| e T
N r-I<.ut ErdeniAF facet epesUniversityd//fall 2}4‘ l.



Previously on CMP784

» Supervised vs. Unsupervised 5 ‘
Learning {

“'

» Generative Modeling

 Basic Foundations
« Sparse Coding
 Autoencoders

» Autoregressive Generative Models




Lecture overview

 Generative Adversarial Networks (GANS)

Disclaimer: Some of the material and slides for this lecture were borrowed from
—lan Goodfellow's tutorial on “Generative Adversarial Networks”

—Aaron Courville’'s IFT6135 class

—Bill Freeman, Antonio Torralba and Phillip Isola’s MIT 6.869 class



Discriminative vs. Generative Models

“Cat”

Discriminative models Generative models



Generative Modeling

®
Pmodel

Slide adapted from Sebastian Nowozin



Generative Modeling

Assumptions on P
* tractable sampling
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Training examples Model sémples

Slide adapted from Sebastian Nowozin



Generative Modeling

o
medel e

Assumptions on P
« tractable sampling

* tractable likelihood function

Slide adapted from Sebastian Nowozin




Broad Categories of Generative Models

* Autoregressive Models

» Generative Adversarial Networks (GANS)
* Flow-based Models

* Variational Autoencoders

* Energy-based Models



Autoregressive Models

* Explicitly model conditional probabilities:
n

pmodel(w) — pmodel(xl) Hpmodel(xi | L1y... 73773—1)

1=2 ™~ Each conditional can be
a compllcated neural net

* (Generation can be too costly ﬁ Q
 Generation can not be controlled ,'. ’
by a latent code asgﬂ €.

PixelCNN elephants
(van den Ord et al. 20106) 10

Disadvantages:




Another way to train a latent variable model

inference
| atent variables

G

v

*

Observed variables
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Generative Adversarial
Networks



Generative Adversarial Networks (GANSs)
(Goodfellow et al., 2014)

* A game-theoretic
likelihood free model

Noise
(random Input)

Advantages:

Generative
Model

e Uses a latent code

* No Markov chains

z ~ Uniform, 4 needed

think of this as = o * Produces the best
a transformation looking samples
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Generative Adversarial Networks (GANSs)
(Goodfellow et al., 2014)

Generator

Noise f| = —_— mfake
Go [ J\

e = (A5 g AL ] g
. . s | e ¢
Training | 0 REeaates - iR ot
data ! T By (| LR

» A game between a generator Gy(z) and a discriminator D, (x)
= Generator tries to fool discriminator (i.e. generate realistic samples)
= Discriminator tries to distinguish fake from real samples
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Intuition behind GANs

D, : Discriminator (Art Critic)

Lreql L fake (= - Generator (Forger)
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Training Procedure (Goodfellow et al., 2014)

* Use SGD on two minibatches simultaneously:

= A minibatch of training examples

= A minibatch of generated samples

N N )
D) D) )
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GAN Training: Minimax Game (Goodfellow et al., 2014)

min max Bz p,,., 108 Do (2)] + Eznp, [log (1 — Duy(Go(2)))]

. r

Real data Noise vector used
to generate data Cross-entropy
(D) 1 1 loss for binary
JV = —3 @~ paus 108 D(x) — 5 2 log (1 — D (G(z))) TeEEsiilearlen
(G) _ _1 5 Generator maximizes the log-probability
S = 9 22 log D (G(2)) of the discriminator being mistaken

* Equilibrium of the game
* Minimizes the Jensen-Shannon divergence between p4., and p,



GAN Training: Minimax Game (Goodfellow et al., 2014)

min max Bz p,,., 108 Do (2)] + Eznp, [log (1 — Duy(Go(2)))]

ST r

Real data Noise vector used
ross-entropy
" " ss for binary
D) _ % . | Importa nt question Is i
o Does this converge??
J — _5 Oz | Oi the aiscriminator being mistaken

* Equilibrium of the game
 Minimizes the Jensen-Shannon divergence 1o



Training Procedure

GAN learning gaussian

(Goodfellow et al,, 2014)
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Generating 1D points Generating Images



Training Procedure (Goodfellow et al, 2014)

* Use SGD on two minibatches simultaneously:

= A minibatch of training examples

= A minibatch of generated samples

N N )
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Training Procedure

* Updating the discriminator:

/

Noise

L fake \

OR

Training [\

data wreal

\_

update the discriminator weights using
backprop on the classification objective/
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Training Procedure

« Updating the generator:

4 N
Noise §| ==b -_> [',I"fak%
<

update the generator weights using

backprop
N /

-

backprop the derivatives, but don't
modify the discriminator weights

flip the sign of
the derivatives

23



Results
(Goodfellow et al., 2014)

* The generator uses
a mixture of
rectifier linear
activations and/or
sigmold activations

 The discriminator
net used maxout

; : - o B
activations. : < |
CIFAR10 samples CIFARTO samples
(fully-connected model) (convolutional discriminator,

deconvolutional generator) 2



Deep Convolutional GANs (DCGAN) #8572 E
(Radford et al., 2015)
* |dea: Tricks to make GAN training more stable ”“\

256 i
{—‘ﬁ
‘ %f::: . Stride 2\5 :”::
Project and reshape Deconv 1 sroez
Deconv 2 ™
Deconv 3
Deconv 4 -
G(2)
* No fully connected layers « Use Adam (Kingma and Ba, 2015)
e Batch Normalization * Tweak Adam hyperparameters a bit
(loffe and Szegedy, 2015) (Ir=0.0002, b1=0.5)

* Leaky Rectifierin D

25



64%64 pixels (Radford et al.,
DCGAN fOr LSUN Bed FOOMS -3Mimages 2015)
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Walking
over the
latent space

(Radford et al., 2015) &

* [nterpolation

suggests
non-overfitting
behavior




(Radford et al., 2015)
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Vector Space Arithmetic (Radford et al., 2015)

man man woman
with glasses without glasses without glasses

woman with glasses



Vector Space Arithmetic (Radford et al., 2015)

n; 7\

smiling neutral neutral
woman woman man

smiling man



Cartoon of the Image manifold

X2




What makes GANSs special?

X2
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more traditional max-likelihood approach GAN



GAN Failures: Mode Collapse

min max V(G,D) # max min V(G, D)

* D in inner loop: convergence to correct distribution
* G in inner loop: place all mass on most likely point

Target

Step O Step 5k Step 10k Step 15k Step 20k

(Metz et al., 20106)

Step 25k
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Mode Collapse: Solutions

* Unrolled GANs (Metz et al 2016): Prevents mode collapse by
backproping through a set of (k) updates of the discriminator to update
generator parameters

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

 VEEGAN (Srivastava et al 2017): Introduce a reconstructor network
which Is learned both to map the true data distribution p(x) to a
Gaussian and to approximately invert the generator network.

34



Mode Collapse: Solutions

 Minibatch Discrimination (Salimans et al 2016): Add minibatch
features that classify each example by comparing it to other members
of the minibatch (Salimans et al 2016)

 PacGAN: The power of two samples in generative adversarial
networks (Lin et al 2017): Also uses multisample discrimination.

GAN Discriminator Q PacGAN2 Discriminator
Input Layer <:::><:::><:::> f/”\\' ) <:::>

Input Layer

35



Mode Collapse: Solutions

 PacGAN: The power of two samples in generative adversarial
networks (Lin et al 2017): Also uses multisample discrimination.

Target distribution GAN PacGAN2
6 : : - - - 6 - - - - - 6 - - - .
4 o . « - o 4 - ¢ < 4 - - > - -
2 v ] ® ] .- 2 2 ¢ - . -
0 <« [ ] ] o ® 0 0
2 L L v L ] 2 - 2 - .
4 . a . . » 4 o 4 4 - -

Figure 2: Scatter plot of the 2D samples from the true distribution (left) of 2D-grid and the learned
generators using GAN (middle) and PacGAN2 (right). PacGAN2 captures all of the 25 modes.
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GAN Evaluation

* Quantitatively evaluating GANs is not straightforward:
* Max Likelihood is a poor indication of sample quality

« Some evaluation metrics

Inception Score (IS):
y = labels given gen. image. p(y|x) is from classifier - InceptionNet

IS(P,) = By [KL(pa (y1x)|[pa ()]

Fréchet inception distance (FID): (Currently most popular)
Estimate mean m and covariance C from classifier output - InceptionNet

2((m, C), (my, Cy)) = |lm — my |2 + Tr(C + C,, — 2(CC,) ")

Kernel MMD (Maximum Mean Discrepancy):

N[

MMD(P,,P,) = (Ex,«,xﬁnwﬁ”r, [k(xr, X)) — 2k(x,,X,) + k(xg4, X/g)]>

/
Xg,X, ~Py
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Subclasses of GANs

Vanilla GAN Discriminator Looks at Latent Variables Discriminator Predicts Latent Variables
Vanilla GAN Conditional GAN Bidirectional GAN Semi-Supervised GAN InfoGAN Auxiliary Classifier GAN
(Goodfellow, et al., 2014) (Mirza & Osindero, 2014) (Donahue, et al., 2016; Dumoulin, et al., 2016) (Odena, 2016; Salimans, et al., 2016) (Chen, et al., 2016) (Odena, et al., 2016)

real c=1
real c=2
e =)
()

(fake) (fake) fake (fake) (C fake

Fmen) (Kae) =~ () | (K )
G

(C (class)) ( 7 (noise)) [ C (class) ] ( Z (noise) ) (c (latent)] (Z (noise)) [c (class)) ( 7 (noise))

Image: Christopher Olah 38
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VaniIIa GAN (Goodfellow et al., 2014)

(Krew @) Xxke )
\_G /

( Z (noise) )

Discriminator

DCGAN (Radford et al., 2015)
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Conditional GAN (Mirza and Osindero, 2014)

» Add conditional variables y into G and D

fake

(z1y)))]

Ea:rvpdata(az) [log D(CE’y)] + EZNpZ (2) [lOg(l _ D(G

(D, G)

D

min max V
G

D

(Xreal (data)) ( EX? fake )

L
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v
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o
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Auxiliary Classifier GAN (0dena et al., 2016)

» Every generated sample has a corresponding
- class label

=) @ Ls = Ellog P(S = real | Xyea))] + Ellog P(S = fake | X ae)]
Lo = E[log P(C = C ‘ Xreal)] + E[log P(C = C ‘ Xfake)]

/\ * D Is trained to maximize L¢+ L,
1data)  ( Xgake )

* G Is trained to maximize L, — Lg

@) (Zoow) ® LEArns a representation for z that is
iIndependent of class label

41



Auxiliary Classifier GAN (0dena et al., 2016) ’

128%128 resolution samples from b classes taken from an AC-GAN
trained on the ImageNet

V()

'n&\..

\
’

.

.?

redshank grey whale

monarch butterfly goldfinch
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Bidirectional GAN (Donahue et al., 2016: Dumoulin et al., 2016)

 Jointly learns a generator network and an inference
network using an adversarial process.

I m(%n max V(D,G) = Eyg)log(D(z,G.(x)))] + Epz)log(l — D(G(2), 2))]
// q(z | )log(D(x, z))dxdz

& (data))m’ D) // p(x | z)log(l — D(x, z))dxdz.
A &.ﬁﬁﬂﬂﬂ. ol 2 2 R
Li?_/ | ¢ BEHH 28 EEEEEN? |
o G YrERLD . gl il 1471 B
ﬂ DA AE R T NEEENEEN
88 Lﬂunﬁﬁl EEIEH <> Bl

13:. - “i?.; .
QQBE@.LE

CelebA reconstructions

1 I
Wl 7 R

SVNH reconstructions
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. s - (Donahue et al., 2016;
B|d|rect|ona| GAN Dumoulin et al., 2016)

LSUN bedrooms

“ .

Tiny ImageNet

vy

-.‘;:m'



Wasserstein GAN (Arovsky et al., 2016)

* Objective based on Earth-Mover or Wassertein distance:

m@in mgx ﬂwdiata [Dw (w)] — 4:szz [Dw(GH(Z))]

* Provides nice grad|ents over real and fake samples

1.0 : T . T
— Den5|ty of real

08l — Density of fake |
— GAN Discriminator

——  WGAN Critic

0.6

WGAN

0.4

0.2 -

0.0

DCGAN

-0.2} Vanishing gradients
in regular GAN

-0.4 1 1 I I 1 I I
i 6 _4 -2 0 2 4 6 8
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Wasserstein GAN (Arovsky et al., 2016)

* Wasserstein loss seems to correlate well with image quality.

35 F T B 35 F T -
— MLP 512 — DCGAN
3.0 | 1 3.0 |
o o
(4] ©
= £ X e
o+ o+
o o ;.IH ==k
£ £ '
) 7]
[ 4
= 10} s
0.5 \ + 0.5
v ¥
0.0 1 1 1 1 1 0.0 1 1 1 1 1
0 100000 200000 300000 400000 500000 600000 0 100000 200000 300000 400000 500000 600000

Generator iterations Generator iterations



WGAN with gradient penalty Guiraani et al., 2017)

L= E [D@#)]- E [D@)]+A E [([VaD(@)]2—1)"]
z~Py z~P z~Ps
OriginalEitic loss Our grad;e:lt penalty

» Faster convergence and higher-
quality samples than WGAN
with weight clipping

* Train a wide variety of GAN
architectures with almost no
hyperparameter tuning,
Including discrete models

Samples from a character-level GAN
language model on Google Billion Word

WGAN with gradient penalty
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Least Squares GAN (LSGAN) Mao et al.,, 2017)

« Use a loss function that provides smooth and non-saturating gradient in
discriminator D

, 1 ‘ .

niin Visaan(D) :§Eaz~pdm“(az) [(D(x) — 1))2] + sEsmp. (2) [(D(G(2)) — (L)z]

n}i‘n Visaan(G)

Decision boundaries of Sigmoid & Sigmoid decision boundary Least Squares decision boundary
Least Squares loss functions
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Least Squares GAN (LSGAN) Mao et al.,, 2017)
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Boundary Equilibrium GAN (BEGAN)

(Berthelot et al., 2017)

Embedding (h)

e A loss derived from the \Wasserstein
distance for training auto-encoder based e wiasoenn M coewosne. (i

Coolaton, w=(3.3) =) Comvation, =33 4=

G A N S NN Upsampling (2.2) ~ --eeeeememmemmemmeme oo e — C onvolution; w=(3,3) d=(n, n) 64x64xn
Convolution, w=(3,3) d=(n 16X Subsampling (2,2) P —d| I

D : RN+ s RN= g the autoencoder function. Convoluion, w=(3.3) (0. ) 1ox Gomvoltion, we(a2ydsizn. 2n) | EREEY
i NN Upsampling (2,2) == Convolution, w=(3,3) d=(2n, 2n) 20
L(v) = |v— D(v)|" where {7 € {1,2} is the target norm. oot w56 Subsamping (22) - e
N . . . Convolution, w=(3,3) d=(n, n) oliton. we(s 3 de(an
v € RN= is a sample of dimension N. oo . LV Comvoltion: wo(a.3) d-(an. )

Convolution, w=(3,3) d=(n, n) Subsampling (2,2) ---------==--===-=zom--

* \Wasserstein distance btw. the reconstruction iy | :
losses of real and generated data Comton w360 x

[ C O n Ve rg e n Ce m e a S u re : (a) Generator/Decoder (b) Encoder

Mglobal — ﬁ('r) + h/[’(x) o E(G(ZG))‘

* Objective:
Lp=L(x)— k. L(G(2D)) for 0p
ﬁG = [,(G(ZG)) for 9@

kiv1 = ki + \x(vL(z) — L(G(2¢))) foreach training | T
step ¢ T e




BEGANS for CelebA Symdivicemaes — (Berthelot et al., 2017)

. “31
v

r "

Interpolations in the latent space

h a £ ? - ? - . - - 4
& @ @ @ ¥ S S S S S N e

-

Mirror interpolation example
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Progressive GANS (Karras et al., 2018)

* Progressively generate high- Latent Latent
res images * ?

* Multl-step training from low
to high resolutions

e Re— e Re—
G [C1ex16 [ 16x16 | [C16x16 |
] __n P ,
— 3232 | Co v
| 3232 | ] bl |
toRGB toRGB toRGB toRGB v 4
® !
L L L
fromRGB - fromRGB fromRGB
D 0.5x , . — 2K
fromRGB . 32x32 J L3232 |
0.5x 0.5x
Tajea
*)
— N
[C16x16 | [16x16 16x16_|
L L .

Latent
v

1024x1024

& Reals

1024x1024

Training progresses

4x4
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Progressive GANS (Karras et al., 2018)

 Training
Process




Prog ressive GANs (Karras et al., 2018)

CelebA-HQ

random interpolations




BIgGANS (Brock et al., 2019)

High resolution, class condmonal samples generated by the model

* BigGANSs trained with 2-4x as many parameters and 8x the batch size compared to prior art.
« Uses Gaussian truncation to sample z (avoid sampling from the tail of the Gaussian distribution)

« Uses multiple other tricks including multiple regularizations including a Gradient penalty
regularization and an Orthogonal Regularization:

Rﬁ(W) :BHWTW@(l—I)H%, 55



Resolution: 512x512

Hard classes™
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SterGANs (Karras et al,, 2019)

* A new architecture motivated by
the style transfer networks

* allows unsupervised separation
of high-level attributes and
stochastic variation in the
generated images

Latent z € 2

v

Normalize

Synthesis network g

Const 4x4x512

Noise¢

J

network f

style Q:r)(

—>» AdalN

lMapping

FC

FC

FC

FC

FC

FC

FC

FC

|
Conv 3x3

style @(

—>» AdalN

Y

l 4x4

Upsample
[
Conv 3x%3

style G:_D(

—> AdalN

[
Conv 3x3

style G:D(

—>» AdalN

i 8%

57



921N0S

destination

©
+—
)
P
O
| -
| -
@©
N
~—-

StyleGANSs




Some Applications of GANSs



(Salimans et al., 2016:

Semi-supervised Classification pumoulin et al, 2016)

SVNH
Model Misclassification rate
VAE (M1 + M2) (Kingma et al., 2014) 36.02
SWWAE with dropout (Zhao et al., 2015) 23.56
DCGAN + L2-SVM (Radford et al., 2015) 22.18
SDGM (Maalge et al., 2016) 16.61
GAN (feature matching) (Salimans et al., 2016) 8.11 +1.3
ALI (ours, L2-SVM) 19.14 £ 0.50
ALI (ours, no feature matching) 7.42 + 0.65
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Class-specific Image Generation (Nguyen etal., 2016

« Generates 227x227 realistic images from all Noiseless joint PPGN-h ~ Image classifier
ImageNet classes

 Combines adversarial training, moment matching, dasses
denoising autoencoders, and Langevin sampling

redshank monastery volcano 61



eo Generation (vondrick et al., 2016)

Encoder
2D convolutions

%,
43 23
6, /e
'&’/3/ 27

Input Frame

f

:+(1—T)®9—>

Foreground Stream /'
3D convolutions
. o,
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Generative Shape Modeling wuetal., 2016)
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Text-to-Image Synthesis zhang et al., 2016)

The small bird has a red head with feathers that fade from red to gray from head to tail

The petals of
this flower are
white with a
large stigma

A unique yellow
flower with no
visible pistils
protruding from
the center

This flower 1s
pink and yellow
in color, with
petals that are
oddly shaped

This is a light
colored flower
with many
different petals
ona green stem

This flower
is yellow
and green in
color, with
petals that

are ruffled

The flower
have large
petals that are
pink with
yellow on some
of the petals

A flower that
has white petals
with some
tones of yellow
and green
filaments




Text-to-lmage Synthesis (zhu et al, 2019)

This bird has a This particular bird This bird is a lime
white throat and a  has a belly thatis  green with greyish
dark yellow bill and yellow and brown. wings and long

grey wings. legs.

This bird has wings This bird has Wings This is a grey bird
that are grey and that are black and  with a brown wing

has a white belly.  has a white belly.  and a small orange
beak.

This yellow bird
has a thin beak and
jet black eyes and
thin feet.

This bird has a short
brown bill, a white
eyering, and a
medium brown

crown.
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Single Image Super-Resolution (Ledig et al., 2016)

e Combine content loss with adversarial loss

SRResNet
s




Image Inpainting (Pathak et al., 2016)

-

e J mears
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Image to Image Translation (Pix2Pix)

Mpg__ Ground truth

Labels to Street Scene

(Isola et al. 2016)
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—— H H — real or fake pair ?

arg min max *lx,y[ logD(G(X)) + log(l—D(Y)) ]

G D
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arg min max
G D
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— 0 — real or fake pair ?

arg min max *lx,y[ log D(x,G(x)) + log(1 — D(x,y)) ]

G D




BW — Color

Output

Data from [Russakovsky et al. 2015]



Shrinking the capacity: Patch Discriminator

D Rather than penalizing if output image
I looks fake, penalize if each overlapping
. patch in output looks fake
T
Z
N pixels . Faster, fewer parameters
e More supervised observations
e Applies to arbitrarily large images

Y [Li & Wand 2016]
[Shrivastava et al. 2017]
[Isola et al. 2017]




Labels - Facades

1x1 Discriminator

Data from [Tylecek, 2013]



Labels - Facades

Input 16x16 Discriminator

Data from [Tylecek, 2013]



Labels - Facades

Input /70x70 Discriminator

Data from [Tylecek, 2013]



Labels - Facades

Full image Discriminator

Data from [Tylecek, 2013]



CycleGAN: Pix2Pix w/o input-output pairs

Monet _ Photos Zebra Summer T Winter

s Z_ Horses

bra

e

winter —» summer

= A

an Gogh | A Cezanne

(Zhu et al. 2017)

Phtgraph | Monet

82



Paired dat

x.

y.
Vo2
N P RN
.

e0o 0 g




Paired data Unpaired data

e0o 0 .,
°
°



—— H H — real or fake pair ?

argm&n max x.y| log D(x,G(x)) +log(l — D(x,y)) |




—— H H — real or fake pair ?

argm&n max x.y| log D(x,G(x)) +log(l — D(x,y)) |

No input-output pairs!



— H H —— real or fake?

argminmax Ex | log D(G(x)) + log(l— D(y)) |

G D

Usually loss functions check if output matches a target instance

GAN loss checks if output is part of an admissible set



Gaussian Target distribution




Horses /ebras




ARYQICOM. T
3 SR

Reall



Real too!

Nothing to force output to correspond to input



Cycle-Consistent Adversarial Networks

/\
X Yy
|
® DY J

[Zhu et al. 2017], [Yi et al. 2017], [Kim et al. 2017/]



Cycle-Consistent Adversarial Networks




Cycle Consistency Loss

reconstruction pnt ®
error —




Cycle Consistency Loss

G(F(x))
A =
X Y .
reconstruction
. —.\S.--'“ error
reconstruction . I —
error =r" \.& -9

IF(GCa) x|l [IG(FG) =¥,









Collection Style Transfer
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Monet's paintings - photos




Monet's paintings - photos




Semantic Image Synthesis

synthesized
Image y

semantic
layout X

* Input: Input layout ,
+ target style image
Output: synthesized image

Target style
Image t

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu. Semantic Image Synthesis with Spatially-Adaptive Normalization. CVPR 2020. 104



Semantic Image Editing

image X — manlpulated
T image y
. . “more flowers”
* Input: input image ) "
(+ semantic layout) more cloudy
+ target attribute Target scene

Output: manipulated image

attribute(s) t

Levent Karacan, Zeynep Akata, Aykut Erdem, Erkut Erdem. Manipulating Attributes of Natural Scenes via Hallucination. ACM TOG 2020. 105



Semantic Image Synthesis (SPADE) (parket al, 2019)

* Image generation conditioned on semantic layouts

Semantic Manipulation Using Segmentation Map

sodew] o[£1g Sursn uorjendiuey 91418
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Colorado

Photo: Aaron Sping // Chautauque Park,
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Photo: Aaron Sping // Chautaugue Park, Colorado




— = = = manipulated
t iImage y

“more flowers”
“more cloudy”

Target transient - Input: inputimage
scene attribute t + target attribute

Output: manipulated image

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



el manipulated
f f imagey

“more flowers”
— "“more cloudy”

Target transient - Input: input image
scene attribute t + semantic layout

+ target attribute

semantic Output: manipulated image
layout 1

110



Style Transfer
Network

manipulated

Image X and .
image y

semantic layout 1

“more flowers” target transient

G Scenf- “more cloudy” scene attribute t
eneration —] _ | |
Network |dea: Hallucinate alternative version of the

INput scene consistent with target attributes
and use this image as the style image in the
photo style transfer. .



Style Transfer Network

source image

— Center Crop
—W‘

Target attributes:
flowers 1, cloudy 1

source layout

Scene Generation Network

final output

hallucinated
style image

1

 Scene Generation Network
— A conditioned GAN model with
two conditions:
(1) semantic layout,
(2) target attributes

» Style Transfer Network

— A deep photo style transfer network
that modifies the look of the source
Image based on the hallucinated
style Image

112



* The semantic layout categories are
encoded into 8-bit binary codes

Scene Generation Network

represented by a 40-d vector.

Generator Network Discriminator Network

By Binary coding
> —
- a Spatial |:|
=g 40 8 /
- - 7/
1x

Replication

Convolution i
{0,1}

Image resolution:
100 8 512 x 512

* An architecture similar to Pix2pixHD model (Wang et al. 2018)

* Generator network: A coarse-to-fine model with 2 generator networks

* Discriminator network: A combination of three different discriminator
networks operating at an image pyramid of 3 scales

T.-C. Wang et al. High-resolution image synthesis and semantic manipulation with conditional GANs. CVPR 2018. 113



Style Transfer Network

style image

 The FPST method of (Li et al., 2018),
which is composed of two steps with
close-form solutions:

1. Stylization step JF;
2. Smoothing step Fo

Iout — FQ (Fl(IC'7IS)7IC)

content image

* The stylization step Is based on the
whitening and coloring transform to
stylize images via feature projections el ing FPc™ Ps —:I:”:I“ Y
— Style information encoded by the - -
covariance matrix of VGG features - X L L
_ | Ps = EsAZES Poc=EcA B}
* The smoothing step ensures spatially . |
whitening coloring

cons_istent stylizations via a manifold 1 Convolution B Max pooling == Max pooling mask
ranking operator. B Upsampling &= Unpooling

Y. Li, M.-Y. Liu, X. Li, M.-H. Yang, J. Kautz. A Closed-form Solution to Photorealistic Image Stylization. ECCV 2018. 114
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I\/Iampulatmg Attnbutes of Natural Scenes via Hallucha’uoén [Karécan et al., 2020]



I\/Iampulatmg Attnbutes of Natural Scenes via Hallucha’uoén [Karécan et al., 2020]



night

prediction

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



SNOW

S
- L - i S

o _ 3 o a - B

- .

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]




winter

prediction J—

-—

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et aI.,' éCZO]



Spring and clouds

prediction

LS.

-
e

- .i-..

Manipulating Attributes of Natural Scenes via Hallucination [Karcan et al., 2020]



Moist, rain and fog

prediction

Manipulating Attributes of Natural Scenes via Hallucination [Karacan et al., 2020]



flowers

I\/Iampulatmg Attnbutes of Natural Scenes via AHa‘I‘Iucmann [K can et al. , 2020]



Reference Source

Real/Synthesized| _ -(D(T+,T2)-1)2-D(T+, G(T+))?
label Adversarial loss

»
173

kel
>
)
c

3]
(7}
17}
c
Q
o

e
£
<
&
Q
T
[ORs]

Real/Synthesized
label

~(Dra(T2)-1)*Dra(Gra(T1))
Adversarial loss

[IG2(Gr4(T2))-Tall4
Cycle consistency loss

Real/Synthesized
label

Cra(Gri(T2) ~Dro(Ty)-1P-Dry(Gra(T))?
Adversarial loss

* |Image Synthesis in Multi-Contrast MRI [Ul Hassan Dar et al. 2019]




a) Reference(Tq) mustGAN PGAN(T>) pGAN(PD) PGANmany MM-GAN Multimodal

T1 Synthesis

b) Reference(PD) mustGAN PGAN(Tq) PGAN(T?2) PGANmany MM-GAN

Late Fusion

PD Synthesis

* [mage Synthesis in Multi-Contrast MRI [Mahmut Yurt et al. 2021]



Recall StYIGGANS (Karras et al, 2019)

* A new architecture motivated by
the style transfer networks

* allows unsupervised separation
of high-level attributes and
stochastic variation in the
generated images

Latent z € 2

v

Normalize

Synthesis network g

Const 4x4x512

Noise¢

J

network f

style Q:r)(

—>» AdalN

lMapping

FC
FC

|
Conv 3x3

style @(

FC

—>» AdalN

FC
FC
FC
i

Y

l 4x4

Upsample
[
Conv 3x%3

style G:_D(

FC

—> AdalN

[
Conv 3x3

style G:D(

—>» AdalN

i 8%
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GAN Inversion

3 methods of inversion:

« Optimization-based (b)
* Learning-based (c)
« Hybrid (d)

[Xia et al., arXiv 2021]
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Semantic Image Editing

/

— —> el > —l
|
T iImage y
“he I1s tanned”

 Input: input image
+ target description
Output: manipulated image

Target description t

128



» Utilize pretrained StyleGAN model as a
natural prior for face images

* Project input image to the latent space
and perform edit in the vicinity of that
point.

129



TediGAN

A recent Inversion based
manipulation model.

* They proposed two
different approaches.

* |[n their first approach, they
earn a common visual-
INguistic semantic space.

* They train a text encoder
such that both modalities
are embedded to the same
space

He is a young
man with
short black
hair.

Visual-linguistic similarity

StyleGAN inversion

source

-0 He is a young

man.

text guidance

W latent space of StyleGAN

(Xia et al., CVPR 2021) 454



TediGAN

* Their second method Is optimization based.
* They use CLIP to provide a signal to directly optimize the latent code

he has no beard

\
C similarity
/ §

__________________________________________________________________________________

(Xia et al., CVPR 2021) 43,



StyleCLIP

» StyleCLIP is another inversion based manipulation model

* Direct optimization

« Similar to TediGAN, they use CLIP to optimize the latent code directly
* They Include a term to preserve identity

arg min DCLIP(G<w)7 t) + Ao Hw — wSHQ + )\ID»CID(U])
weW+

(Patashnik et al., ICCV 2021) 3,



StyleCLIP

* Images are inverted to latent code and residuals (delta in the figure).
» Textual input is not used during inversion, i1t is only used in the loss
* Required to train different mappers for different text prompts.

i —HL

mMm T g " StyleGAN

Lepp("surprised”,-)

R o
M’ —
A w
l .
L, Lip

(Patashnik et al., ICCV 2021) 43






CLIPInverter

id| g z z =
Cd! g << a g < a
= 15 = &
o m U)
Xout Xin
I a
1 ] a,
StyleCLIP-LM ; 8 ‘Ei HairCLIP
_______________________________________ LCLIP ttal;get
L o e e e e e e e e, —E—E—E—E e ——————— — = = — =
) o
a % C! ;;
> g B £ -
I < 1 g O
g = g &
iﬂ — ) =
Q ?‘) )

7 3
:
¢ p H CLIPInverter (Ours)
ta}'get

Frozen

Frozen

Frozen

Trained
135



CLIPInverter

Frozen Frozen Trained

An elderly cat with black hair a8 a8

Frozen
ttarget Frozen

| a

Frozen Trained

[An elderly cat with black hair. ] CLIP ﬂ
Haree mEmmEn|
- | CLIP &
: \ edepody @ /
C.v = _I |
A \CLIPAdapter
R | - - . a / CLIPRemapper
€3€ napastyle
2 [Crc ][] [
ReLU ReLU ReLU
PixelNorm CLIPAdapter : 1e3C : : ;‘C : : ;C :
Convad ][] [
. [ ReLU | [ ReLU | [ReLU |
Ada-lGN < L_FC | L_FC | | _FC |
LeakyReLU \
Aw, (113 1-0))* AW, T} P
r _I l : AW18 W1 % + ( 0(1) Wi \ StyleGANZ
I - : Aw, A TTT*a; + (1-ay)* A, OCTTTT P G
' 2 | = : . . .
; ) - #E - Awyg *oyg + (1'a18)*A‘TV18 ?
R i e B & = S
Wi Wp...Wig

(Baykal et al., ACM TOG 2023) 34



CLIPInverter

He is smiling and has gray hair, high cheekbones, 7 An old norwegian forest cat This smaller bird is bright red and has black wings.
eyeglasses, double chin, and bags under eyes.

She has bangs. She is young and wears lipstick. This is a small bird with green, yellow and blue on
the breast, cheek patches, and crown.

; AR ST v ¥ -
This woman is attractive and has arched eyebrows, A fearful cat with grey hair This bird is brown with yellow and has a long,
straight hair, and blond hair. pointy beak.

(Baykal et al., ACM TOG 2023) 5,



CLIPInverter

Original Smiling Smiling+Chubby Smiling+Chubby-+Beard

(Baykal et al., ACM TOG 2023) ;54



CLIPInverter

The person has bags under eyes. < » She has wavy hair. She is wearing lipstick. She is young,.

A

- -
r ‘ " F . ‘ -~ l ’ P 5 . s . ” ‘” A
- - ' - * A L -~ -

This person is young and has brown hair. < » This person has mustache.

(Baykal et al., ACM TOG 2023) ;54



CLIPInverter

An elderly cat with grey hair. « A ' ' “ “ : ' > A british shorthair kitty.

‘An o cat. «

—~ A cat with gihgef hair.

(Baykal et al., ACM TOG 2023) 4



CLIPInverter

This bird has a small head, a light grey belly and brown wings with long skinny black tarsus. « > This bird has wings that are blue and has a white belly.

(Baykal et al., ACM TOG 2023) 44



CLIPInverter

(Baykal et al., ACM TOG 2023) 4,



Original TediGAN-B StyleCLIP-LO StyleCLIP-GD StyleMC HairCLIP

CLIPInverter

This person has bushy eyebrows, pointy nose, black hair, bags under eyes, and Big lips. He wears necktie.

N It - ’ N Zi S
ig nose, and high ¢

He wears necktie. He has bushy eyebrows, mouth slightly openr, bags under eyes, b eekbones. He is smiling. (Baykal et al., ACM TOG 2023)
y 143



CLIPInverter

Original TediGAN-B  StyleCLIP-LO HairCLIP Ours

e ' : O o ' ‘A" o= R =
of t’r L “I_j -

This bird has a yellow head with brown an

This is a small yellow bird with greenish wings and a small pointed beak.  (Baykal et al., ACM TOG 2023) ,,,



CLIPInverter

Original TediGAN-B StyleCLIP-LO  HairCLIP Ours

=

= e U 11 =
’ ’ /:‘:

A kitten with white hair. | ~ (Baykal etal., ACM TOG 2023)



HyperGAN-CLIP

—

hyper‘neTwor'k\

@ module

C%arget Csource

CLIP
encoder

—

He has bags
under eyes,

ngd

bushy eyebrows,
mustache, and
gray hair

hypernetwork
.
modules

CSOUIC €

€3
CLIP
encoder

|
K target domain | reference image text prompt /

* a flexible framework that is capable of handling domain adaptation,

reference-guided image synthesis and text-guided image manipulation.
(Anees et al.,, SIGGRAPH Asia 2024)

source image

GS ource

@
®
>
z

=
>
<
)
S
-3
)
S

modulated parameters

pretfrained

generator

residual features

M

%modulm‘ed
generator

Y !

outputs

Z,
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HyperGAN-CLIP — Domain Adaptation

(Anees et al., SIGGRAPH Asia 2024) ,,;



HyperGAN-CLIP — Domain Adaptation

Source Target StyleGAN-NADA Adaptation-SCR Mind-The-Gap HyperDomainNet = DynaGAN Ours
i ’ ! - . ; X p y . -

5
e ."‘ . -

b
: )
.3

(Anees et al., SIGGRAPH Asia 2024) g



HyperGAN-CLIP — Reference-Guided Image Synthesis

(Anees et al., SIGGRAPH Asia 2024) 4



HyperGAN-CLIP — Reference-Guided Imaae Svnthesis

Source Target BlendGAN TargetCLIP-O TargetCLIP-E Ours

3 .
4 g . “v

(Anees et al., SIGGRAPH Asia 2024) g,



HyperGAN-CLIP — Text-Guided Image Manipulation

(Anees et al., SIGGRAPH Asia 2024) ;



HyperGAN-CLIP — Text-Guided Image Manipulation

Source TediGAN-B  StyleCLIP-LO StyleCLIP-GD  HairCLIP  CLIPInverter DiffusionCLIP Plug-and-play DeltaEdit Ours

Tanned (Anees et al., SIGGRAPH Asia 2024) 5,




Time-travel Rephotography

Reconstruction losses
N\ B N wd G
I . apat
Input Image Sibling blur kel
Color transfer loss P
‘ —— c
G g SyuindSuniieiyy A .{j
| S @ P
8 ¥+  Oupwm . s D(?;::‘
Latent code optimization Degradation

» Key idea: Use the StyleGAN2 framework to project old photos into the
space of modern high-resolution photos for enhancing their quality.
[Luo et al., SIGGRAPH Asia 2021] ;55



Time-travel Rephotography

Henry Ford Ry ] Thomas Edison
1919 Input 7904

[Luo et al., SIGGRAPH Asia 2021] 5,



Time-travel Rephotography

DeOldify InstColorization Zhang Zhang (FFHQ)
[Luo et al., SIGGRAPH Asia 2021] 55



Next Lecture:
Deep Generative Models
Part 3



