well. The

training curves were passed through a median filter for visualization purposes.

4.2 Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f (lines 2–8 in Algo-
rithm 1) relatively well before each generator update (line 10 in Algorithm 1), the
loss function at this point is an estimate of the EM distance, up to constant factors
related to the way we constrain the Lipschitz constant of f .

Our first experiment illustrates how this estimate correlates well with the quality
of the generated samples. Besides the convolutional DCGAN architecture, we also
ran experiments where we replace the generator or both the generator and the critic
by 4-layer ReLU-MLP with 512 hidden units.

Figure 3 plots the evolution of the WGAN estimate (3) of the EM distance
during WGAN training for all three architectures. The plots clearly show that
these curves correlate well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN literature that such a property is
shown, where the loss of the GAN shows properties of convergence. This property is
extremely useful when doing research in adversarial networks as one does not need
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WGAN with gradient penalty 

• Faster convergence and higher-
quality samples than WGAN 
with weight clipping 

• Train a wide variety of GAN 
architectures with almost no 
hyperparameter tuning, 
including discrete models

47

(Gulraani et al., 2017)

Samples from a character-level GAN 
language model on Google Billion Word



Least Squares GAN (LSGAN)
• Use a loss function that provides smooth and non-saturating gradient in 

discriminator D

48

(Mao et al., 2017)

Decision boundaries of Sigmoid & 
Least Squares loss functions

Sigmoid decision boundary Least Squares decision boundary



Least Squares GAN (LSGAN)
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(Mao et al., 2017)
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Boundary Equilibrium GAN (BEGAN) 
• A loss derived from the Wasserstein 

distance for training auto-encoder based 
GANs

• Wasserstein distance btw. the reconstruction 
losses of real and generated data 

• Convergence measure:

• Objective:

50

(a) Generator/Decoder (b) Encoder

Figure 1: Network architecture for the generator and discriminator.

cube of processed data is mapped via fully connected layers, not followed by any non-linearities,
to and from an embedding state h 2 RNh where Nh is the dimension of the auto-encoder’s hidden
state.

The generator G : RNz 7! RNx uses the same architecture (though not the same weights) as the
discriminator decoder. We made this choice only for simplicity. The input state is z 2 [�1, 1]Nz

sampled uniformly.

We chose a standard, simple, architecture to illustrate the effect of the new equilibrium principle and
loss. Our model is easier to train and simpler than other GANs architectures: no batch normalization,
no dropout, no transpose convolutions and no exponential growth for convolution filters. It might be
possible to further improve our results by using those techniques but this is beyond the scope of this
paper.

4 Experiments

4.1 Setup

We trained our model using Adam with an initial learning rate in [5 ⇥ 10�5
, 10�4], decaying by

a factor of 2 when the measure of convergence stalls. Modal collapses or visual artifacts were
observed sporadically with high initial learning rates, however simply reducing the learning rate
was sufficient to avoid them. We trained models for varied resolutions from 32 to 256, adding or
removing convolution layers to adjust for the image size, keeping a constant final down-sampled
image size of 8x8. We used Nh = Nz = 64 in most of our experiments with this dataset.

The network is initialized using vanishing residuals. This is inspired from deep residual networks
[7]. For successive same sized layers, the layer’s input is combined with its output: inx+1 =
carry ⇥ inx + (1� carry)⇥ outx. In our experiments, we start with carry = 1 and progressively
decrease it to 0 over 16000 steps. We do this to facilitate gradient propagation early in training; it
improves convergence and image fidelity but is not strictly necessary.

We use a dataset of 360K celebrity face images for training in place of CelebA [10]. This dataset has
a larger variety of facial poses, including rotations around the camera axis. These are more varied
and potentially more difficult to model than the aligned faces from CelebA, presenting an interesting
challenge. We preferred the use of faces as a visual estimator since humans excel at identifying flaws
in faces.

5

lower image diversity because the discriminator focuses more heavily on auto-encoding real images.
We will refer to � as the diversity ratio. There is a natural boundary for which images are sharp and
have details.

3.4 Boundary Equilibrium GAN

The BEGAN objective is:

8
<

:

LD = L(x)� kt.L(G(zD)) for ✓D
LG = L(G(zG)) for ✓G
kt+1 = kt + �k(�L(x)� L(G(zG))) for each training step t

We use Proportional Control Theory to maintain the equilibrium E [L(G(z))] = �E [L(x)]. This is
implemented using a variable kt 2 [0, 1] to control how much emphasis is put on L(G(zD)) during
gradient descent. We initialize k0 = 0. �k is the proportional gain for k; in machine learning terms,
it is the learning rate for k. We used 0.001 in our experiments. In essence, this can be thought of as
a form of closed-loop feedback control in which kt is adjusted at each step to maintain equation 5.

In early training stages, G tends to generate easy-to-reconstruct data for the auto-encoder since
generated data is close to 0 and the real data distribution has not been learned accurately yet. This
yields to L(x) > L(G(z)) early on and this is maintained for the whole training process by the
equilibrium constraint.

The introductions of the approximation in equation 2 and � in equation 5 have an impact on our
modeling of the Wasserstein distance. Consequently, examination of samples generated from various
� values is of primary interest as will be shown in the results section.

In contrast to traditional GANs which require alternating training D and G, or pretraining D, our
proposed method BEGAN requires neither to train stably. Adam [8] was used during training with
the default hyper-parameters. ✓D and ✓G are updated independently based on their respective losses
with separate Adam optimizers. We typically used a batch size of n = 16.

3.4.1 Convergence measure

Determining the convergence of GANs is generally a difficult task since the original formulation is
defined as a zero-sum game. As a consequence, one loss goes up when the other goes down. The
number of epochs or visual inspection are typically the only practical ways to get a sense of how
training has progressed.

We derive a global measure of convergence by using the equilibrium concept: we can frame the
convergence process as finding the closest reconstruction L(x) with the lowest absolute value of the
instantaneous process error for the proportion control algorithm |�L(x)�L(G(zG))|. This measure
is formulated as the sum of these two terms:

Mglobal = L(x) + |�L(x)� L(G(zG))|

This measure can be used to determine when the network has reached its final state or if the model
has collapsed.

3.5 Model architecture

The discriminator D : RNx 7! RNx is a convolutional deep neural network architectured as an auto-
encoder. Nx = H ⇥ W ⇥ C is shorthand for the dimensions of x where H,W,C are the height,
width and colors. We use an auto-encoder with both a deep encoder and decoder. The intent is to be
as simple as possible to avoid typical GAN tricks.

The structure is shown in figure 1. We used 3x3 convolutions with exponential linear units [3]
(ELUs) applied at their outputs. Each layer is repeated a number of times (typically 2). We observed
that more repetitions led to even better visual results. The convolution filters are increased linearly
with each down-sampling. Down-sampling is implemented as sub-sampling with stride 2 and up-
sampling is done by nearest neighbor. At the boundary between the encoder and the decoder, the

4

as a class of GANs that aims to model the discriminator D(x) as an energy function. This variant
converges more stably and is both easy to train and robust to hyper-parameter variations. The authors
attribute some of these benefits to the larger number of targets in the discriminator. EBGAN likewise
implements its discriminator as an auto-encoder with a per-pixel error.

While earlier GAN variants lacked a measure of convergence, Wasserstein GANs [1] (WGANs)
recently introduced a loss that also acts as a measure of convergence. In their implementation it
comes at the expense of slow training, but with the benefit of stability and better mode coverage.

3 Proposed method

We use an auto-encoder as a discriminator as was first proposed in EBGAN [17]. While typical
GANs try to match data distributions directly, our method aims to match auto-encoder loss distribu-
tions using a loss derived from the Wasserstein distance. This is done using a typical GAN objective
with the addition of an equilibrium term to balance the discriminator and the generator. Our method
has an easier training procedure and uses a simpler neural network architecture compared to typical
GAN techniques.

3.1 Wasserstein distance for auto-encoders

We wish to study the effect of matching the distribution of the errors instead of matching the dis-
tribution of the samples directly. We first show that an auto-encoder loss approximates a normal
distribution, then we compute the Wasserstein distance between the auto-encoder loss distributions
of real and generated samples.

We first introduce L : RNx 7! R+the loss for training a pixel-wise autoencoder as:

L(v) = |v �D(v)|⌘ where

8
<

:

D : RNx 7! RNx is the autoencoder function.
⌘ 2 {1, 2} is the target norm.

v 2 RNx is a sample of dimension Nx.

For a sufficient large number of pixels, if we assume that the losses at the pixel level are independent
and identically distributed, then the Central Limit Theorem applies and the overall distribution of
image-wise losses follows an approximate normal distribution. In our model, we use the L1 norm
between an image and its reconstruction as our loss. We found experimentally, for the datasets we
tried, the loss distribution is, in fact, approximately normal.

Given two normal distributions µ1 = N (m1, C1) and µ2 = N (m2, C2) with the means m1,2 2 Rp

and the covariances C1,2 2 Rp⇥p, their squared Wasserstein distance is defined as:

W (µ1, µ2)
2 = ||m1 �m2||22 + trace(C1 + C2 � 2(C

1/2
2 C1C

1/2
2 )

1/2)

We are interested in the case where p = 1. The squared Wasserstein distance then simplifies to:

W (µ1, µ2)
2 = ||m1 �m2||22 + (c1 + c2 � 2

p
c1c2)

We wish to study experimentally whether optimizing ||m1 � m2||22 alone is sufficient to optimize
W

2. This is true when

c1 + c2 � 2
p
c1c2

||m1 �m2||22
is constant or monotonically increasing w.r.t W (1)

This allows us to simplify the problem to:

W (µ1, µ2)
2 _ ||m1 �m2||22 under condition 1 (2)

It is important to note that we are aiming to optimize the Wasserstein distance between loss distri-
butions, not between sample distributions. As explained in the next section, our discriminator is an

2

(a) ALI interpolation (64x64)

(b) PixelCNN interpolation (32x32)

(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.

4.4 Convergence measure and image quality

The convergence measure Mglobal was conjectured earlier to measure the convergence of the BE-
GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also

Figure 5: Quality of the results w.r.t. the measure of convergence (128x128 with 128 filters)
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BEGANs for CelebA
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(c) Our results (128x128 with 128 filters)

(d) Mirror interpolations (our results 128x128 with 128 filters)

Figure 4: Interpolations of real images in latent space

Sample diversity, while not perfect, is convincing; the generated images look relatively close to the
real ones. The interpolations show good continuity. On the first row, the hair transitions in a natural
way and intermediate hairstyles are believable, showing good generalization. It is also worth noting
that some features are not represented such as the cigarette in the left image. The second and last
rows show simple rotations. While the rotations are smooth, we can see that profile pictures are not
captured as well as camera facing ones. We assume this is due to profiles being less common in
our dataset. Finally the mirror example demonstrates separation between identity and rotation. A
surprisingly realistic camera-facing image is derived from a single profile image.
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GAN model. As can be seen in figure 5 this measure correlates well with image fidelity. We can also
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360K celebrity face images
128x128 with 128 filters 

Interpolations in the latent space

Mirror interpolation example



Progressive GANs
• Progressively generate high-

res images

• Multi-step training from low
to high resolutions
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(Karras et al., 2018)



Progressive GANs
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(Karras et al., 2018)

• Training 
process
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CelebA-HQ
random interpolations
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BigGANs
High resolution, class-conditional samples generated by the model

• BigGANs trained with 2-4x as many parameters and 8x the batch size compared to prior art.

• Uses Gaussian truncation to sample z (avoid sampling from the tail of the Gaussian distribution)

• Uses multiple other tricks including multiple regularizations including a Gradient penalty 
regularization and an Orthogonal Regularization:

55

(Brock et al., 2019)BigGAN:
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ABSTRACT

Despite recent progress in generative image modeling, successfully generating
high-resolution, diverse samples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by reducing the variance of the Generator’s input. Our
modifications lead to models which set the new state of the art in class-conditional
image synthesis. When trained on ImageNet at 128⇥128 resolution, our models
(BigGANs) achieve an Inception Score (IS) of 166.5 and Fréchet Inception Dis-
tance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

Figure 1: Class-conditional samples generated by our model.

The state of generative image modeling has advanced dramatically in recent years, with Generative
Adversarial Networks (GANs, Goodfellow et al. (2014)) at the forefront of efforts to generate high-
fidelity, diverse images with models learned directly from data. GAN training is dynamic, and
sensitive to nearly every aspect of its setup (from optimization parameters to model architecture),
but a torrent of research has yielded empirical and theoretical insights enabling stable training in
a variety of settings. Despite this progress, the current state of the art in conditional ImageNet
modeling (Zhang et al., 2018) achieves an Inception Score (Salimans et al., 2016) of 52.5, compared
to 233 for real data.

In this work, we set out to close the gap in fidelity and variety between images generated by GANs
and real-world images from the ImageNet dataset. We make the following three contributions to-
wards this goal:

• We demonstrate that GANs benefit dramatically from scaling, and train models with two
to four times as many parameters and eight times the batch size compared to prior art. We
introduce two simple, general architectural changes that improve scalability, and modify a
regularization scheme to improve conditioning, demonstrably boosting performance.

⇤Work done at DeepMind
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• Big GANs trained with 2-4x as many parameters and 8x the batch size compared to prior art.  
• Uses Gaussian truncation to sample z (avoid sampling from the tail of the Gaussian distribution)  
• Uses multiple other tricks including multiple reguralizations including a Gradient penalty 

regularization and an Othogonal Regularization: 

High resolution, class-conditional samples generated by the model
Published as a conference paper at ICLR 2019

R�(W ) = �kW>W � Ik2F, (2)

where W is a weight matrix and � a hyperparameter. This regularization is known to often be too
limiting (Miyato et al., 2018), so we explore several variants designed to relax the constraint while
still imparting the desired smoothness to our models. The version we find to work best removes the
diagonal terms from the regularization, and aims to minimize the pairwise cosine similarity between
filters but does not constrain their norm:

R�(W ) = �kW>W � (1� I)k2F, (3)

where 1 denotes a matrix with all elements set to 1. We sweep � values and select 10�4, finding
this small added penalty sufficient to improve the likelihood that our models will be amenable to
truncation. Across runs in Table 1, we observe that without Orthogonal Regularization, only 16% of
models are amenable to truncation, compared to 60% when trained with Orthogonal Regularization.

3.2 SUMMARY

We find that current GAN techniques are sufficient to enable scaling to large models and distributed,
large-batch training. We find that we can dramatically improve the state of the art and train models
up to 512⇥512 resolution without need for explicit multiscale methods like Karras et al. (2018).
Despite these improvements, our models undergo training collapse, necessitating early stopping in
practice. In the next two sections we investigate why settings which were stable in previous works
become unstable when applied at scale.

4 ANALYSIS

(a) G (b) D

Figure 3: A typical plot of the first singular value �0 in the layers of G (a) and D (b) before Spectral
Normalization. Most layers in G have well-behaved spectra, but without constraints a small sub-
set grow throughout training and explode at collapse. D’s spectra are noisier but otherwise better-
behaved. Colors from red to violet indicate increasing depth.

4.1 CHARACTERIZING INSTABILITY: THE GENERATOR

Much previous work has investigated GAN stability from a variety of analytical angles and on
toy problems, but the instabilities we observe occur for settings which are stable at small scale,
necessitating direct analysis at large scale. We monitor a range of weight, gradient, and loss statistics
during training, in search of a metric which might presage the onset of training collapse, similar to
(Odena et al., 2018). We found the top three singular values �0,�1,�2 of each weight matrix to be
the most informative. They can be efficiently computed using the Alrnoldi iteration method (Golub
& der Vorst, 2000), which extends the power iteration method, used in Miyato et al. (2018), to
estimation of additional singular vectors and values. A clear pattern emerges, as can be seen in
Figure 3(a) and Appendix F: most G layers have well-behaved spectral norms, but some layers
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set grow throughout training and explode at collapse. D’s spectra are noisier but otherwise better-
behaved. Colors from red to violet indicate increasing depth.

4.1 CHARACTERIZING INSTABILITY: THE GENERATOR

Much previous work has investigated GAN stability from a variety of analytical angles and on
toy problems, but the instabilities we observe occur for settings which are stable at small scale,
necessitating direct analysis at large scale. We monitor a range of weight, gradient, and loss statistics
during training, in search of a metric which might presage the onset of training collapse, similar to
(Odena et al., 2018). We found the top three singular values �0,�1,�2 of each weight matrix to be
the most informative. They can be efficiently computed using the Alrnoldi iteration method (Golub
& der Vorst, 2000), which extends the power iteration method, used in Miyato et al. (2018), to
estimation of additional singular vectors and values. A clear pattern emerges, as can be seen in
Figure 3(a) and Appendix F: most G layers have well-behaved spectral norms, but some layers
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(a) (b)

Figure 7: Comparing easy classes (a) with difficult classes (b) at 512⇥512. Classes such as dogs
which are largely textural, and common in the dataset, are far easier to model than classes involving
unaligned human faces or crowds. Such classes are more dynamic and structured, and often have
details to which human observers are more sensitive. The difficulty of modeling global structure is
further exacerbated when producing high-resolution images, even with non-local blocks.

Figure 8: Interpolations between z, c pairs.
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• A new architecture motivated by 
the style transfer networks
• allows unsupervised separation 

of high-level attributes and 
stochastic variation in the 
generated images 
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Figure 1. While a traditional generator [30] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [30]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [27, 17, 21, 16] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [27], unsupervised image-to-
image translation [28], and domain mixtures [23]. Com-
pared to more general feature transforms [38, 57], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [25] for var-
ious generator architectures in CELEBA-HQ [30] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [30], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[64], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [24],

2
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Figure 2. Uncurated set of images produced by our style-based
generator (config F) with the FFHQ dataset. Here we used a varia-
tion of the truncation trick [40, 5, 32] with  = 0.7 for resolutions
42 � 322. Please see the accompanying video for more results.

while FFHQ uses WGAN-GP for configuration A and non-
saturating loss [21] with R1 regularization [42, 49, 13] for
configurations B–F. We found these choices to give the best
results. Our contributions do not modify the loss function.

We observe that the style-based generator (E) improves
FIDs quite significantly over the traditional generator (B),
almost 20%, corroborating the large-scale ImageNet mea-
surements made in parallel work [6, 5]. Figure 2 shows an
uncurated set of novel images generated from the FFHQ
dataset using our generator. As confirmed by the FIDs,
the average quality is high, and even accessories such
as eyeglasses and hats get successfully synthesized. For
this figure, we avoided sampling from the extreme regions
of W using the so-called truncation trick [40, 5, 32] —
Appendix B details how the trick can be performed in W
instead of Z . Note that our generator allows applying the
truncation selectively to low resolutions only, so that high-
resolution details are not affected.

All FIDs in this paper are computed without the trun-
cation trick, and we only use it for illustrative purposes in
Figure 2 and the video. All images are generated in 1024

2

resolution.

2.2. Prior art
Much of the work on GAN architectures has focused on

improving the discriminator by, e.g., using multiple dis-
criminators [17, 45], multiresolution discrimination [58,
53], or self-attention [61]. The work on generator side has
mostly focused on the exact distribution in the input latent
space [5] or shaping the input latent space via Gaussian
mixture models [4], clustering [46], or encouraging convex-
ity [50].

Recent conditional generators feed the class identifier
through a separate embedding network to a large number
of layers in the generator [44], while the latent is still pro-
vided though the input layer. A few authors have considered
feeding parts of the latent code to multiple generator layers
[9, 5]. In parallel work, Chen et al. [6] “self modulate” the
generator using AdaINs, similarly to our work, but do not
consider an intermediate latent space or noise inputs.

3. Properties of the style-based generator
Our generator architecture makes it possible to control

the image synthesis via scale-specific modifications to the
styles. We can view the mapping network and affine trans-
formations as a way to draw samples for each style from a
learned distribution, and the synthesis network as a way to
generate a novel image based on a collection of styles. The
effects of each style are localized in the network, i.e., modi-
fying a specific subset of the styles can be expected to affect
only certain aspects of the image.

To see the reason for this localization, let us consider
how the AdaIN operation (Eq. 1) first normalizes each chan-
nel to zero mean and unit variance, and only then applies
scales and biases based on the style. The new per-channel
statistics, as dictated by the style, modify the relative impor-
tance of features for the subsequent convolution operation,
but they do not depend on the original statistics because of
the normalization. Thus each style controls only one convo-
lution before being overridden by the next AdaIN operation.

3.1. Style mixing
To further encourage the styles to localize, we employ

mixing regularization, where a given percentage of images
are generated using two random latent codes instead of one
during training. When generating such an image, we sim-
ply switch from one latent code to another — an operation
we refer to as style mixing — at a randomly selected point
in the synthesis network. To be specific, we run two latent
codes z1, z2 through the mapping network, and have the
corresponding w1,w2 control the styles so that w1 applies
before the crossover point and w2 after it. This regular-
ization technique prevents the network from assuming that
adjacent styles are correlated.

Table 2 shows how enabling mixing regularization dur-
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Figure 3. Visualizing the effect of styles in the generator by having the styles produced by one latent code (source) override a subset of the
styles of another one (destination). Overriding the styles of layers corresponding to coarse spatial resolutions (42 – 82), high-level aspects
such as pose, general hair style, face shape, and eyeglasses get copied from the source, while all colors (eyes, hair, lighting) and finer facial
features of the destination are retained. If we instead copy the styles of middle layers (162 – 322), we inherit smaller scale facial features,
hair style, eyes open/closed from the source, while the pose, general face shape, and eyeglasses from the destination are preserved. Finally,
copying the styles corresponding to fine resolutions (642 – 10242) brings mainly the color scheme and microstructure from the source.

4



Some Applications of GANs

59



Semi-supervised Classification

60

(Salimans et al., 2016;
Dumoulin et al., 2016)

Published as a conference paper at ICLR 2017

Figure 6: Latent space interpolations on the CelebA validation set. Left and right columns corre-
spond to the original pairs x1 and x2, and the columns in between correspond to the decoding of
latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches like
DCGAN (Radford et al., 2015), ALI allows one to interpolate between actual data points.

Using ALI’s inference network as opposed to the discriminator to extract features, we achieve a
misclassification rate that is roughly 3.00 ± 0.50% lower than reported in Radford et al. (2015)
(Table 1), which suggests that ALI’s inference mechanism is beneficial to the semi-supervised
learning task.

We then investigate ALI’s performance when label information is taken into account during training.
We adapt the discriminative model proposed in Salimans et al. (2016). The discriminator takes x and
z as input and outputs a distribution over K + 1 classes, where K is the number of categories. When
label information is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict K + 1 for p(x, z)
samples and k 2 {1, . . . ,K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative training strategy for the
generator where it tries to match first-order statistics in the discriminator’s intermediate activations
with respect to the data distribution (they refer to this as feature matching). We found that ALI did
not require feature matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 1 and 2. Table 2 shows that ALI offers a modest improvement
over Salimans et al. (2016), more specifically for 1000 and 2000 labeled examples.

Table 1: SVHN test set missclassification rate

.

Model Misclassification rate

VAE (M1 + M2) (Kingma et al., 2014) 36.02

SWWAE with dropout (Zhao et al., 2015) 23.56

DCGAN + L2-SVM (Radford et al., 2015) 22.18

SDGM (Maaløe et al., 2016) 16.61

GAN (feature matching) (Salimans et al., 2016) 8.11± 1.3

ALI (ours, L2-SVM) 19.14± 0.50

ALI (ours, no feature matching) 7.42± 0.65

Table 2: CIFAR10 test set missclassification rate for semi-supervised learning using different numbers
of trained labeled examples. For ALI, error bars correspond to 3 times the standard deviation.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

Ladder network (Rasmus et al., 2015) 20.40

CatGAN (Springenberg, 2015) 19.58

GAN (feature matching) (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82

ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49
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Abstract

Generating high-resolution, photo-realistic images has

been a long-standing goal in machine learning. Recently,

Nguyen et al. [37] showed one interesting way to synthesize

novel images by performing gradient ascent in the latent

space of a generator network to maximize the activations

of one or multiple neurons in a separate classifier network.

In this paper we extend this method by introducing an addi-

tional prior on the latent code, improving both sample qual-

ity and sample diversity, leading to a state-of-the-art gen-

erative model that produces high quality images at higher

resolutions (227 × 227) than previous generative models,

and does so for all 1000 ImageNet categories. In addition,

we provide a unified probabilistic interpretation of related

activation maximization methods and call the general class

of models “Plug and Play Generative Networks.” PPGNs

are composed of 1) a generator network G that is capable

of drawing a wide range of image types and 2) a replace-

able “condition” network C that tells the generator what

to draw. We demonstrate the generation of images condi-

tioned on a class (when C is an ImageNet or MIT Places

classification network) and also conditioned on a caption

(when C is an image captioning network). Our method also

improves the state of the art of Multifaceted Feature Visual-

ization [40], which generates the set of synthetic inputs that

activate a neuron in order to better understand how deep

neural networks operate. Finally, we show that our model

performs reasonably well at the task of image inpainting.

While image models are used in this paper, the approach is

modality-agnostic and can be applied to many types of data.

†This work was mostly performed at Geometric Intelligence, which
Uber acquired to create Uber AI Labs.

Figure 1: Images synthetically generated by Plug and Play
Generative Networks at high-resolution (227x227) for four
ImageNet classes. Not only are many images nearly photo-
realistic, but samples within a class are diverse.

1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images
that capture both the fine-grained details and global coher-
ence of natural images [54, 27, 9, 15, 43, 24]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [30], (2)
training generators that can produce a wide variety of im-
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1. Introduction

Recent years have seen generative models that are in-
creasingly capable of synthesizing diverse, realistic images
that capture both the fine-grained details and global coher-
ence of natural images [54, 27, 9, 15, 43, 24]. However,
many important open challenges remain, including (1) pro-
ducing photo-realistic images at high resolutions [30], (2)
training generators that can produce a wide variety of im-
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Figure 3: Different variants of PPGN models we tested. The Noiseless Joint PPGN-h (e), which we found empirically
produces the best images, generated the results shown in Figs. 1 & 2 & Sections 3.5 & 4. In all variants, we perform iterative
sampling following the gradients of two terms: the condition (red arrows) and the prior (black arrows). (a) PPGN-x (Sec. 3.1):
To avoid fooling examples [38] when sampling in the high-dimensional image space, we incorporate a p(x) prior modeled
via a denoising autoencoder (DAE) for images, and sample images conditioned on the output classes of a condition network
C (or, to visualize hidden neurons, conditioned upon the activation of a hidden neuron in C). (b) DGN-AM (Sec. 3.2):
Instead of sampling in the image space (i.e. in the space of individual pixels), Nguyen et al. [37] sample in the abstract,
high-level feature space h of a generator G trained to reconstruct images x from compressed features h extracted from a
pre-trained encoder E (f). Because the generator network was trained to produce realistic images, it serves as a prior on p(x)
since it ideally can only generate real images. However, this model has no learned prior on p(h) (save for a simple Gaussian
assumption). (c) PPGN-h (Sec. 3.3): We attempt to improve the mixing speed and image quality by incorporating a learned
p(h) prior modeled via a multi-layer perceptron DAE for h. (d) Joint PPGN-h (Sec. 3.4): To improve upon the poor data
modeling of the DAE in PPGN-h, we experiment with treating G + E1 + E2 as a DAE that models h via x. In addition, to
possibly improve the robustness of G, we also add a small amount of noise to h1 and x during training and sampling, treating
the entire system as being composed of 4 interleaved models that share parameters: a GAN and 3 interleaved DAEs for x,
h1 and h, respectively. This model mixes substantially faster and produces better image quality than DGN-AM and PPGN-h
(Fig. S14). (e) Noiseless Joint PPGN-h (Sec. 3.5): We perform an ablation study on the Joint PPGN-h, sweeping across noise
levels or loss combinations, and found a Noiseless Joint PPGN-h variant trained with one less loss (Sec. S9.4) to produce the
best image quality. (f) A pre-trained image classification network (here, AlexNet trained on ImageNet) serves as the encoder
network E component of our model by mapping an image x to a useful, abstract, high-level feature space h (here, AlexNet’s
fc6 layer). (g) Instead of conditioning on classes, we can generate images conditioned on a caption by attaching a recurrent,
image-captioning network to the output layer of G, and performing similar iterative sampling.

prior, yielding adversarial or fooling examples [51, 38] as
setting (ϵ1, ϵ2, ϵ3) = (0, 1, 0); and methods that use L2 de-
cay during sampling as using a Gaussian p(x) prior with
(ϵ1, ϵ2, ϵ3) = (λ, 1, 0). Both lack a noise term and thus
sacrifice sample diversity.

3. Plug and Play Generative Networks

Previous models are often limited in that they use hand-
engineered priors when sampling in either image space or
the latent space of a generator network (see Sec. S7). In
this paper, we experiment with 4 different explicitly learned
priors modeled by a denoising autoencoder (DAE) [57].

We choose a DAE because, although it does not allow
evaluation of p(x) directly, it does allow approximation of
the gradient of the log probability when trained with Gaus-
sian noise with variance σ2 [1]; with sufficient capacity and

training time, the approximation is perfect in the limit as
σ → 0:

∂ log p(x)

∂x
≈

Rx(x)− x

σ2
(6)

where Rx is the reconstruction function in x-space repre-
senting the DAE, i.e. Rx(x) is a “denoised” output of the
autoencoder Rx (an encoder followed by a decoder) when
the encoder is fed input x. This term approximates exactly
the ϵ1 term required by our sampler, so we can use it to
define the steps of a sampler for an image x from class c.
Pulling the σ2 term into ϵ1, the update is:

xt+1 = xt+ϵ1
(

Rx(xt)−xt

)

+ϵ2
∂ log p(y = yc|xt)

∂xt
+N(0, ϵ23)

(7)
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Figure 1: The generator in 3D-GAN. The discriminator mostly mirrors the generator.

developed a recurrent adversarial network for image generation. While previous approaches focus on
modeling 2D images, we discuss the use of an adversarial component in modeling 3D objects.

3 Models

In this section we introduce our model for 3D object generation. We first discuss how we build
our framework, 3D Generative Adversarial Network (3D-GAN), by leveraging previous advances
on volumetric convolutional networks and generative adversarial nets. We then show how to train
a variational autoencoder [Kingma and Welling, 2014] simultaneously so that our framework can
capture a mapping from a 2D image to a 3D object.

3.1 3D Generative Adversarial Network (3D-GAN)

As proposed in Goodfellow et al. [2014], the Generative Adversarial Network (GAN) consists of
a generator and a discriminator, where the discriminator tries to classify real objects and objects
synthesized by the generator, and the generator attempts to confuse the discriminator. In our 3D
Generative Adversarial Network (3D-GAN), the generator G maps a 200-dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64⇥ 64⇥ 64 cube, representing an object
G(z) in 3D voxel space. The discriminator D outputs a confidence value D(x) of whether a 3D
object input x is real or synthetic.

Following Goodfellow et al. [2014], we use binary cross entropy as the classification loss, and present
our overall adversarial loss function as

L3D-GAN = logD(x) + log(1�D(G(z))), (1)

where x is a real object in a 64⇥ 64⇥ 64 space, and z is a randomly sampled noise vector from a
distribution p(z). In this work, each dimension of z is an i.i.d. uniform distribution over [0, 1].
Network structure Inspired by Radford et al. [2016], we design an all-convolutional neural
network to generate 3D objects. As shown in Figure 1, the generator consists of five volumetric fully
convolutional layers of kernel sizes 4 ⇥ 4 ⇥ 4 and strides 2, with batch normalization and ReLU
layers added in between and a Sigmoid layer at the end. The discriminator basically mirrors the
generator, except that it uses Leaky ReLU [Maas et al., 2013] instead of ReLU layers. There are no
pooling or linear layers in our network. More details can be found in the supplementary material.
Training details A straightforward training procedure is to update both the generator and the
discriminator in every batch. However, the discriminator usually learns much faster than the generator,
possibly because generating objects in a 3D voxel space is more difficult than differentiating between
real and synthetic objects [Goodfellow et al., 2014, Radford et al., 2016]. It then becomes hard
for the generator to extract signals for improvement from a discriminator that is way ahead, as all
examples it generated would be correctly identified as synthetic with high confidence. Therefore,
to keep the training of both networks in pace, we employ an adaptive training strategy: for each
batch, the discriminator only gets updated if its accuracy in the last batch is not higher than 80%. We
observe this helps to stabilize the training and to produce better results. We set the learning rate of
G to 0.0025, D to 10�5, and use a batch size of 100. We use ADAM [Kingma and Ba, 2015] for
optimization, with � = 0.5.

3.2 3D-VAE-GAN

We have discussed how to generate 3D objects by sampling a latent vector z and mapping it to the
object space. In practice, it would also be helpful to infer these latent vectors from observations. For
example, if there exists a mapping from a 2D image to the latent representation, we can then recover
the 3D object corresponding to that 2D image.

3
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Failure Cases

The main reason for failure cases is that Stage-I GAN fails to generate plausible rough shapes or colors of the objects.
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(a) The CUB dataset

(b) The COCO dataset
Figure 3. Example results for text-to-image synthesis by DM-GAN and AttnGAN. (a) Generated bird images by conditioning on text from

CUB test set. (b) Generated images by conditioning on text from COCO test set.
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Single Image Super-Resolution
• Combine content loss with adversarial loss

66

(Ledig et al., 2016)

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR

bicubic SRResNet SRGAN original
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dB/0.6868)

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial network optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and
SSIM are shown in brackets. [4⇥ upscaling]

perceptual difference between the super-resolved and orig-
inal image means that the recovered image is not photo-
realistic as defined by Ferwerda [16].

In this work we propose a super-resolution generative
adversarial network (SRGAN) for which we employ a
deep residual network (ResNet) with skip-connection and
diverge from MSE as the sole optimization target. Different
from previous works, we define a novel perceptual loss us-
ing high-level feature maps of the VGG network [49, 33, 5]
combined with a discriminator that encourages solutions
perceptually hard to distinguish from the HR reference
images. An example photo-realistic image that was super-
resolved with a 4⇥ upscaling factor is shown in Figure 1.

1.1. Related work

1.1.1 Image super-resolution

Recent overview articles on image SR include Nasrollahi
and Moeslund [43] or Yang et al. [61]. Here we will focus
on single image super-resolution (SISR) and will not further
discuss approaches that recover HR images from multiple
images [4, 15].

Prediction-based methods were among the first methods
to tackle SISR. While these filtering approaches, e.g. linear,
bicubic or Lanczos [14] filtering, can be very fast, they
oversimplify the SISR problem and usually yield solutions
with overly smooth textures. Methods that put particularly
focus on edge-preservation have been proposed [1, 39].

More powerful approaches aim to establish a complex
mapping between low- and high-resolution image informa-
tion and usually rely on training data. Many methods that
are based on example-pairs rely on LR training patches for

which the corresponding HR counterparts are known. Early
work was presented by Freeman et al. [18, 17]. Related ap-
proaches to the SR problem originate in compressed sensing
[62, 12, 69]. In Glasner et al. [21] the authors exploit patch
redundancies across scales within the image to drive the SR.
This paradigm of self-similarity is also employed in Huang
et al. [31], where self dictionaries are extended by further
allowing for small transformations and shape variations. Gu
et al. [25] proposed a convolutional sparse coding approach
that improves consistency by processing the whole image
rather than overlapping patches.

To reconstruct realistic texture detail while avoiding
edge artifacts, Tai et al. [52] combine an edge-directed SR
algorithm based on a gradient profile prior [50] with the
benefits of learning-based detail synthesis. Zhang et al. [70]
propose a multi-scale dictionary to capture redundancies of
similar image patches at different scales. To super-resolve
landmark images, Yue et al. [67] retrieve correlating HR
images with similar content from the web and propose a
structure-aware matching criterion for alignment.

Neighborhood embedding approaches upsample a LR
image patch by finding similar LR training patches in a low
dimensional manifold and combining their corresponding
HR patches for reconstruction [54, 55]. In Kim and Kwon
[35] the authors emphasize the tendency of neighborhood
approaches to overfit and formulate a more general map of
example pairs using kernel ridge regression. The regression
problem can also be solved with Gaussian process regres-
sion [27], trees [46] or Random Forests [47]. In Dai et al.
[6] a multitude of patch-specific regressors is learned and
the most appropriate regressors selected during testing.

Recently convolutional neural network (CNN) based SR
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Data from [Russakovsky et al. 2015]
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Rather than penalizing if output image 
looks fake, penalize if each overlapping 
patch in output looks fake 

[Li & Wand 2016]
[Shrivastava et al. 2017]

[Isola et al. 2017]

Shrinking the capacity: Patch Discriminator

• Faster, fewer parameters
• More supervised observations
• Applies to arbitrarily large images



Input 1x1 Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Input 16x16 Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Input 70x70 Discriminator

Data from [Tylecek, 2013]

Labels → Facades



Input Full image Discriminator

Data from [Tylecek, 2013]

Labels → Facades



CycleGAN: Pix2Pix w/o input-output pairs

82(Zhu et al. 2017)
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No input-output pairs!



real or fake?

Usually loss functions check if output matches a target instance

GAN loss checks if output is part of an admissible set



Gaussian Target distribution
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Real too!

Nothing to force output to correspond to input



[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

Cycle-Consistent Adversarial Networks



Cycle-Consistent Adversarial Networks
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Semantic Image Synthesis

104

• Input:    input layout 
+ target style image

Output: synthesized image

synthesized
image
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Target style
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Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park1,2⇤ Ming-Yu Liu2 Ting-Chun Wang2 Jun-Yan Zhu2,3

1UC Berkeley 2NVIDIA 2,3MIT CSAIL
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Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

Abstract

We propose spatially-adaptive normalization, a simple
but effective layer for synthesizing photorealistic images
given an input semantic layout. Previous methods directly
feed the semantic layout as input to the deep network, which
is then processed through stacks of convolution, normaliza-
tion, and nonlinearity layers. We show that this is subop-
timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we propose using
the input layout for modulating the activations in normal-
ization layers through a spatially-adaptive, learned trans-
formation. Experiments on several challenging datasets
demonstrate the advantage of the proposed method over ex-
isting approaches, regarding both visual fidelity and align-
ment with input layouts. Finally, our model allows user
control over both semantic and style. Code is available at

⇤Taesung Park contributed to the work during his NVIDIA internship.

https://github.com/NVlabs/SPADE.

1. Introduction
Conditional image synthesis refers to the task of gen-

erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, 14, 23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3, 6, 22, 47, 48, 54, 55, 56]. The latter methods are
faster and require no external database of images.

We are interested in a specific form of conditional im-
age synthesis, which is converting a semantic segmentation
mask to a photorealistic image. This form has a wide range
of applications such as content generation and image edit-
ing [6, 22, 48]. We refer to this form as semantic image
synthesis. In this paper, we show that the conventional net-
work architecture [22, 48], which is built by stacking con-
volutional, normalization, and nonlinearity layers, is at best
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timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we propose using
the input layout for modulating the activations in normal-
ization layers through a spatially-adaptive, learned trans-
formation. Experiments on several challenging datasets
demonstrate the advantage of the proposed method over ex-
isting approaches, regarding both visual fidelity and align-
ment with input layouts. Finally, our model allows user
control over both semantic and style. Code is available at

⇤Taesung Park contributed to the work during his NVIDIA internship.

https://github.com/NVlabs/SPADE.

1. Introduction
Conditional image synthesis refers to the task of gen-

erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, 14, 23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3, 6, 22, 47, 48, 54, 55, 56]. The latter methods are
faster and require no external database of images.

We are interested in a specific form of conditional im-
age synthesis, which is converting a semantic segmentation
mask to a photorealistic image. This form has a wide range
of applications such as content generation and image edit-
ing [6, 22, 48]. We refer to this form as semantic image
synthesis. In this paper, we show that the conventional net-
work architecture [22, 48], which is built by stacking con-
volutional, normalization, and nonlinearity layers, is at best
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Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

Abstract

We propose spatially-adaptive normalization, a simple
but effective layer for synthesizing photorealistic images
given an input semantic layout. Previous methods directly
feed the semantic layout as input to the deep network, which
is then processed through stacks of convolution, normaliza-
tion, and nonlinearity layers. We show that this is subop-
timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we propose using
the input layout for modulating the activations in normal-
ization layers through a spatially-adaptive, learned trans-
formation. Experiments on several challenging datasets
demonstrate the advantage of the proposed method over ex-
isting approaches, regarding both visual fidelity and align-
ment with input layouts. Finally, our model allows user
control over both semantic and style. Code is available at

⇤Taesung Park contributed to the work during his NVIDIA internship.

https://github.com/NVlabs/SPADE.

1. Introduction
Conditional image synthesis refers to the task of gen-

erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, 14, 23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3, 6, 22, 47, 48, 54, 55, 56]. The latter methods are
faster and require no external database of images.

We are interested in a specific form of conditional im-
age synthesis, which is converting a semantic segmentation
mask to a photorealistic image. This form has a wide range
of applications such as content generation and image edit-
ing [6, 22, 48]. We refer to this form as semantic image
synthesis. In this paper, we show that the conventional net-
work architecture [22, 48], which is built by stacking con-
volutional, normalization, and nonlinearity layers, is at best
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Semantic Image Editing
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• Input: input image 
(+ semantic layout)
+ target attribute

Output: manipulated image

manipulated
image

Target scene
attribute(s) t
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Semantic Image Synthesis (SPADE)
• Image generation conditioned on semantic layouts
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(Park et al., 2019)

Semantic Image Synthesis with Spatially-Adaptive Normalization
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Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

Abstract

We propose spatially-adaptive normalization, a simple
but effective layer for synthesizing photorealistic images
given an input semantic layout. Previous methods directly
feed the semantic layout as input to the deep network, which
is then processed through stacks of convolution, normaliza-
tion, and nonlinearity layers. We show that this is subop-
timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we propose using
the input layout for modulating the activations in normal-
ization layers through a spatially-adaptive, learned trans-
formation. Experiments on several challenging datasets
demonstrate the advantage of the proposed method over ex-
isting approaches, regarding both visual fidelity and align-
ment with input layouts. Finally, our model allows user
control over both semantic and style. Code is available at

⇤Taesung Park contributed to the work during his NVIDIA internship.

https://github.com/NVlabs/SPADE.

1. Introduction
Conditional image synthesis refers to the task of gen-

erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, 14, 23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3, 6, 22, 47, 48, 54, 55, 56]. The latter methods are
faster and require no external database of images.

We are interested in a specific form of conditional im-
age synthesis, which is converting a semantic segmentation
mask to a photorealistic image. This form has a wide range
of applications such as content generation and image edit-
ing [6, 22, 48]. We refer to this form as semantic image
synthesis. In this paper, we show that the conventional net-
work architecture [22, 48], which is built by stacking con-
volutional, normalization, and nonlinearity layers, is at best
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Photo: Aaron Sping // Chautauque Park, Colorado

Imagine this scene in a snowy winter day…
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Photo: Aaron Sping // Chautauque Park, Colorado
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manipulated
image

Target transient
scene attribute   t
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image

“more flowers”
“more cloudy”

• Input:    input image 
+ target attribute

Output: manipulated image

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]
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Idea: Hallucinate alternative version of the 
input scene consistent with target attributes 
and use this image as the style image in the 
photo style transfer.  111
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image and 



• Scene Generation Network
– A conditioned GAN model with 

two conditions:
(1) semantic layout, 
(2) target attributes

• Style Transfer Network
– A deep photo style transfer network 

that modifies the look of the source 
image based on the hallucinated 
style image
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Target attributes:
flowers ↑, cloudy ↑

Scene Generation Network

Style Transfer Network

final output

center cropand resizing
hallucinated
style image
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Scene Generation Network

• An architecture similar to Pix2pixHD model (Wang et al. 2018)

• Generator network: A coarse-to-fine model with 2 generator networks
• Discriminator network: A combination of three different discriminator

networks operating at an image pyramid of 3 scales

113T.-C. Wang et al. High-resolution image synthesis and semantic manipulation with conditional GANs. CVPR 2018.
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Fig. 3. Scene Generation Network (SGN). Our proposed CGAN architecture for generating synthetic outdoor scenes consistent with given layout and transient
a�ributes.

our scene generation network (SGN). We then present architectural
details of our SGN model, followed by the two strategies applied for
improving the training process. All the implementation details are
included in the Supplementary Materials.

3.2.1 Generative Adversarial Networks. Generative Adversarial
Networks (GANs) [Goodfellow et al. 2014] have been designed as a
two-player min-max game where a discriminator network D learns
to determine if an image is real or fake and a generator network G
strives to output as realistic images as possible to fool the discrimi-
nator. Within this min-max game, G and D can be trained jointly
by performing alternative updates to solve the following objective:

min
G

max
D

V (D,G) = Ex⇠pdata (x )[logD(x)] + (1)

Ex⇠pz (z)[log (1 � D(G(z)))]

where x is a natural image drawn from the true data distribution
pdata (x) and z is a random noise vector sampled from a multivariate
Gaussian distribution. In [Goodfellow et al. 2014], it is shown that
the optimal solution to this min-max game is when the distribution
pG converges to pdata .

Conditional GANs [Mirza and Osindero 2014] (CGANs) engage
additional forms of side information as generation constraints, e.g.
class labels [Mirza and Osindero 2014], image captions [Reed et al.
2016b], bounding boxes and object keypoints [Reed et al. 2016a],
and etc. Given a context vector c as side information, the generator
G(z, c), taking both the random noise and the side information, tries
to synthesize a realistic image that satis�es the condition c . The
discriminator, now having real/fake images and context vectors
as inputs, aims at not only distinguishing real and fake images
but also whether an image satis�es the paired condition c . Such
characteristics is referred to as match-aware [Reed et al. 2016b]. In
this way, we expect the generated output of CGAN x� is controlled
by the side information c . Particularly, in our model, c is composed
of semantic layouts s and transient attributes a.

3.2.2 Proposed Architecture. We follow similar multi-scale strat-
egy with Pix2pixHD [Wang et al. 2018]. Di�erent from Pix2pixHD,

our secene generator network(SGN) takes additional noise input to
provide the stochastic diversity and transient attributes in residual
blocks as condition to control generation process. In more detail,
our multi-scale generator network G = {G1,G2} consists of coarse
(G1) and �ne (G2) scale generators as illustrated in Figure 3. Both
coarseG1 and �neG2 scale generators have similar components and
architecture except that �ne scale generator G2 has an additional
tensor input from the coarse scale generatorG1. In course generator
and �ne generator, while the semantic layout categories are encoded
into 8-bit binary codes and transient attributes are represented by a
40-d vector, we concatenate semantic layout S and noise z, feed their
concatenation into convolutional layers by downsampling with 2⇥
factor to obtain semantic feature tensor as input to the residual
blocks. Then, spatially replicated attribute vectors a are concate-
nated to input tensors of each residual block to condition transient
scene attributes and �nally, deconvolutional layers upsample the
feature tensor of the last residual block to obtain �nal image gen-
eration. As for �ne scale generator G2, after convolutional layers,
semantic feature tensor is summed with feature tensor from the
last residual block of coarse generator G1 before feeding into resid-
ual blocks of �ne scale generatorG2. The multi-scale discriminator
D = {D1,D2,D3} takes in tuples of real or generated images, match-
ing or mismatching semantic layouts and transient attributes to
decide whether the images are fake or real and whether the pairings
are valid. Note that, for each scale, identical discriminator architec-
ture is employed. Formally, we can de�ne multi-scale discriminator
for k = 1, 2, 3 scales as:

Dk (xk ,ak , sk ) =
(
1,xk 2 Pdata and xk ,ak , sk correctly match,
0, otherwise.

, Vol. 1, No. 1, Article . Publication date: April 2019.

Generator Network Discriminator Network

Image resolution:
256 × 256

Image resolution:
512 × 512

• The semantic layout categories are 
encoded into 8-bit binary codes 

• The transient attributes are 
represented by a 40-d vector.



Style Transfer Network
• The FPST method of (Li et al., 2018), 

which is composed of two steps with 
close-form solutions:

1. Stylization step 
2. Smoothing step

• The stylization step is based on the 
whitening and coloring transform to 
stylize images via feature projections
– Style information encoded by the 

covariance matrix of VGG features

• The smoothing step ensures spatially 
consistent stylizations via a manifold 
ranking operator.

114Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz. A Closed-form Solution to Photorealistic Image Stylization. ECCV 2018.
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is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 

two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
 

            (4) 

 
where ,2% is the pixel-wise L1 loss function. Since the 
generator ' was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
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where  3 is the set of feature maps extracted from VGG16.  

To synthesize each cross-section # from ! we also leveraged 
correlated information across neighboring cross-sections by 
conditioning the networks not only on ! but also on the 
neighboring cross-sections of !. By incorporating the 
neighboring cross-sections (3), (4) and (5) become: 
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where 45 = [!789:;, … , !7&, !7%, !, !7%, !7&, … , !>89:;] is a vector 

consisting of ? consecutive cross-sections ranging from −85&; 
to 85&;, with the cross section ! in the middle, and ,ABCD-./75 
and ,2%75 are the corresponding adversarial and pixel-wise loss 
functions. This yields the following aggregate loss function:  

 
 (9) 

 
where ,E-./ is the complete loss function, F controls the 
relative weighing of the pixel-wise loss and FEGHA controls the 
relative weighing of the perceptual loss. 
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Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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http://github.com/icon-lab/mrirecon. Replica was based on a 
MATLAB implementation, and a Keras implementation [68] of 
Multimodal with the Theano backend [69] was used. 

III. RESULTS 

A. Comparison of GAN-based models 
We first evaluated the proposed models on T1- and T2-

weighted images from the MIDAS and IXI datasets. We 
considered two cases for T2 synthesis (a. T1→T2#, b. T1#→T2, 
where # denotes the registered image), and two cases for T1 
synthesis (c. T2→T1#, d. T2#→T1). Table I lists PSNR and SSIM 
for pGAN, cGANreg trained on registered data, and cGANunreg 
trained on unregistered data in the MIDAS dataset. We find that 
pGAN outperforms cGANunreg and cGANreg in all cases 
(p<0.05). Representative results for T1→T2# are displayed in 
Fig. 3a and T2#→T1 are displayed in Supp. Fig. Ia, respectively. 
pGAN yields higher synthesis quality compared to cGANreg. 
Although cGANunreg was trained on unregistered images, it can 
faithfully capture fine-grained structure in the synthesized 
contrast. Overall, both pGAN and cGAN yield synthetic images 
of remarkable visual similarity to the reference. Supp. Tables II 
and III (k=1) lists PSNR and SSIM across test images for T2 
and T1 synthesis with both directions of registration in the IXI 
dataset. Note that there is substantial mismatch between the 
voxel dimensions of the source and target contrasts in the IXI 
dataset, so cGANunreg must map between the spatial sampling 
grids of the source and the target. Since this yielded suboptimal 
performance, measurements for cGANunreg are not reported. 
Overall, similar to the MIDAS dataset, we observed that pGAN 
outperforms the competing methods (p<0.05). On average, 
across the two datasets, pGAN achieves 1.42dB higher PSNR 
and 1.92% higher SSIM compared to cGAN.  These 
improvements can be attributed to pixel-wise and perceptual 
losses compared to cycle-consistency loss on paired images.  

In MR images, neighboring voxels can show structural 
correlations, so we reasoned that synthesis quality can be 
improved by pooling information across cross sections. To 
examine this issue, we trained multi cross-section pGAN (k=3, 
5, 7), cGANreg and cGANunreg models (k=3; see Methods) on 
the MIDAS and IXI datasets. PSNR and SSIM measurements 
for pGAN are listed in Supp. Table II, and those for cGAN are 
listed in Supp. Table III. For pGAN, multi cross-section models 
yield enhanced synthesis quality in all cases. Overall, k=3 offers 
optimal or near-optimal performance while maintaining 
relatively low model complexity, so k=3 was considered 
thereafter for pGAN. The results are more variable for cGAN, 
with the multi-cross section model yielding a modest 
improvement only in some cases. To minimize model 
complexity, k=1 was considered for cGAN.  

Table II compares PSNR and SSIM of multi cross-section 
pGAN and cGAN models for T2 and T1 synthesis in the MIDAS 
dataset. Representative results for T1→T2# are shown in Fig. 3b 
and T2#→T1 are shown in Supp. Fig. Ib. Among multi cross-
section models, pGAN outperforms alternatives in PSNR and 
SSIM (p<0.05), except for SSIM in T2#→T1. Moreover, 
compared to the single cross-section pGAN, the multi cross-
section pGAN improves PSNR and SSIM values. These 
measurements are also affirmed by improvements in visual 

quality for the multi cross-section model in Fig. 3 and Supp. 
Fig. I. In contrast, the benefits are less clear for cGAN. Note 
that, unlike pGAN that works on paired images, the 
discriminators in cGAN work on unpaired images from the 
source and target domains. In turn, this can render incorporation 
of correlated information across cross sections less effective. 
Supp. Tables II and III compare PSNR and SSIM of multi cross-

 
Fig. 3.  The proposed approach was demonstrated for synthesis of T2-weighted 
images from T1-weighted images in the MIDAS dataset. Synthesis was 
performed with pGAN, cGAN trained on registered images (cGANreg), and 
cGAN trained on unregistered images (cGANunreg). For pGAN and cGANreg, 
training was performed using T2-weighted images registered onto T1-weighted 
images (T1→T2#). Synthesis results for (a) the single cross-section, and (b) 
multi cross-section models are shown along with the true target image 
(reference) and the source image (source). Zoomed-in portions of the images 
are also displayed. While both pGAN and cGAN yield synthetic images of 
striking visual similarity to the reference, pGAN is the top performer. Synthesis 
quality is improved as information across neighboring cross sections is 
incorporated, particularly for the pGAN method. 

TABLE I 
QUALITY OF SYNTHESIS IN THE MIDAS DATASET  

SINGLE CROSS-SECTION MODELS  

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.017 

23.66 
±0.632 

0.895 
±0.014 

26.56 
±0.432 

0.920 
±0.014 

28.79 
±0.580 

T1# ® T2 
0.823 
±0.021 

23.85 
±0.420 

0.854 
±0.024 

25.47 
±0.556 

0.876 
±0.028 

27.07 
±0.618 

T2 ® T1# 
0.826 
±0.015 

23.20 
±0.503 

0.892 
±0.017 

26.53 
±1.169 

0.912 
±0.017 

27.81 
±1.424 

T2# ® T1 
0.821 
±0.021 

22.56 
±1.008 

0.863 
±0.022 

26.15 
±0.974 

0.883 
±0.023 

27.31 
±0.983 

T1# is registered onto the respective T2 image; and T2# is registered onto the 
respective T1 image; and ® indicates the direction of synthesis. PSNR and 
SSIM measurements are reported as mean±std across test images. Boldface 
marks the model with the highest performance. 

 
TABLE II 

QUALITY OF SYNTHESIS IN THE MIDAS DATASET  
MULTI CROSS-SECTION MODELS (K=3) 

 
cGANunreg cGANreg pGAN 

SSIM PSNR SSIM PSNR SSIM PSNR 

T1 ® T2# 
0.829 
±0.016 

23.65 
±0.650 

0.895 
±0.014 

26.62 
±0.489 

0.926 
±0.014 

29.34 
±0.592 

T1# ® T2 
0.797 
±0.027 

23.37 
±0.604 

0.862 
±0.022 

25.83 
±0.384 

0.883 
±0.027 

27.49 
±0.643 

T2 ® T1# 
0.824 
±0.015 

24.00 
±0.628 

0.900 
±0.017 

27.04 
±1.238 

0.920 
±0.016 

28.16 
±1.303 

T2# ® T1 
0.805 
±0.021 

23.55 
±0.782 

0.864 
±0.022 

26.44 
±0.871 

0.887 
±0.023 

27.42 
±1.127 

Boldface marks the model with the highest performance. 
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is acquired under multiple different tissue contrasts (e.g., T1- 
and T2-weighted images). Inspired by the recent success of 
adversarial networks, here we employed conditional GANs to 
synthesize MR images of a target contrast given as input an 
alternate contrast. For a comprehensive solution, we considered 

two distinct scenarios for multi-contrast MR image synthesis. 
First, we assumed that the images of the source and target 
contrasts are perfectly registered. For this scenario, we propose 
pGAN that incorporates a pixel-wise loss into the objective 
function as inspired by the pix2pix architecture [49]:  
 

            (4) 

 
where ,2% is the pixel-wise L1 loss function. Since the 
generator ' was observed to ignore the latent variable in pGAN, 
the latent variable was removed from the model.  

Recent studies suggest that incorporation of a perceptual loss 
during network training can yield visually more realistic results 
in computer vision tasks. Unlike loss functions based on pixel-
wise differences, perceptual loss relies on differences in higher 
feature representations that are often extracted from networks 
pre-trained for more generic tasks [25]. A commonly used 
network is VGG-net trained on the ImageNet [56] dataset for 
object classification. Here, following [25], we extracted feature 
maps right before the second max-pooling operation of VGG16 
pre-trained on ImageNet. The resulting loss function can be 
written as: 
 

 (5) 

 
where  3 is the set of feature maps extracted from VGG16.  

To synthesize each cross-section # from ! we also leveraged 
correlated information across neighboring cross-sections by 
conditioning the networks not only on ! but also on the 
neighboring cross-sections of !. By incorporating the 
neighboring cross-sections (3), (4) and (5) become: 
 

 (6) 

 
 (7) 

 
 (8) 

 
where 45 = [!789:;, … , !7&, !7%, !, !7%, !7&, … , !>89:;] is a vector 

consisting of ? consecutive cross-sections ranging from −85&; 
to 85&;, with the cross section ! in the middle, and ,ABCD-./75 
and ,2%75 are the corresponding adversarial and pixel-wise loss 
functions. This yields the following aggregate loss function:  

 
 (9) 

 
where ,E-./ is the complete loss function, F controls the 
relative weighing of the pixel-wise loss and FEGHA controls the 
relative weighing of the perceptual loss. 

L
L1(G) = Ex ,y ,z[ y −G(x, z) 1],

L
Perc
(G) = E

x ,y[ V ( y) −V (G(x)) 1],

LcondGAN−k (D,G) = −E
xk ,y
[(D(xk , y) −1)

2 ]

−E
xk
[D(xk ,G(xk ))

2 ],

LL1−k (G) = Exk ,y[ y −G(xk , z) 1],

LPerc−k (G) = Exk ,y[ V ( y) −V (G(xk )) 1],

LpGAN = LcondGAN−k (D,G) + λLL1−k (G) + λ percLperc−k (G),

 
Fig. 1.  The pGAN method is based on a conditional adversarial network with 
a generator G, a pre-trained VGG16 network V, and a discriminator D. Given 
an input image in a source contrast (e.g., T1-weighted), G learns to generate 
the image of the same anatomy in a target contrast (e.g., T2-weighted). 
Meanwhile, D learns to discriminate between synthetic (e.g., T1-G(T1)) and 
real (e.g., T1-T2) pairs of multi-contrast images. Both subnetworks are trained 
simultaneously, where G aims to minimize a pixel-wise, a perceptual and an 
adversarial loss function, and D tries to maximize the adversarial loss function. 
 

 
Fig. 2.  The cGAN method is based on a conditional adversarial network with 
two generators (GT1, GT2) and two discriminators (DT1, DT2). Given a T1-
weighted image, GT2 learns to generate the respective T2-weighted image of 
the same anatomy that is indiscriminable from real T2-weighted images of 
other anatomies, whereas DT2 learns to discriminate between synthetic and real 
T2-weighted images. Similarly, GT1 learns to generate realistic a T1-weighted 
image of an anatomy given the respective T2-weighted image, whereas DT1 
learns to discriminate between synthetic and real T1-weighted images. Since 
the discriminators do not compare target images of the same anatomy, a pixel-
wise loss cannot be used. Instead, a cycle-consistency loss is utilized to ensure 
that the trained generators enable reliable recovery of the source image from 
the generated target image. 
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• Image Synthesis in Multi-Contrast MRI [Mahmut Yurt et al. 2021]

4 Mahmut Yurt et al. /Medical Image Analysis (2020)

Fig. 1. The generator (G) in mustGAN consists of K one-to-one streams and a many-to-one stream, followed by an adaptively positioned fusion block, and

a joint network for finaly recovery. One-to-one streams generate the unique feature maps of each source image independently, whereas the many-to-one

stream generates the shared feature map across source images. The fusion block fuses the feature maps generated in the fusion layer by concatenation.

Lastly, the joint network synthesizes the target image from these fused feature maps. Note that the architecture of the joint network varies depending on

the position of the fusion that is categorized under three titles: early fusion (1), intermediate fusion (2) and late fusion (3).

where s is either GK+1(X) or y. The loss function for the (K+1)th

stream is given as:

LK+1 = � EXy
h
(DK+1 (X, y) � 1)2

i
� EX

h
DK+1 (X,GK+1 (X))2

i

+ EXy
h���
���y �GK+1 (X)

���
���
1

i

(12)
GK+1 learns to predict y given x1, x2, . . . , xK concatenated at the
input level, and DK+1 learns to discriminate between dyK+1 and
y.

3.1.3. Joint Network
Once the K + 1 streams are trained, source images are

propageted separately through the streams up to the fusion
block ( f ) at the ith layer. f concatenates the feature maps
generated at the ith layer of the one-to-one and many-to-one
streams. A joint network (J) is then trained to recover the target
image from the fused feature maps. The precise architecture
of J varies depending on the position of f , considered in three
types here: early, intermediate, and late fusion.

Early Fusion: Early fusion occurs when f is within the

encoder (i.e., 0 < i < ne). The feature maps generated by the
mth one-to-one stream (gi

m) and by the many-to-one stream
(gi

K+1) at the ith layer are formulated as:

gi
m = em(xm|i)

gi
K+1 = eK+1(X|i)

These feature maps are concatenated by f yielding the fused
feature maps (gi

f ):

gi
f = f (gi

1, g
i
2, . . . , g

i
K , g

i
K+1) (13)

J receives as input these fused maps to recover the target image.
Thus, architecture of J for early fusion is as follows:

by = J(gi
F) = dJ(rJ(eJ(gi

f |i))) (14)

Intermediate Fusion: Intermediate fusion occurs when f is
within the residual block (i.e., ne  i < ne+nr). In this case, the
feature maps generated by the mth one-to-one stream (gi

m) and
the many-to-one stream (gi

K+1) are formulated as:

gi
m = rm(em(xm)|i)

gi
K+1 = rK+1(eK+1(X)|i)

8 Mahmut Yurt et al. /Medical Image Analysis (2020)

Fig. 3. The proposed method was demonstrated on healthy subjects from the IXI dataset for two synthesis tasks: a) T1-weighted image synthesis from

T2- and PD-weighted images, b) PD-weighted image synthesis from T1- and T2-weighted images. Synthesized images from mustGAN, pGAN, pGANmany,

MM-GAN, and Multimodal are shown along with the ground truth target image. Due to synergistic use of information captured by one-to-one and many-

to-one streams, mustGAN improves synthesis accuracy in many regions that are recovered suboptimally in competing methods (marked with arrows or

circles in zoom-in displays). Overall, mustGAN yields less noisy depiction of tissues and sharper depiction of tissue boundaries.

were utilized in all evaluations thereafter unless otherwise is
stated.

Here, we observed that the optimal position of the fusion
block varies between the datasets. In IXI, synthesis quality is
enhanced by performing the fusion within the decoder, where
the fused feature maps have larger width and height and so they
reflect a high-resolution representation. On the other hand, in
ISLES, synthesis quality is enhanced by performing the fusion
within the residual block, where the fused feature maps have
smaller size, reflecting a relatively lower-resolution represen-
tation. It should also be noted that the IXI dataset contains
high-quality, high-SNR images, so fusion at the decoder might
help better recover fine structural details. In contrast, the ISLES
dataset mostly contains images of relatively moderate quality,
so fusing at the residual block might help better recover global
structural information.

4.2. Demonstrations Against One-to-one and Many-to-one
Mappings

We then performed experiments to demonstrate potential dif-
ferences in feature maps learned in one-to-one versus many-to-
one mappings. Three synthesis tasks were considered in the
IXI dataset (T2, PD ! T1; T1, PD ! T2; T1, T2 ! PD) and
in the ISLES dataset (T2, FLAIR ! T1; T1, FLAIR ! T2;
T1, T2! FLAIR). Representative feature maps generated in the

one-to-one and many-to-one mappings are displayed along with
the source and ground truth target images in Fig. 2 and in Supp.
Fig. 3. The feature maps indicate that one-to-one mappings
sensitively capture detailed features that are uniquely present
in the given source, whereas many-to-one mapping pools infor-
mation across shared features that are jointly present in multiple
sources.

To assess benefits of pooling complementary information
from unique and shared feature maps, we compared pGAN,
pGANmany and mustGAN models. Comparisons in terms of
PSNR measured across cross-sections in the test sets are dis-
played in Supp. Fig. 4-6 for IXI, and in Fig. 5 and Supp.
Fig. 7,8 for ISLES. On average, pGANmany outperforms pGAN
for 81.98% of test samples in IXI and for 63.14% in ISLES;
whereas pGAN outperforms pGANmany for 18.02% in IXI and
for 36.86% in ISLES. This finding demonstrates that not only
shared but also unique features can be critical for success-
ful synthesis of the target contrast. In comparison, mustGAN
outperforms both competing methods, with higher PSNR than
pGAN for 92.20% of test samples in IXI and for 87.19% in
ISLES, and with higher PSNR than pGANmany for 88.26% in
IXI and for 81.94% in ISLES. Taken together, these results in-
dicate that aggregation of information from unique and shared
feature maps helps significantly improve model performance.
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(Karras et al., 2019)

• A new architecture motivated by 
the style transfer networks
• allows unsupervised separation 

of high-level attributes and 
stochastic variation in the 
generated images 
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Figure 1. While a traditional generator [30] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [30]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [27, 17, 21, 16] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [27], unsupervised image-to-
image translation [28], and domain mixtures [23]. Com-
pared to more general feature transforms [38, 57], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [25] for var-
ious generator architectures in CELEBA-HQ [30] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [30], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[64], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [24],

2
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3 methods of inversion:

• Optimization-based (b)
• Learning-based (c)
• Hybrid (d)

[Xia et al., arXiv 2021]
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• Input: input image 
+ target description

Output: manipulated image

manipulated
image

Target description t
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• Utilize pretrained StyleGAN model as a 
natural prior for face images

• Project input image to the latent space
and perform edit in the vicinity of that
point.



TediGAN
• A recent inversion based 

manipulation model.
• They proposed two 

different approaches.
• In their first approach, they 

learn a common visual-
linguistic semantic space.
• They train a text encoder 

such that both modalities 
are embedded to the same 
space

130(Xia et al., CVPR 2021)



TediGAN
• Their second method is optimization based.
• They use CLIP to provide a signal to directly optimize the latent code

131(Xia et al., CVPR 2021)



StyleCLIP
• StyleCLIP is another inversion based manipulation model
• Direct optimization
• Similar to TediGAN, they use CLIP to optimize the latent code directly
• They include a term to preserve identity

132(Patashnik et al., ICCV 2021)



StyleCLIP
• Images are inverted to latent code and residuals (delta in the figure).
• Textual input is not used during inversion, it is only used in the loss
• Required to train different mappers for different text prompts.
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Fig. 2. An overview of our CLIPInverter approach in comparison to similar text-guided image manipulation methods. StyleCLIP-LM utilizes target de-
scription only in the loss function. HairCLIP additionally uses the description to modulate the latent code obtained by the encoder within the mapper.
Alternatively, our CLIPInverter employs specially designed adapter layers, CLIPAdapter, to modulate the encoder in extracting the latent code with respect
to the target description. To further obtain more accurate edits, it also makes use of an extra refinement module, CLIPRemapper, to make subsequent
corrections on the predicted latent code.

S space by an affine transformation. W+ space is an extended ver-
sion of theW space where a different w is used for each style input
of the generator. While some works find editing directions in the
S space such as StyleCLIP-GD [Patashnik et al. 2021] and StyleMC
[Kocasari et al. 2021], many others like StyleCLIP-LO, StyleCLIP-
LM [Patashnik et al. 2021], and SAM [Alaluf et al. 2021b] utilize the
extended intermediate space W+. Our text-guided image encoder
operates on W+ to find effective editing directions.

2.3 Text-guided Image Manipulation
Given an image and a target description in natural language, the
aim of text-guided image manipulation is to generate images that
reflect the desired semantic changes while also preserving the
details or attributes not mentioned in the text. ManiGAN [Li et al.
2020] learns a text-image affine combination that selects image
regions that are relevant to the language description and a detail
correction module that modifies these regions. TediGAN [Xia
et al. 2021a] enforces the text and image matching by mapping
the images and the text to the same latent space and performs
further optimization to preserve the identity of the subjects in the
original image.

More recent works use semantics learned by a multi-modal
method such as CLIP [Radford et al. 2021]. StyleCLIP [Patashnik
et al. 2021] uses the CLIP space to optimize for the latent code
(StyleCLIP-LO) that minimizes the distance of the image and text
pair. They also present a latent mapper (StyleCLIP-LM) that pre-

dicts residual latent codes corresponding to specific attributes. Fi-
nally, they also experiment with mapping a text prompt to a global
direction (StyleCLIP-GD) in the latent space that is independent of
the input image. The most recent StyleMC [Kocasari et al. 2021]
model presents an efficient method to learn global directions in
the S space of StyleGAN2 for a given text prompt, by finding di-
rections at lower resolutions and applying manipulations at higher
resolutions. It also utilizes CLIP to minimize the distance between
the generated image and the text prompt. Most recently and most
similar to our approach, HairCLIP [Wei et al. 2022] modulates the
inverted latent codes based on hairstyle and hair color inputs as im-
age or text. Their approach is similar to StyleCLIP-LM. However,
they also modulate the latent codes with the CLIP embeddings
rather than solely optimizing the similarity in the CLIP space.

Our work share some similarities with the aforementioned
methods. Like the original TediGAN model, we employ an encoder
to predict the latent code conditioned on the provided target de-
scription. That said, we estimate a residual latent code reflecting
only the desired changes mentioned in the description, which is to
be added to the inverted latent code of the input image. StyleCLIP-
LM and StyleMC models predict residual latent codes similar to
ours, but they require training their mapper functions from scratch
for each text prompt via a loss function based on CLIP similarity.
Most similar to our approach, HairCLIP applies modulations in the
latent space after obtaining inversions with a pretrained network.
However, we let CLIP embeddings modulate the feature maps via
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Fig. 3. CLIPAdapter and CLIPRemapper modules of our CLIPInverter framework. Our text-guided image editing framework includes two key modules,
CLIPAdapter and CLIP Remapper. CLIPAdapter employs CLIP-conditioned adapter layers within the GAN inversion process to find the semantic editing
direction in the latent space. CLIPRemapper further refines the predicted edit direction to improve the manipulation accuracy again based on the CLIP
embedding of the input text prompt.

vector ∆w through the conditional branch, which processes both
the input image and the CLIP model [Radford et al. 2021] embed-
ding of the textual description. The final image xout is synthesized
by passing the aggregated latent code first through the refinement
module, w∗ = CLIPRemapper(w+∆w) and then through the gener-
ator network, which is a pretrained StyleGAN2 [Karras et al. 2020]
generator. CLIPInverter applies one final correction to the latent
code by predicting latents based on the CLIP embedding of the tar-
get caption ttarget. Then, the predicted latent is blended with the
previously inverted latent code depending on a learned interpola-
tion coefficient α .

In the following, we describe the details of the key modules of
CLIPInverter and the loss functions we utilize during training.

3.2 CLIPAdapter: CLIP-guided Adapters for Latent Space
Manipulation

Figure 3(a) shows the architecture of our proposed text-guided
encoder, which follows the architecture of e4e with attached
lightweight adapters that enable us to incorporate the textual

descriptions. The original e4e architecture maps the input image
to feature maps at three levels—coarse, medium, and fine. We in-
troduce Adaptive Group Normalization (AdaGN) layers in CLI-
PAdapter, replacing the Instance Normalization in the Adaptive
Instance Normalization (AdaIN) [Huang and Belongie 2017]
layers to modulate these features using features obtained from the
CLIP [Radford et al. 2021] embedding of the target description.

CLIPAdapter also employs shallow mapping networks, one for
each level, to better align the multi-modal semantic space of the
CLIP model with the W+ space of StyleGAN2. Specifically, we
feed the text embedding obtained from the CLIP model to a multi-
layer perceptron (MLP) that predicts the scale and shift pa-
rameters of the subsequent AdaGN blocks. Given the image fea-
tures from the coarse, medium, and fine layers of the encoder, the
AdaGN blocks perform feature modulation such that the outputs
control the prediction of the residual latent codes.

The design philosophy behind our encoder architecture is to
have adapter layers in a pretrained network that can identify vi-
sual features relevant and irrelevant to the manipulation task in
both image and text-specific manner in computing the residual
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Fig. 5. Qualitative manipulation results. We show sample text-guided manipulation results on human faces (left), cat images (middle), and bird images
(right). Our approach successfully makes local semantic edits based on the target descriptions while keeping the generated outputs faithful to the input
images. The images displayed on the left side are the inversion results obtained with the e4e encoder.

Fig. 6. More qualitative results. We provide example manipulation results
where we apply various compositions of several facial attributes as target
descriptions.

In Figure 9, we provide some qualitative results for such image-
based manipulations performed by our proposed approach. We ob-
serve that although no further training is done by considering ref-
erence images instead of target description, our model achieves a
good performance on transferring the appearance of the provided
reference images to the input images.

We refer readers to the supplementary material for more manip-
ulation results.

4.5 Qualitative Comparisons to Other Text-guided
Manipulation Methods

We compare our approach with various existing methods, in-
cluding TediGAN [Xia et al. 2021a], StyleCLIP [Patashnik et al.
2021], StyleMC [Kocasari et al. 2021], and HairCLIP [Wei et al.
2022]. For StyleCLIP, we use the latent optimization-based model
StyleCLIP-LO, and for TediGAN, we use the CLIP-based optimiza-
tion approach (TediGAN-B). In all of our experiments, we use the
public implementations provided by the authors. For HairCLIP, we
slightly modify its neural architecture and train it accordingly. In
the original paper, they do consider different conditioning vectors
for the mapper modules encoding hairstyle and hair color as they
refer to details from different scales. Since, we focus on a generic
text-guided manipulation process where it is hard to separate the
textual terms into fine-, mid-, and high-level attributes, we let the
embedding of the whole target description suggested by CLIP text
encoder to condition the mappers equally. All of these approaches
use StyleGAN2 as a frozen generator and utilize the CLIP embed-
ding to measure the image and text similarity.

In Figure 10, we provide some qualitative comparisons between
our method and the baselines on a number of human face images.
As can be seen from the figure, our approach gives more accurate
edits as compared to the existing methods, especially for captions
that describe multiple attribute manipulations. For instance, for the
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Fig. 5. Qualitative manipulation results. We show sample text-guided manipulation results on human faces (left), cat images (middle), and bird images
(right). Our approach successfully makes local semantic edits based on the target descriptions while keeping the generated outputs faithful to the input
images. The images displayed on the left side are the inversion results obtained with the e4e encoder.

Fig. 6. More qualitative results. We provide example manipulation results
where we apply various compositions of several facial attributes as target
descriptions.

In Figure 9, we provide some qualitative results for such image-
based manipulations performed by our proposed approach. We ob-
serve that although no further training is done by considering ref-
erence images instead of target description, our model achieves a
good performance on transferring the appearance of the provided
reference images to the input images.

We refer readers to the supplementary material for more manip-
ulation results.

4.5 Qualitative Comparisons to Other Text-guided
Manipulation Methods

We compare our approach with various existing methods, in-
cluding TediGAN [Xia et al. 2021a], StyleCLIP [Patashnik et al.
2021], StyleMC [Kocasari et al. 2021], and HairCLIP [Wei et al.
2022]. For StyleCLIP, we use the latent optimization-based model
StyleCLIP-LO, and for TediGAN, we use the CLIP-based optimiza-
tion approach (TediGAN-B). In all of our experiments, we use the
public implementations provided by the authors. For HairCLIP, we
slightly modify its neural architecture and train it accordingly. In
the original paper, they do consider different conditioning vectors
for the mapper modules encoding hairstyle and hair color as they
refer to details from different scales. Since, we focus on a generic
text-guided manipulation process where it is hard to separate the
textual terms into fine-, mid-, and high-level attributes, we let the
embedding of the whole target description suggested by CLIP text
encoder to condition the mappers equally. All of these approaches
use StyleGAN2 as a frozen generator and utilize the CLIP embed-
ding to measure the image and text similarity.

In Figure 10, we provide some qualitative comparisons between
our method and the baselines on a number of human face images.
As can be seen from the figure, our approach gives more accurate
edits as compared to the existing methods, especially for captions
that describe multiple attribute manipulations. For instance, for the
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Fig. 7. Continuous manipulation results. We show that starting from the latent code of the original image and walking along the predicted residual latent
codes, we can naturally obtain smooth image manipulations, providing control over the end result. For reference, we provide the original (left) and the
target descriptions (right) below each row.

first image, our model is able to make meaningful changes to the
original input image to reflect the look depicted in the target de-
scription, and apply the gender change as well as changes in the
eyebrows, hair, eyes, lips, and the outfit. For the second input im-
age, our model is able to generate the smile and the lipstick while
most of the other methods fail to apply both changes at the same
time. In the last two examples, our manipulation results again re-
flect the given target descriptions—much better than those of the
competing approaches. Our method manipulates the gender, hair
color, eyebrows, and age of the man and applies makeup. Similarly,
it generates a smile for the woman and makes her wear a jacket,
which is inline with the necktie mentioned in the description. Sim-
ilarly, in Figure 11, we compare our results with those of the
TediGAN-B, StyleCLIP-LO, and HairCLIP methods on bird and
cat images. Like the human faces, our model is able to generate
visually more pleasing and relevant results than the competing

approaches. For instance, our model is able to capture the yellow-
greenish color mentioned in the description for the bird in the third
row and the fearful look for the cat in the first row while other
methods result in poor manipulations. For birds and cats, we could
not provide any comparison against StyleCLIP-GD and StyleMC
as their codebase use a different implementation of the StyleGAN
and they do not provide pre-trained models for these datasets.
In the supplementary material, we provide additional visual
comparisons.

4.6 Quantitative Comparisons to Other Text-guided
Manipulation Methods

We quantitatively compare our approach to the same approaches
that are compared in the qualitative comparisons, namely Te-
diGAN [Xia et al. 2021a], StyleCLIP-LO and StyleCLIP-GD
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Fig. 7. Continuous manipulation results. We show that starting from the latent code of the original image and walking along the predicted residual latent
codes, we can naturally obtain smooth image manipulations, providing control over the end result. For reference, we provide the original (left) and the
target descriptions (right) below each row.

first image, our model is able to make meaningful changes to the
original input image to reflect the look depicted in the target de-
scription, and apply the gender change as well as changes in the
eyebrows, hair, eyes, lips, and the outfit. For the second input im-
age, our model is able to generate the smile and the lipstick while
most of the other methods fail to apply both changes at the same
time. In the last two examples, our manipulation results again re-
flect the given target descriptions—much better than those of the
competing approaches. Our method manipulates the gender, hair
color, eyebrows, and age of the man and applies makeup. Similarly,
it generates a smile for the woman and makes her wear a jacket,
which is inline with the necktie mentioned in the description. Sim-
ilarly, in Figure 11, we compare our results with those of the
TediGAN-B, StyleCLIP-LO, and HairCLIP methods on bird and
cat images. Like the human faces, our model is able to generate
visually more pleasing and relevant results than the competing

approaches. For instance, our model is able to capture the yellow-
greenish color mentioned in the description for the bird in the third
row and the fearful look for the cat in the first row while other
methods result in poor manipulations. For birds and cats, we could
not provide any comparison against StyleCLIP-GD and StyleMC
as their codebase use a different implementation of the StyleGAN
and they do not provide pre-trained models for these datasets.
In the supplementary material, we provide additional visual
comparisons.

4.6 Quantitative Comparisons to Other Text-guided
Manipulation Methods

We quantitatively compare our approach to the same approaches
that are compared in the qualitative comparisons, namely Te-
diGAN [Xia et al. 2021a], StyleCLIP-LO and StyleCLIP-GD
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Fig. 7. Continuous manipulation results. We show that starting from the latent code of the original image and walking along the predicted residual latent
codes, we can naturally obtain smooth image manipulations, providing control over the end result. For reference, we provide the original (left) and the
target descriptions (right) below each row.

first image, our model is able to make meaningful changes to the
original input image to reflect the look depicted in the target de-
scription, and apply the gender change as well as changes in the
eyebrows, hair, eyes, lips, and the outfit. For the second input im-
age, our model is able to generate the smile and the lipstick while
most of the other methods fail to apply both changes at the same
time. In the last two examples, our manipulation results again re-
flect the given target descriptions—much better than those of the
competing approaches. Our method manipulates the gender, hair
color, eyebrows, and age of the man and applies makeup. Similarly,
it generates a smile for the woman and makes her wear a jacket,
which is inline with the necktie mentioned in the description. Sim-
ilarly, in Figure 11, we compare our results with those of the
TediGAN-B, StyleCLIP-LO, and HairCLIP methods on bird and
cat images. Like the human faces, our model is able to generate
visually more pleasing and relevant results than the competing

approaches. For instance, our model is able to capture the yellow-
greenish color mentioned in the description for the bird in the third
row and the fearful look for the cat in the first row while other
methods result in poor manipulations. For birds and cats, we could
not provide any comparison against StyleCLIP-GD and StyleMC
as their codebase use a different implementation of the StyleGAN
and they do not provide pre-trained models for these datasets.
In the supplementary material, we provide additional visual
comparisons.

4.6 Quantitative Comparisons to Other Text-guided
Manipulation Methods

We quantitatively compare our approach to the same approaches
that are compared in the qualitative comparisons, namely Te-
diGAN [Xia et al. 2021a], StyleCLIP-LO and StyleCLIP-GD
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Fig. 9. Image-based manipulation results. Our framework allows for using a reference image as the conditioning input for editing. In the figure, these
reference images are given at the top-right. Results on different domains illustrate that our model can transfer the look of the conditioning images to the
provided input images.

Fig. 10. Comparison against the state-of-the-art text-guided manipulation methods. Our method applies the target edits mentioned in the given descriptions
much more accurately than the competing approaches, especially when there are multiple attributes present in the descriptions.
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Fig. 9. Image-based manipulation results. Our framework allows for using a reference image as the conditioning input for editing. In the figure, these
reference images are given at the top-right. Results on different domains illustrate that our model can transfer the look of the conditioning images to the
provided input images.

Fig. 10. Comparison against the state-of-the-art text-guided manipulation methods. Our method applies the target edits mentioned in the given descriptions
much more accurately than the competing approaches, especially when there are multiple attributes present in the descriptions.
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Fig. 11. Comparisons against other approaches on bird and cat images. As compared to TediGAN, our model generates reasonable manipulation results
that are more consistent with the given target descriptions.

Table 2. Quantitative Comparisons on the AFHQ-Cats and CUB
Datasets

AFHQ-Cats CUB

FID ↓ CMP ↑ AMA ↑ FID ↓ CMP ↑ AMA ↑

TediGAN-B 39.414 0.255 82.467 42.007 0.233 59.500
StyleCLIP-LO 18.771 0.226 48.133 19.209 0.211 27.000
HairCLIP 21.087 0.227 44.667 26.447 0.218 57.050
Ours 24.172 0.245 76.467 25.837 0.221 66.000

Our approach demonstrates superior manipulation accuracy compared to other
methods, while also preserving a comparable perceptual quality. The best and
second-best performing models are highlighted in bold and underlined,
respectively.

Table 3. User Study Results

Task TediGAN-B StyleCLIP-LO StyleMC StyleCLIP-GD HairCLIP Ours

Acc. 1.848 3.401 3.526 3.611 4.015 4.598
Real. 1.218 4.604 4.282 3.609 3.544 3.743

The table represent the average rankings of the methods with respect to accuracy
and realism, where the higher the value is the better the method is. The
participants favor the results of our proposed model over the current state of the
art when the accuracy of the manipulations is considered.

photo-realistic. That said, the human subjects find the photoreal-
ism of the results of the concurrent StyleMC and StyleCLIP-LO
models significantly better. However, the accuracy questions indi-
cate that both StyleMC and StyleCLIP-LO have difficulty in manip-
ulating the given input images in regard to the target descriptions,
in contrast to our proposed model. StyleMC and StyleCLIP-LO, in
general, make minimal, mostly insufficient changes in the input
images (as also can be seen from Figure 10), and thus do not de-
grade the photorealism much.

4.7 Ablation Study
During training our model, we leverage different loss terms. To
analyze the contributions of these loss terms, we have performed
an ablation study where we either remove or modify some of
these loss terms during training. We provide visual comparisons
between these models separately trained on different loss terms in
Figure 12.

First, we employ the directional CLIP loss following [Gal et al.
2021] to better enforce the image and description similarity. Com-
pared to the global CLIP loss, which directly minimizes the dis-
tance between the manipulated image xout and the text prompt
ttarдet in the CLIP space, the directional CLIP loss aligns the di-
rections between the real and target descriptions and input and
output images. As can be seen in the second column of Figure 12,
the global CLIP loss suffers from artificial-looking manipulations
and results in poorly constructed facial attributes as compared to
the directional CLIP loss.

Second, to preserve the features and the details of the input im-
age in the areas that we do not wish to modify, we employ the per-
ceptual L2 and the LLPIPS losses between the input and the out-
put images. In theory, these perceptual loss terms contradict the
directional CLIP loss, since the CLIP loss is trying to enforce the
image and text similarity by manipulating the pixel values. To an-
alyze the contribution of these perceptual terms, we have reduced
the weights of these loss terms in the overall objective. The third
column in Figure 12 shows a manipulation example from this ex-
periment. As can be seen, the smile in the first row is also modified,
and the model manipulates the hair style to curly hair in the sec-
ond row even though this manipulations were not mentioned in
the target description. This experiment demonstrates the necessity
of these perceptual loss terms to prevent unwanted manipulations.

Third, we employ a cyclic-adversarial training strategy, where
we first manipulate the image with a mismatching caption and
then recover it by manipulating the output of the first pass with
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Fig. 11. Comparisons against other approaches on bird and cat images. As compared to TediGAN, our model generates reasonable manipulation results
that are more consistent with the given target descriptions.

Table 2. Quantitative Comparisons on the AFHQ-Cats and CUB
Datasets

AFHQ-Cats CUB

FID ↓ CMP ↑ AMA ↑ FID ↓ CMP ↑ AMA ↑

TediGAN-B 39.414 0.255 82.467 42.007 0.233 59.500
StyleCLIP-LO 18.771 0.226 48.133 19.209 0.211 27.000
HairCLIP 21.087 0.227 44.667 26.447 0.218 57.050
Ours 24.172 0.245 76.467 25.837 0.221 66.000

Our approach demonstrates superior manipulation accuracy compared to other
methods, while also preserving a comparable perceptual quality. The best and
second-best performing models are highlighted in bold and underlined,
respectively.

Table 3. User Study Results

Task TediGAN-B StyleCLIP-LO StyleMC StyleCLIP-GD HairCLIP Ours

Acc. 1.848 3.401 3.526 3.611 4.015 4.598
Real. 1.218 4.604 4.282 3.609 3.544 3.743

The table represent the average rankings of the methods with respect to accuracy
and realism, where the higher the value is the better the method is. The
participants favor the results of our proposed model over the current state of the
art when the accuracy of the manipulations is considered.

photo-realistic. That said, the human subjects find the photoreal-
ism of the results of the concurrent StyleMC and StyleCLIP-LO
models significantly better. However, the accuracy questions indi-
cate that both StyleMC and StyleCLIP-LO have difficulty in manip-
ulating the given input images in regard to the target descriptions,
in contrast to our proposed model. StyleMC and StyleCLIP-LO, in
general, make minimal, mostly insufficient changes in the input
images (as also can be seen from Figure 10), and thus do not de-
grade the photorealism much.

4.7 Ablation Study
During training our model, we leverage different loss terms. To
analyze the contributions of these loss terms, we have performed
an ablation study where we either remove or modify some of
these loss terms during training. We provide visual comparisons
between these models separately trained on different loss terms in
Figure 12.

First, we employ the directional CLIP loss following [Gal et al.
2021] to better enforce the image and description similarity. Com-
pared to the global CLIP loss, which directly minimizes the dis-
tance between the manipulated image xout and the text prompt
ttarдet in the CLIP space, the directional CLIP loss aligns the di-
rections between the real and target descriptions and input and
output images. As can be seen in the second column of Figure 12,
the global CLIP loss suffers from artificial-looking manipulations
and results in poorly constructed facial attributes as compared to
the directional CLIP loss.

Second, to preserve the features and the details of the input im-
age in the areas that we do not wish to modify, we employ the per-
ceptual L2 and the LLPIPS losses between the input and the out-
put images. In theory, these perceptual loss terms contradict the
directional CLIP loss, since the CLIP loss is trying to enforce the
image and text similarity by manipulating the pixel values. To an-
alyze the contribution of these perceptual terms, we have reduced
the weights of these loss terms in the overall objective. The third
column in Figure 12 shows a manipulation example from this ex-
periment. As can be seen, the smile in the first row is also modified,
and the model manipulates the hair style to curly hair in the sec-
ond row even though this manipulations were not mentioned in
the target description. This experiment demonstrates the necessity
of these perceptual loss terms to prevent unwanted manipulations.

Third, we employ a cyclic-adversarial training strategy, where
we first manipulate the image with a mismatching caption and
then recover it by manipulating the output of the first pass with
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• a flexible framework that is capable of handling domain adaptation, 
reference-guided image synthesis and text-guided image manipulation.
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Time-travel Rephotography
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• Key idea: Use the StyleGAN2 framework to project old photos into the 
space of modern high-resolution photos for enhancing their quality.

[Luo et al., SIGGRAPH Asia 2021]
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Time-travel Rephotography

[Luo et al., SIGGRAPH Asia 2021]
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Input Ours DeOldify InstColorization Zhang Zhang (FFHQ)
Figure 8. Comparisons of our approach to a pipeline built from published techniques for restoring, colorizing, and enlarging antique images.
We evaluated four prior colorization algorithms, detailed in the paper, all of which fail to achieve the same realistic skin appearance and
overall image quality as our approach. Top to bottom: Dorothy Hodgkin (1947), Henry Ford (1928), and Niels Bohr (1922).
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Figure 9. Our approach can struggle to render uncommon image
features such as certain (facial) hairstyles, accessories, and cloth-
ing. Extremely poor image quality or severely compressed inten-
sity gamuts may limit the quality of the result. From left to right:
Alexander Grapham Bell (1904), Dowager Cixi (1903), Alexandre
Dumas (1855) and Grace Hopper (1906 - 1992).

7. Conclusion

We introduced time-travel rephotography, an image syn-
thesis technique that simulates rephotographing famous
subjects from the past using a modern high-resolution cam-
era based on a black-and-white reference photo. Our basic
approach is to project this reference image into the space
of modern high-resolution images represented by the Style-
GAN2 generative model [33]. This is accomplished through
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Figure 10. Wrong gender or ethnicity in sibling prediction can
sometimes affect the result. Changing to a different sibling with
the correct gender and ethnicity helps to alleviate this issue. Left:
Martin Luther King Jr. (1964). Right: Edith Cowan (1900).

a constrained optimization over latent style codes that is
guided by a novel reconstruction loss that simulates the
unique properties of old film and cameras. We also intro-
duce a sibling network that generates an image for recover-
ing colors and local details in the result. Improving on ap-
plying a sequence of state-of-the-art techniques for image
restoration, colorization, and super-resolution, our unified
approach is able to render strikingly realistic and immedi-
ately recognizable images of historical figures.
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Time-travel Rephotography

[Luo et al., SIGGRAPH Asia 2021]
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