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Previously on CMP784

 Motivation for Variational Autoencoders
(VAEs)

* Mechanics of VAEs

e Separatibility of VAEs

* Training of VAEs

e Evaluating representations

e Vector Quantized Variational
Autoencoders (VQ-VAEs)
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Lecture Overview

* Predictive / Self-supervised learning
* Self-supervised learning in NLP
* Self-supervised learning in vision

* Multimodal Self-supervised learning

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Andrej Risteski's CMU 10707 class

—Jimmy Ba's UToronto CSC413/2516 class

—Fei-Fei Li, Ranjay Krishna, Danfei Xu’s C5231n class

—Justin Johnson’s EECS 498/598 class



Supervised vs Unsupervised Learning

Supervised Learning Unsupervised Learning

Data: (x, y) Data: x

X is data, y is label Just data, no labels!

Goal: Learn a function to map x ->y Goal: Learn some underlying

hidden structure of the data

Examples: Classification, regression, object
detection, semantic segmentation, image
captioning,

sentiment analysis, etc.

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.



Unsupervised Learning

* Learning from data without labels.

* What can we hope to do:

— Task A: Fit a parametrized structure (e.g. clustering, low-dimensional subspace,
manifold) to data to reveal something meaningful about data (Structure learning)

— Task B: Learn a (parametrized) distribution close to data generating distribution.
(Distribution learning)

— Task C: Learn a (parametrized) distribution that implicitly reveals an
“embedding” /“representation” of data for downstream tasks.

(Representation/feature learning)

* Entangled! The “structure” and “distribution” often reveals an embedding.



Supervised Learning

e Supervised learning is not how we learn!

Babies don’t get supervision for
everything they see!



Solution: Self-Supervised Learning

* Lets build methods that learn from "raw” data — no annotations required

e Unsupervised Learning: Model isn’t told what to predict. Older terminology,
not used as much today.

 Self-Supervised Learning: Model is trained to predict some
naturally-occurring signal in the raw data rather than human annotations.



Solution: Self-Supervised Learning

* Lets build methods that learn from "raw” data — no annotations required

e Unsupervised Learning: Model isn’t told what to predict. Older terminology,
not used as much today.

 Self-Supervised Learning: Model is trained to predict some
naturally-occurring signal in the raw data rather than human annotations.

* Semi-Supervised Learning: Train jointly with some labeled data
and (a lot) of unlabeled data.



Self-Supervised Learning

* Given unlabeled data, design supervised tasks that induce a good
representation for downstream tasks.

* No good mathematical formalization, but the intuition is to “force” the
predictor used in the task to learn something “semantically meaningfu
about the data.
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Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain a \ /
network on a pretext | Encoder: Decoder: Loss:
task that doesn’t e N G 0 Y Ly, y)
require supervision RS S - —

Input Image: x Features: ¢(x) Prediction: y
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Self-Supervised Learning: Pretext then Transfer

Step 1: Pretrain a
network on a pretext
task that doesn’t
require supervision

Step 2: Transfer
encoder to
downstream tasks
via linear classifiers,
KNN, finetuning

Input Image: x

Input Image: x

/

Encoder:

\ﬁ,

Features: ¢(x)

/

Encoder:

\g

-

Decoder: Loss:

) Ly, y)
\

Prediction: y

Downstream tasks:

Image classification, object
detection, semantic
segmentation

Features: ¢(x)

11



Self-Supervised Learning: Pretext then Transfer

Discriminative: Predict
something about the input

Generative: Predict part of
the input signal

 Autoencoders (sparse, signal
denoising, masked) * Context prediction
* Autoregressive * Rotation
* GANs * Clustering
* Colorization * Contrastive

* |npainting

Multimodal: Use some
additional signal in addition
to RGB images

e Video
e 3D
e Sound

* Language

12



Self-Supervised Learning

» Predict any part of the input from any
other part.

» Predict the future from the past.

» Predictt

» Predictt

ne future from the recent past.

ne past from the present.

» Predict the top from the bottom.

» Predict the occluded from the visible

» Pretend there is a part of the input you
don’t know and predict that.

«— Past

€sen

Future —

?El .
!

Slide by Yann LeCun
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Self-Supervised
Learning in NLP



Word Embeddings

* Semantically meaningful vector representations of words

Tiger
5 Lion

Example: Inner product (possibly scaled,
i.e. cosine similarity) correlates with word

similarity.

Table
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Word Embeddings

* Semantically meaningful vector representations of words

\Tf/

"The service is great,
fast and friendly!"

Example: Can use embeddings to do

- m sentiment classification by training a
l simple (e.g. linear) classifier
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Word Embeddings

* Semantically meaningful vector representations of words

I

English: "It’s raining
outside".

l Google Translate Example: Can train a “simple” network that if

- fed word embeddings for two languages, can
l effectively translate.

German: "Es regnet
draussen".

17



Word Embeddings via Predictive Learning

* Basic task: predict the next word, given a few previous ones.

Late: 0.9

) _ Early: 0.05
plelels

| am running a | little]| 7?77 Tired: 0.04

Table: 0.01

In other words, optimize for

max Y 10gpe (Tele-1, 242, ... Tr-L)
t
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Word Embeddings via Predictive Learning

* Basic task: predict the next word, given a few previous ones.

max Y 1ogpe (2elawe—1,Tr-2,. .. Te 1)
t

Inspired by classical assumptions in NLP that the underlying distribution
is Markov —that is, x, only depends on the previous few words.

(Of course, this is violated if you wish to model long texts like paragraphs / books.)

The main issue: The trivial way of parametrizing Do (xt ]xt_l, LTt 2y, xt_L)
is a “lookup table” with VL entries.

19



Word Embeddings via Predictive Learning

e Basic task: predict the next word, given a few previous ones.

meaxzt: log pe (x¢|Ti—1, 042, .., T4_1)
i-th output = P(w, = i| context) . ] .y
[Bengio-Ducharme-Vincent-Janvin 2003]: A neural
Lo parametrization of the above probabilities.
most | computation here \\‘ Maln |ngr€d|ents.
‘\‘  Embeddings: A word embedding C(w) for all words w in
tanh ! dictionary.

* Non-linear transforms: Potentially deep network taking as
inputs i, C(x,_,), C(x,_,),...,C(x,_;), and outputting some vector
0. Can be recurrent net too.

i * Softmax: Softmax distribution for x, with parameters given by
share parameters

across words 0]
.

index for w,_, index for w;_, index for w;_;
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Word Embeddings via Predictive Learning

* Related: predict middle word in a sentence, given surrounding ones.

m@ax E 1ng€ (xtlwt—l}) ceey L1, Lt41, - - - ,th_|_L)
t

CBOW (Continuous Bag of Words): proposed by Mikolov et al. ‘13

INPUT PROJECTION OUTPUT

Parametrization is chosen s.t.

w(t-2) L

wit) | O\ o pe (xt|xt—L7 . o . ,th_l, xt—|—]_7 o o e 7£Et—|—L) X

_ e t+L
L/ \ vectors v

wes2) | vectors w
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Word Embeddings via Predictive Learning

* Related: predict middle word in a sentence, given surrounding ones.
t+L

mpx Y Y towpo (ol

1=t— L,17#t

Skip-Gram: also proposed by Mikolov et al. 13

Input projection  output
: Parametrization is chosen s.t. Do (CUZ \a:t) X exXp (”Uxi : th)

/ W) In practice, lots of other tricks are tacked on to deal with the slowest part of
training: the softmax distribution (partition function sums over entire

T \— vocabulary).
w(t+1)

Common ones are negative sampling, hierarchical softmax, etc.

w(t)

vectors w
\. w(t+2)

vectors v
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Word Embeddings via Predictive Learning

* Related: predict middle word in a sentence, given surrounding ones.

t+L

mex 35 3 logpa (aifar)

1=t— L,17#t

Skip-Gram: also proposed by Mikolov et al. 13

Input projection

w(t)

vectors w \
\
|

vectors v

output

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Tomas Mikolov 10/7/13 “n

There are quite a few differences between the skip-gram and the CBOW models. However, if you have a lot of training data, their performance should be comparable.
If you want to see a list of advantages of each model, then my current experience is:

Skip-gram: works well with small amount of the training data, represents well even rare words or phrases
CBOW: several times faster to train than the skip-gram, slightly better accuracy for the frequent words

This can get even a bit more complicated if you consider that there are two different ways how to train the models: the normalized hierarchical softmax, and the un-
normalized negative sampling. Both work quite differently.

Overall, the best practice is to try few experiments and see what works the best for you, as different applications have different requirements.

-
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Evaluating Word Embeddings

* First variant (predict next word, given previous ones) can be used as a
generative model for text. (Also called language model.) The other ones

cannot.

* |In former case, a natural measure is t

ne cross-entropy

4”&3‘1,33‘2,...,517T ]‘nge (CEST) —

|

43:61,562,...,36T Z 10gp9 (xt‘x<t)
(4

* For convenience, we often take exponential of this (called perplexity)

* If we do not have a generative model, we have to use indirect means.
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Evaluating Word Embeddings

* Intrinsic tasks: Test performance of word embeddings on tasks measuring
their “semantic” properties. Examples include solving

“which is the most similar word” queries, analogy queries (i.e. “man is to
woman as king is to ??”

e Extrinsic tasks: How well can we “finetune” the word embeddings to solve
some (supervised) downstream task. “Finetune” usually means train a
(relatively small) feedforward network. Examples of such tasks include:

— Part-of-Speech Tagging (determine whether a word is noun/verb/...),

— Named Entity Recognition (recognizing named entities like persons, places) — e.g.
label a sentence as Picasso[person] died in France[country], many others.

25



Semantic Similarity

e Observation: similar words tend to have larger (renormalized) inner products
(also called cosine similarity).

* Precisely, if we look at the word embeddings for words i,
< wi  w, > = cos (w;,w;) tends to be larger for similar words i,j

[Jwsl] " [[w; ]

Example: the nearest neighbors to “Frog” look like

0. frog

. frogs

. toad

litoria

. leptodactylidae
. rana

. lizard
eleutherodactylus 3. litoria 4. leptodactylidae 5. rana 7. eleutherodactylus

N UA WN R

* To solve semantic similarity query like “which is the most similar word to”, output
the word with the highest cosine similarity.
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Semantic Clustering

* Consequence: clustering word embeddings should give “semantically” relevant
clusters.

Kmeans Clustering with Genre

ex

2 @UIE

N .
experimental © « * " -

t-SNE projection of word embeddings for artists (clustered by genre). Image from https://medium.com/free-code-
camp/learn-tensorflow-the- word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c¢99b5dcb3a
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Analogies

* Observation: You can solve analogy queries by linear algebra.

Precisely, w = queen will be the solution to:

Man _
King . )
argimin,, ”?}w — Uking — (Uwoman — Uman) ”
/ , | C0unltry and Clapital VeFtors Pro‘jected by‘ PCA |

China
Beijing
WO' | Ia n 1.5 Russia 7
Japan
Q u e e n L Moscow
Turkey Ankara Tokyo
05
Poland:
0r Germany: 4
France Warsaw
« ~Berlin
0.5 Italy: Paris
» - Athens
Greecer
1} Spanr Rome |
| ‘Madrid i
-1.5 - Portugal Lisbon
2 1 | I I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.
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Language Models (LMs)

* A statistical model that assigns probabilities to the words in a sentences.
* Most commonly: Given previous words, what should the next one be?

* Neural language model: Model the probability of words given others using
neural networks.
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Recurrent Architectures for LM

* We can use recurrent architectures.
* LSTM, GRU ...

* Great for variable length inputs, like sentences.

P(WI1"The") P(WI"...quick") P(WI". .brown") P{WI". .fox")

T T T T

[ Softmax ] [ Softmax ] [ Softmax ] [ Softmax ]

T T T T
—hg—-[ HI‘{N ]—h,—»[ H?N ]—hz—{ Hr}m ]—hSA{ H?M ]~hd—r

“ThE“ 'Ilqui'ck'll llbrnwn“ 'Ilfﬂx'll




Recurrent Architectures for LM

* What are some of the problems with recurrent architectures?
— Not parallelizable across instances.
— Cannot model long dependences.

— Optimization difficulties (vanishing gradients).

e Attention to the rescue!
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Transformers

Properties of the transformer architecture:
* Fully feed forward.

* Equivariance properties of scaled dot product
attention (important):
— How does the output change if we permute the
order of queries? (equivariance)

— How does the output change if we permute the
key-value pairs in unison? (invariance)

Qutput
Probabilities

| Softmax |}

| Linear |}

-
| Add & Norm Je=

Feed
Forward

—
| Add & Norm Je=

Multi-Head

s

1 )
~>{ Add & Norm

Feed Attention
Forward

i 7 t Nx

L Add & Norm Je=
Nx | —{"Add & Norm ) z

Masked
Multi-Head Multi-Head
Attention Attention
— J . )
Positional a A Positional
Encoding ] ?_® Encoding
Input QOutput
Embedding Embedding
Inputs Outputs

(shifted right)
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Performance Comparison

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d? 0O(1) O(logx(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)
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Pretraining Language Models

* Can we use large amounts of text data to pretrain language models?

* Considerations:
» How can we fuse both left-right and right-left context?

» How can we facilitate non-trivial interactions between input tokens?

* Previous approaches:
» ELMO (Peters. et. al., 2017): Bidirectional, but shallow.

» GPT (Radford et. al., 2018): Deep, but unidirectional.
»[BERT (Devlin et. al., 2018): Deep and bidirectional!
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BERT Workflow

e The BERT workflow includes:

» Pretrain on generic, self-supervised tasks, using large amounts of data (like all of
Wikipedia)

» Fine-tune on specific tasks with limited, l[abelled data.

* The pretraining tasks (will talk about this in more detail later):
» Masked Language Modelling (to learn contextualized token representations)

» Next Sentence Prediction (summary vector for the whole input)
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BERT Architecture

ﬁw
&

Mask LM Mask LM
& 2 3

[ Ty l[ Tiser) ][ Ty ]

BERT
Ereus) E, Ey E[SEP] E,/ Env
ﬂ (i (I L] L] L[

™
[cLs] | Tok1 | .. | Tok N [SEP] Tok1 | ... TokM

I | | |

Masked Sentence A Masked Sentence B
*
Unlabeled Sentence A and B Pair

Pre-training

Start/End Spam

D——r—
(e ) (o )(Teen JUT0 )
P>
'l - ™ BERT
Ecs || E; Ev || Eger || E E,,
— L] LI LI L[ ()
m Tok1 | .. Tok N [SEP] Tok 1 TokM

Question Paragraph
*
Question Answer Pair

Fine-Tuning
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BERT Architecture

Properties:
* Two input sequences.

» Many NLP tasks have two inputs (question answering, paraphrase detection, entailment
detection etc. )

 Computes embeddings
» Both token, position and segment embeddings.

» Special start and separation tokens.

e Architecture

» Basically the same as transformer encoder.

* Qutputs:
» Contextualized token representations.

» Special tokens for context.
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BERT Embeddings

4 ™ i ™ i
Input [CLSIW my || dog is | cutew [SEP] he | likes ” play H##ing ‘ [SEP]
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
== L == L == == == L == == -+
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
+= b =+ . -+ + =+ L += -+ =+
Position
Embeddings EO El E2 E3 E4 ES E6 E7 E8 E9 ElO

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

* How we tokenize the inputs is very important!
* BERT uses the WordPiece tokenizer (Wu et. al. 2016)



(Aside) Tokenizers

* Tokenizers have to balance the following:
— Being comprehensive (rare words? translation to different languages)
— Total number of tokens

— How semantically meaningful each token is.

* This is an activate area of research.
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Pretraining tasks

* Masked Language Modelling, i.e. Cloze Task (Taylor, 1953)

* Next sentence prediction

40



Masked Language Modelling

* Mask 15% of the input tokens. (i.e. replace with a dummy masking token)
* Run the model, obtain the embeddings for the masked tokens.

* Using these embeddings, try to predict the missing token.

* ”| love to eat peanut ____ and jam.” Can you guess what’s missing?

* This procedure forces the model to encode context information in the
features of all of the tokens.

41



Next Sentence Prediction

e Goal is to summarize the complete context (i.e. the two segments) in a
single feature vector.

* Procedure for generating data
» Pick a sentence from the training corpus and feed it as "segment A”.
» With 50% probability, pick the following sentence and feed that as “segment B”.
» With 50% probability, pick the a random sentence and feed it as "segment B”.

e Using the features for the context token, predict whether segment B is the
following sentence of segment A.

* Turns out to be a very effective pretraining technique!
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Fine Tuning

Procedure:

* Add a final layer on top of BERT representations.
* Train the whole network on the fine-tuning dataset.
* Pre-training time: In the order of days on TPUs.

* Fine tuning task: Takes only a few hours max.
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Fine Tuning

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k ;
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 860  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 648  79.8 90.4 36.0 73.3 849 568 71.0
OpenAI GPT 82.1/81.4 703  87.4 91.3 45.4 80.0 823 560 75.1
BERTgAsE 84.6/83.4 712 905 93.5 52.1 85.8 889  66.4 79.6
BERT | ArGE 86.7/85.9 721 927 94.9 60.5 86.5 893  70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.>® BERT and OpenAlI GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.



Self-Supervised
Learning in Vision



Context Prediction

Model predicts relative location of
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015 46



Context Prediction

Model predicts relative location of

two patches from the same image.

Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Classification over 8 positions

[ 1
I
/ Concatenate \
[ ] [ ]
—
CNN Shared CNN
Weights

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction

Model predicts relative location of

two patches from the same image.

Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

Two networks with shared
weights sometimes called a

”"Siamese network”

Classification over 8 positions

[ 1
I
/ Concatenate \
[ ] [ ]
—
CNN Shared CNN
Weights

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction

Model predicts relative location of

two patches from the same image.

Discriminative pretraining task

Intuition: Requires understanding
objects and their parts

“For experiments, we use a
ConvNet trained on a K40 GPU for
approximately four weeks.”

Classification over 8 positions

[ 1
I
/ Concatenate \
[ ] [ ]
—
CNN Shared CNN
Weights

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction
Space

Input Patch

: Nearest Neighbors in Feature

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction: Nearest Neighbors in Feature
Space

Input Patch Random Init

"~ B F
ﬂl . ‘é ..
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Context Prediction: Nearest Neighbors in Feature

Space

Input Patch

o ol
=\ £ \LE

Random Init Supervised AlexNet

# F;VF; ok =

T =
| ....NWK fi “ ;‘ifl-

\ PR b -
1 ! 2 020 L, WO

B
A .
i

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction: Nearest Neighbors in Feature

Space
Input Patch Random Init Supervised AlexNet Their Features
Al RTE Rl
i ; !N— Ml (A
Works well! — ' . )‘R ALJLLIr(-m A = i o
Similar to -ﬁ
AlexNet

\M\ ﬁi "L‘if’ll &1

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Context Prediction: Nearest Neighbors in Feature

Space
Input Patch Random Init Supervised AlexNet Their Features
AN N
Works welll —= . - b ‘xdl

g =
AlexNet _ ’ -i
: lz \%\ .ﬁiﬁﬂ 1! & LETK

Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Jigsaw puzzles

Rather than predict relative position of two patches, instead
predict permutation to “unscramble” 9 shuffled patches

o A - e[ —

Shd

i-——-—»/—

' weim
‘—'—-‘" - - o[ —
H*} F/_4608/4096/100 | ¢4

N

w

T SR B

i oS

wﬂ‘ fc7 fcg softmax
6 —t “/—
Permutation Set : M
index permutation Reorder patches according to R “f@’
the selected permutation i - — H.4'-£:-—’- H/—
64 946832517 2 N N - S .-
? — ) e - /—
cé

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016 55



Jigsaw puzzles

Problem: These methods only work on
patches, not whole images!

Rather than predict relative position of two patches, instead
predict permutation to “unscramble” 9 shuffled patches

L R O

;]

o~

Permutation Set

index permutation Reorder patches according to

the selected permutation

~N

(0]

9.4,683251,7

0

‘—"3 2 -—.—»/—

4 w@ -_ -_’l 4608/4096 100 L | &4

w‘” fc7 fc8 softmax
— “/—

i
Shored
weights

P =i =
., ) f—

Shared

Shared

weights
fcé

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016



Context Encoders: Learning by Inpainting

* The most obvious analogy to word embeddings: predict parts of image from remainder of
image.

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 57



Context Encoders: Learning by Inpainting

* The most obvious analogy to word embeddings: predict parts of image from remainder
of image.

S HHEH

(c) Context Encoder (d) Context Encoder
(L2 loss) (L2 + Adversarial loss)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Context Encoders: Learning by Inpainting

* The most obvious analogy to word embeddings: predict parts of image from remainder
of image.

J
J

Architecture:
An encoder E takes a part of image, constr

a representation.

Channel-wise
Fully
Connected

Decoder ) E ( .

— . A decoder D takes representation,
tries to reconstruct missing part.

u
Encoder)
¢

Encoder Features
Decoder Features

* Much trickier than in NLP:
As we have seen, meaningful losses for vision are much more difficult to design. Choice
of region to mask out is much more impactful.

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 59



Context Encoders

Input Image

: Learning by Inpainting

""""-"

' 88 | Encoder:

-

Decoder:

¢
—

Y
\

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016 60



Context Encoders: Learning by Inpainting

Input Image

-AF,

Encoder:

\

Decoder:

¢
—

/g

Predict Missing Pixels

Human Artist

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Context Encoders: Learning by Inpainting

Input Image

R L

Encoder:

\

Decoder:

¢
—

/g

Predict Missing Pixels

L2 Loss
(Best for feature learning)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Context Encoders: Learning by Inpainting

Input Image

4
{
hll

Encoder:

\

Decoder:

¢
—

/g

Predict Missing Pixels

L2 + Adversarial Loss
(Best for nice images)

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Inpainting

* The most obvious analogy to word embeddings: predict parts of image from remainder of
image.

* How to choose the region?

Task should be “solvable”, but not “too easy”.

* Fixed (central region): tends to produce less
generalizeable representations

 Random blocks: slightly better, but square borders
still hurt.

 Random silhouette (fully random doesn’t make
sense — prediction task is too ill-defined) — even
better!

(a) Central region (b) Random block (c¢) Random region

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Predicting rotations

* In principle, what we want is a task “hard enough”, that any model that does well on it, should learn
something “meaningful” about the task.

. . = ’_Objegves:_ ]

* Task: predict one of 4 possible e i [r—— |

rotations of an image. Bed ' BEEa > model F() dB |
Rotate 0 degrees o ’ Predict 0 degrees rotation (y=0)

Rotate;i image: X° | |

— : ConvNet > Maximize prob.

—> — —> AN —>

g(X,y 1) % model F(.) , ’ FI(XI) ‘

Rotate 90 degrees 1 o Predict 90 degrees rotation (y=1) |
Rotated image: X ’

- X B | | ‘
ConvNet - Maximize prob.
model F(.) X
_— ’ Predict 180 degrees rotation (y=2) l
|
|
T ConvNet Maximize prob.
—» g(X,y=3) H%—’ model F(.) — > F3(X3I; |

Rotate 270 degrees - | | - i -
Rtz image: X Predict 270 degrees rotation (1—3) |

—» g(X,y=2) — P>

Rotate 180 degrees
Rotated image: X’

Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018 65



Predicting rotations

* In principle, what we want is a task “hard enough”, that any model that does well on it, should learn
something “meaningful” about the task.

. . |_Objegves:_ ]

* Task: predict one of 4 possible ConNet [ra—— |

rotations of an image. Bd ' B > model F() Py |
Rotate 0 degrees ’ Predict 0 degrees rotation (y=0)

Rotated image: X° | |
— Representation: penultimate |

layer of a neural net used to > exym) —ega ComNet ||| Maximize prob. ‘

del F(. 1(y1
solve task. ey | P

Rotate 90 degrees Predict 90 degrees rotation (y=1) ‘

Rotated image: X' ’
| | ( |
B o

— Intuition: a rotation is a global
transformation. ConvNets are

. ‘ _ ConvNet Maximize prob.
much better at capturing local Bd e modelF) | | T Fx)
transformations (as convolutions mage X R D o iateted tmage: ¥ | Predict 180 degrees rotation (y=2) |
are local), so there is no obvious | |
way to “cheat”. - N " |
. - R b~
Rotate 270 degrees Rotatod image® X° B | _Predic—t 27(Eegref rota_tion (l=3)J

Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018 66



Predicting rotations

* In principle, what we want is a task “hard enough”, that any model that does well on it, should learn
something “meaningful” about the task.

. . |_Objegves:_ ]

* Task: predict one of 4 possible B ConNet [ra—— |

rotations of an image. B BB > model F() Py |
Rotate 0 degrees 7 ’ Predict 0 degrees rotation (y=0)

Rotated image: X* |

|
. . i - ’ : ‘
obvious artifacts the model can | e i _ p ConvNet » Maximize prob. ‘

model F(.) F(x!
make use of to cheat. = o L
Predict 90 degrees rotation (y=1) ‘

— Less finicky to get right: no

Rotate 90 degrees
Rotated image: X' ’

: . o |
ConvNet Maximize prob.
modelFQ) | | T X%
il | Predict 180 degrees rotation (y=2) |
| |
B '@,\ ‘ §_> ConvNet p Maximize prob.
—» g(X,y=3) —» model F(.) LX) ‘
o | Predict 270 degrees rotation (y=3) |

— The 90 deg. rotations also don’t
introduce any additional artifacts

due to discretization. — g(X,y=2) —»

Rotate 180 degrees
Rotated image: X’

Rotate 270 degrees
Rotated image: X°

Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018 67



Image coloring

o)

X € ]RHxle

Grayscale image: L channel

L

Color information: ab channels

mtl

-

? c RHEXWx2

ab

Source: Richard Zhang / Philip Isola
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Image coloring

Grayscale image: L channel

X € RHXWXI

L

—

-

Source: Richard Zhang / Philip Isola

69



Learning features from colorization:
Split-brain Autoencoder

* ldea: cross-channel predictions

<)

Split-Brain Autoencoder

Source: Richard Zhang / Philip Isola 70



Learning features from colorization:
Split-brain Autoencoder

* ldea: cross-channel predictions

Source: Richard Zhang / Philip Isola 71



Learning features from colorization:
Split-brain Autoencoder

* ldea: cross-channel predictions
RGB channels HHA depth channels

"\ Predicted
RGB-HHA RGB-HHA
image image

HHA depth channels RGB channels

Split-Brain Autoencoder

Source: Richard Zhang / Philip Isola 72



Split-brain Autoencoder: Transfer learned
features to supervised learning

* Self-supervised learning
on ImageNet
(entire training set).

e Use concatenated
features from F, and F,

 Labeled data is
from the Places
(Zhou 2016).

Top-1 Accuracy

50

@@ Places-labels

|IHE ImageNet-labels

@®® Kraehenbuehl et al.
V-V Gauss

||©-O Doersch et al.

@-@® Wang & Gupta

©-© Pathak et al.

@-@® Zhang et al.

O-O Owens et al.

©-® Donahue et al.

< Split-Brain Auto(cl,cl)

Source: Richard Zhang / Philip Isola

supervised

«~—— this paper
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Contrastive Representation Learning
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Contrastive Representation Learning

-

\.

XZ
$—|—

T

reference
positive

negative
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A formulation of contrastive learning

e What we want:

score(f(x), f(x™)) >> score(f(x), f(x7))

 X: reference sample; x* positive sample; x- negative sample

e Given a chosen score function, we aim to learn an encoder function f that

vields high score for positive pairs (x, x*) and low scores for negative pairs
(X, X7).
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A formulation of contrastive learning

* Loss function given 1 positive sample and N - 1 negative samples:

L=—-Ex

log

exp(s(f(z), f(z™))

exp(s(f(z), f(z+)) + 3o exp(s(f (@), f(z]))




A formulation of contrastive learning

* Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

exp(s(f(z), f (™))

log

exp(s(f (@), f(zT)) + 2;_ exp(s(f(2), f(z]))
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A formulation of contrastive learning

* Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f (™))

L=—-Ex |log

exp(s(f(z), f(z")) + X;_; exp(s(f(2), f(z]))

* This seems familiar..

score for score for the N-1
the positive pair negative pairs
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A formulation of contrastive learning

* Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f (™))

N-—1 _
exp(s(f(z), f(z7)) + ;1 exp(s(f(z), f(z}))
score for score for the N-1
the positive pair negative pairs

* This seems familiar..

Cross entropy loss for a N-way softmax classifier!
i.e., learn to find the positive sample from the N samples



A formulation of contrastive learning

* Loss function given 1 positive sample and N - 1 negative samples:

(/2 1)
exp(s(f(z), f(z)) + 2,1 exp(s(f(z), f(z}))

e Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI|f(z), f(x™)] — log(N) > —L

* The larger the negative sample size (N), the tighter the bound



SimCLR: A Simple Framework for Contrastive Learning

* Cosine similarity as the score function: 2 < Maximize agreement .z
T A
u v
S\U,v) = g(+) Tg(.)
. (u,v) [|u[|[]v] ,

* Use a projeCuuii newwuin 11y-) w projec h; +— Representation — h;
features to a space where contrastive | g
learning is applied. Q e

* Generate positive samples through dat: . %
augmentation: p

. . ] v 7\ | FJKY
* random cropping, random color distortion v

and random blur.

Source: Chen et al., 2020
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SimCLR: Generating positive samples from data
augmentation

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur () Sobel filtering
Source: Chen et al., 2020 83



SimCLR: Generating positive samples from data

augmentation

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {z;}2_, do
forallk e {1.....N}do

draw two augmentation functions t~ 7, t' ~T
/# the first augmentation

Tox—1 = U(zk)
/ ' ( - QO -0 11
hok—1 = J(@2k—1) # representation
2k—1 = g(hgk_l) # p]‘Oj@CliOﬂ

# the second augmentation
= — 4/

hor = J(®2k) # representation

zor = g(hak) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do

si; = z; zi/(|zillllz;]) # pairwise similarity
end for

. & e exp(si,;/7)
define E(Z,]) as E(Z,J)— log el Likei) exp(si,k/T)

L=LN  [6(2k—1,2Kk) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020
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SimCLR: Generating positive samples from data

augmentation

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, 7.
for sampled minibatch {z;}2_, do
forallk e {1.....N}do

draw two augmentation functions t~ 7, t' ~T
/# the first augmentation

/

T Lo = t’(mk)

Tox—1 = U(zk)
hok—1 = J(@2k—1) # representation
29k —1 = g(hgk_l) # projection
# the second augmentation

hor = J(®2k) # representation

zor = g(hak) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do

si; = z; zi/(|zillllz;]) # pairwise similarity
end for

. & . A exp(si,;/7)
define E(Z,]) as E(Z,J)— log el Likei) exp(si,k/T)

1 N PP ) PP - = |
L= 35 2p=1 [E2E=1,2F) F 1(2k, 2k =T1]]
update networks f and g to minimize £

end for
return encoder network f(-), and throw away g(-)

-—

InfoNCE loss:
Use all non-
positive samples
in the batch as x

Source: Chen et al., 2020 g



SimCLR: Generating positive samples from data
d ugmentation Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}2_, do
forallk e {1.....N}do

draw two augmentation functions t~ 7, t' ~T
/# the first augmentation

Top—1 = t(xr)

Generate a positive pair __—

. hor—1 = J(@ok—1 # representation
by sampling data Zokp—1 = g((h%_lg iprojeclion
augmentation functions # the second a-~—entation
I Tor = t'(xk) |
hok = f(X2k) # representation
zor = g(hak) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; = z; zi/(|zillllz;]) # pairwise similarity InfoNCE loss:
end for o Use all non-
Iterate through and use define £(i, j) as | £(i, j) = —log s "0 |« positive samples
each of the 2N sample as ——— £ = 5k Lpy [((ZF=1,2k) F (2, 2k =1)] in the batch as x°
reference, compute update networks f and g to minimize £
end for
average loss return encoder network f(-), and throw away g(-)

Source: Chen et al., 2020 26



SimCLR: mini-batch training

” o -

list of positive pairs

“ . encoder

N

A

= R2NXD

I

Each 2k and 2k + 1
element is a positive pair

r,.
Z5 Zj

S;.7 —
AR
“Affinity matrix”

2N

2N
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SimCLR: mini-batch training

” o -

list of positive pairs

“ . encoder

N

S

7 C R2NXD

I

Each 2k and 2k + 1
element is a positive pair

T . .
Zi %]

Si.qa —
N AN (EA
“Affinity matrix”

“m
“m
“m

2N

2N

-= classification label for each row
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Training linear classifier on SIimCLR features

* Train feature encoder on

B B i e O P .. *SimCLR (4x) ImageNet (entire training set)
3 -~ HSIMCLR {24 using SimCLR.
0 eCPCv2-L
© .
5 'O *simCLR Lo eome MO0 * Freeze feature encoder, train a
O . -C X . . ° .
S as 9 oMoCo (2x)  "MPIM linear classifier on top with
& QCPCVZ PIRL-ens.
(= PIRL SELEIGAN labeled data.
3 60 Q't":co hae
>
S |
= 99 elnstDisc *Rotation

25 50 100 200 400 626
Number of Parameters (Millions)

Source: Chen et al., 2020 89



Training linear classifier on SIimCLR features

Label fraction

Method Architecture 1%  10% * Train feature encoder on
Top 5 . . .
, , i ImageNet (entire training set)
Supervised baseline ResNet-50 484  80.4 . ]
Methods using other label-propagation.: using SIMCLR.
Pseudo-label ResNet-50 51.6 82.4 . .
o
VAT+Entropy Min. ~ ResNet-50 170 834 * Finetune the encoder with 1% /
UDA (w. RandAug) ResNet-50 - 88.5 0
FixMatch (w. RandAug) ResNet-50 - 89.1 10% of labeled data on
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 Ima ge Net.
Methods using representation learning only:
InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552  78.8
PIRL ResNet-50 57.2 83.8
CPC v2 ResNet-161(x) 77.9 91.2
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2

SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

Source: Chen et al., 2020 90



SimCLR design choices: projection head

I I * Linear / non-linear projection heads
H ll I I improve representation learning.
&50 PrOJectlon
= Linear . . .

20 [ BB I * A possible explanation:

0 .? i * contrastive learning objective may discard

£l S o useful information for downstream tasks
PrOJectlon output dlmenS|onaI|ty

* representation space z is trained to be
invariant to data transformation.

. Maximize agreement .
[ o)} o) } * by leveraging the projection head g(:), more
hi < Representation—  h; information can be preserved in the h
£ 1) representation space
Py T

Source: Chen et al., 2020 91



SimCLR design choices: large batch size

70.0
 Large training batch size is
67.5 ] ]
crucial for SimCLR!

65.0

62.5 ‘
260.0 * Large batch size causes large
~ Batch size . .

57.5 256 memory footprint during

Em 512 .

55.0 T backpropagation:

s u ol o1 requires distributed training

50.0 l:l 8-1-23-1 on TPUS (lmagENEt

' 100 200 300 400 500 600 700 800 900 1000 .
Training epochs experiments)

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '’

Source: Chen et al., 2020

92



Momentum Contrastive Learning (MoCo)

contrastive loss o grad * Key differences to SimCLR:
T * Keep a running queue of keys (negative
similarity - / samples).
 Compute gradients and update the
q kO kl k2 oo encoder only through the queries.
queue * Decouple min-batch size with the
number of keys: can support a large
A momentum number of negative samples.
encoder
xquery l'gey xlfey Q?lgey o

Source: He et al., 2020 93



Momentum Contrastive Learning (MoCo)

contrastive loss o grad * Key differences to SimCLR:
T * Keep a running queue of keys (negative
similarity - / samples).

 Compute gradients and update the

q kO kl k2 oo encoder only through the queries.
queue * Decouple min-batch size with the
number of keys: can support a large
momentum number of negative samples.
encoder
encoder * The key encoder is slowly progressing

through the momentum update rules:

uer key key key
e Ty~ Ty Ty ... B «— mby + (1 — m)fq

Source: He et al., 2020
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MoCo

Generate a positive pair
by sampling data
augmentation functions

No gradient through
the positive sample

Update the FIFO negat“’e enqueue (queue, k) # enqueue the current minibatch

sample queue

//////' # positive logits: Nxl1
1l _pos = bmm(g.view(N,1,C), k.view(N,C,1))

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# £f_ g, f_k: encoder networks for query and key
# queue: dictionary as a queue of K keys (CxK)
# m: momentum

# t: temperature

f k.params = f_qg.params # initialize

for x in loader: # load a minibatch x with N samples
aug (x) # a randomly augmented version

aug (x) # another randomly augmented version

XX
~Q
I

f g.forward(x_qg) # queries: NxC
f k.forward(x k) # keys: NxC
k.detach() # no gradient to keys|

~Q
g n

# negative logits: NxK
l_neg = mm(gq.view(N,C), queue.view(C,K))

# logits: Nx (1+K)
logits = cat ([l_pos, 1l_neg], dim=1)

# contrastive loss, Eqgn. (1)
labels = zeros(N) # positives are the 0-th

A

loss = CrossEntropyLoss (logits/t, labels)

# SGD update: query network
loss.backward()
update (f_g.params)

# momentum update: key network

f_k.params = mxf_k.params+ (1l-m)xf_qg.params

# update dictionary

dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Use the running queue of

«— keys as the negative

samples

InfoNCE loss

Update f_k through
momentum

Source: He et al., 2020

95



MoCo v2

* A hybrid of ideas from SimCLR and
MoCo:

* From SImCLR: non-linear projection
head and strong data augmentation.

* From MoCo: momentum-updated
gueues that allow training on a large

number of negative samples (no TPU
required!).

loss

loss
affinity

affinity - - HH

& &

|

momentum
encoder
encoder

oy o

(a) end-to-end

concat.

]

queue

encoder encoder

(b) Momentum Contrast

Source: Chen et al., 2020
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Momentum Contrastive Learning (MoCo)

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs acc. APso AP APy
supervised 76.5 81.3 53.5 58.8
MoCo vl 200 60.6 81.5 559 62.6
(a) v 200 66.2 82.0 564 62.6

(b) v 200 63.4 82.2 56.8 63.2

(©) v v 200 67.3 82.5 572 639

(d) v v oo v 200 67.5 82.4 57.0 63.6

(e) v v o v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (i1) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

e Key takeaways:

* Non-linear projection head and strong
data augmentation are crucial for

contrastive learning.

Source: Chen et al., 2020
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Momentum Contrastive Learning (MoCo)

unsup. pre-train ImageNet

case MLP aug+ cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 300 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

e Key takeaways:

* Non-linear projection head and strong
data augmentation are crucial for

contrastive learning.

e Decoupling mini-batch size with
negative sample size allows
MoCo-v2 to outperform SimCLR with

smaller batch size
(256 vs. 8192).

Source: Chen et al., 2020
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Momentum Contrastive Learning (MoCo)

e Key takeaways:

* Non-linear projection head and strong
data augmentation are crucial for

mechanism  batch memory /GPU time / 200-ep. contrastive learning.
MoCo 256 3.0G 53 hrs D . . . .
* Decoupling mini-batch size with
end-to-end 256 7.4G 65 hrs _p & _
end-to-end 4096 93.0GT n/a negative sample size allows
Table 3. Memory and time cost in 8 V100 16G GPUs, imple- MoCo-v2 to outperform SimCLR with
mented in PyTorch. ': based on our estimation. smaller batch size

(256 vs. 8192).

e ... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al., 2020 99



Instance vs. Sequence Contrastive Learning

Predictions

¥ 3 { 3
Z T Zt41 T Zt42 T 243 T 244
/ Jenc \ / gcnc\ /gcnc\ / Yenc \ / Yenc \ / Genc \ / Genc \ / Yenc \

| T3 | T2 [ Te-1 Ty | Teyr | T2 | Ty Ttt4
'1"ﬁ\“’r"P\'1W"W"ﬁ'ﬁ“ﬂﬁ*‘f‘fﬁw s s

Source: van den Oord et al., 2018

attract

Instance-level contrastive learning: contrastive Sequence-level contrastive learning:
learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SimCLR, MoCo, MoCo v2 Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

Predictions

s * Contrastive: contrast between “right”
and “wrong” sequences using
\ 3 ; contrastive learning.

Zt+1 Zt4+2 2t+3 Zt+4

* Predictive: the model has to predict

/g\ /g\ /g\ /g\ /g\ /g\ /g\ future patterns given the current

Tt—-3 | Tt—2 11+1‘ 11+2 | T1+3 Tt+4 context.
. . * Coding: the model learns useful feature
. ‘ positive vectors, or “code”, for downstream
) 7 .. :
— tasks, similar to other self-supervised
context Vi‘ I ‘ ‘ .
Sl " methods.

negative

Source: van den Oord et al., 2018 101



Contrastive Predictive Coding (CPC)

Predictions

—~—am —
-

2t+1

1 X
’21+2 ?zws

[

r 1 ¥
o\ [\ [our\ [\ o\ [ [\

~“IN-4
gCllC\

| Xt—-3 | Tg—2 | Tt-1 | Tt | Te+1 | Te42 | Te+3 | Ti4a
, itiv
H E S Postve
/
‘L

negative

.

/

1. Encode all samples in a sequence
into vectors z, = g.,.(X,).

Source: van den Oord et al., 2018
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Contrastive Predictive Coding (CPC)

Pl(dl(tlons .
Jmmmmmmmme - ey 1. Encode all samples in a sequence
| into vectors z, = g.,.(X,).

2. Summarize context (e.g., half of a
sequence) into a context code ct using an

[ Genc \ /;cnc\ /gcnc\ | Genc \ Genc auto_regressive model (gar).
Tis | T Tetz | Teys | Tets The original paper uses GRU-RNN here.
HEEAS Postive
et S
o 15 .l
negative

Source: van den Oord et al., 2018 103



CPC example: modeling audio sequences

Predictions

™ ------
~_ .
N, ~\
() @ @ | N
Zt+1 Zt+2 Zt+3 Zt+4
genc genc genc genc genc genc genc
Lt—2 Tt—1

Lt41 Lt42 Lt4+3 Lt44

-*»WMMWW *MWWWWWW%WWWW ve—

genc

. X3

Source: van den Oord et al., 2018 104



CPC example: modeling audio sequences

Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Method ACC
Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MFCC features 17.6
CPC 97.4
Supervised 98.5

Linear classification on trained
representations (LibriSpeech dataset)

Source: van den Oord et al., 2018
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CPC example: modeling audio sequences

* Idea: split image into patches, model rows of patches from top to bottom as
a sequence. l.e., use top rows as context to predict bottom rows.

Genc - OutPUt

Gar - output

64 px

7/
=l
-7 A
> -
- ”~ ” ¢
-~ 7’ -’
// o
// // zt+2 <d-|—
7 A
r Ri43| [«
i Rt+4|  |ee|-
1

50% overlap

input image

WF_

Ct

ALY

S
Sl

7

- - ’ / . ' /
-~ Predictions

Source: van den Oord et al., 2018
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CPC example: modeling audio sequences

Method Top-1 ACC
Using AlexNet conv5

Video [28] 29.8
Relative Position [11] 304
BiGan [35] 34.8
Colorization [10] 35.2
Jigsaw [29] * 38.1
Using ResNet-V2

Motion Segmentation [36] 27.6
Exemplar [36] 31.5
Relative Position [36] 36.2
Colorization [36] 39.6
CpPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of

architectural differences.

* Compares favorably with other pretext task-based
self-supervised learning method.

* Doesn’t do as well compared to newer instance-
based contrastive learning methods on image
feature learning.

% Supervised ... *SimCLR (4x)
<& | ~_*SimCLR (2x)
9 et eCPCv2-L
O 70F peaiis MoCo (4x
5 #*SimCLR oCMC ¢ (4x)
Q eoPIRL-c2x
< AMDIM
- 65k L eMoCo (2x)
g_ gCPCVQ PIRL-ens.
= PR -
5 gnl ‘MoCo eBigBiGAN
-
D LA
g
£ 55k eRotation
22 elnstDisc
25 ol 100 200 400 626

Number of Parameters (Millions)

Source: van den Oord et al., 2018 107



Masked Autoencoders (MAE)

A aew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 108



Masked Autoencoders (MAE)

A aew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into
nonoverlapping patches,
discard most of them

HESER
LB

b =
A L
i || =

input

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 109



Masked Autoencoders (MAE)

A aew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into
nonoverlapping patches,
discard most of them

HESER
HEE =

FENEN >

i . »

input

Encode remaining
patches with a ViT

_B I i
. p—
- 1

)

encoder

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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Masked Autoencoders (MAE)

A aew old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Encode remaining

patches with a ViT Decoder is a small ViT that

Divide image into
nonoverlapping patches,

predicts pixel values of the

~
discard most of them u masked patches
HEESEE == HPNE™
ENEES AN
A e encoder —» | decoder - —> MBI
Licoom M LEECS
NEENE HEREE

input . target
R

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022
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Masked Autoencoders (MAE)

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 112



Masked Autoencoders (MAE)

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 113



Masked Autoencoders (MAE)

Input Patches Prediction Actual Image

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 114



Masked Autoencoders (MAE)

SSL Pretraining, then finetuning for ImageNet Classification
mViT-B mViT-L mViT-H ViT-H-448

87.8

88 86.9
85.9

83.6
823 826

84.1
83.1 83.2 I

Scratch MoCo-v3 MAE

Top1 Accuracy

MAE Pretraining outperforms training from scratch, and allows scaling to larger ViT models

He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022 115
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Multimodal Self-Supervised Learning

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017
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Multimodal Self-Supervised Learning

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

118



Multimodal Self-Supervised Learning

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud

Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021
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Multimodal Self-Supervised Learning

Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames

Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video

Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud

Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021

Language: Image with natural-language text

Sariyildiz et al, “Learning Visual Representations with Caption Annotations”, ECCV 2020

Desai and Johnson, “VirTex: Learning Visual Representations from Textual Annotations”, CVPR 2021

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021
Desai et al, “RedCaps: Web-curated Image-Text data created by the people, for the people”, NeurlPS 2021
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Matching Images and Text

pepper the

aussie pup

Text
Encoder

Image
Encoder

IN.T‘I'

IN 'T2

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021

IN'T3

IN'TN

Contrastive loss: Each
image predicts which
caption matches
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Matching Images and Text: CLIP

aussie pup r .
“ Encode ]' 1 1 1 Contrastive loss: Each

image predicts which

T T, T3 Ty

caption matches

— 11 I, T? I],-T2 II T3 I, TN
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Imece | . pr 50, 1, - 17,  Large-scale training on

400M (image, text) pairs
from the internet

— Iy InT InTy IyTs InTy

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021 122



Matching Images and Text: CLIP

Linear probe average over all 27 datasets

L/14@336px

Very strong performance on many %5
downstream vision problems!
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CLIP: Zero-Shot Classification

(2) Create dataset classifier from label text

‘p;aier \\\\\\\\\\\

= > A ‘plrjlo‘to o\f RN Text
a {object}. Encoder
(3) Use for zero-shot prediction v Vv v v
Ty T, | T3 - N
Language enables
zero-shot classification: dmage | ol 5 | nT 0T (1T | . |1y

Classify images into

categories without any i

additional training data! A photo of

a dog.

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021 124



CLIP: Zero-Shot Classification

(2) Create dataset classifier from label text

Language enables
zero-shot classification:
Classify images into
categories without any
additional training data!

O
|4
Q)
D

A photo of

[abaecrt )
a 10D7)eCt .

(3) Use for zero-shot prediction

Image
Encoder

Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

\

Text

Problem: CLIP training
dataset is private; can’t
reproduce results

Encoder
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Summary

» Self-Supervised Learning (SSL) aims to scale up to larger datasets without human
annotation

* First train for a pretext task, then transfer to downstream tasks

 Many pretext tasks: context prediction, jigsaw, colorization, clustering, rotation

e SSL has been wildly successful for language

* Intense research on SSL in vision; current best are contrastive, masked autoencoding
 Multimodal SSL uses images together with additional context

* Multimodal SSL with vision + language has been very successful; seems very promising!
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