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Previously on CMP784

• Motivation for Variational Autoencoders 
(VAEs)

• Mechanics of VAEs

• Separatibility of VAEs

• Training of VAEs

• Evaluating representations

• Vector Quantized Variational 
Autoencoders (VQ-VAEs)
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Lecture Overview

• Predictive / Self-supervised learning

• Self-supervised learning in NLP

• Self-supervised learning in vision

• Multimodal Self-supervised learning

Disclaimer: Much of the material and slides for this lecture were borrowed from 

—Andrej Risteski's CMU 10707 class

—Jimmy Ba's UToronto CSC413/2516 class

—Fei-Fei Li, Ranjay Krishna, Danfei Xu’s CS231n class

—Justin Johnson’s EECS 498/598 class 3



Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object 
detection, semantic segmentation, image 
captioning, 
sentiment analysis, etc.



Unsupervised Learning 

• Learning from data without labels.

• What can we hope to do:

– Task A: Fit a parametrized structure (e.g. clustering, low-dimensional subspace, 
manifold) to data to reveal something meaningful about data (Structure learning)

– Task B: Learn a (parametrized) distribution close to data generating distribution. 
(Distribution learning)

– Task C: Learn a (parametrized) distribution that implicitly reveals an 
“embedding”/“representation” of data for downstream tasks. 
(Representation/feature learning)

• Entangled! The “structure” and “distribution” often reveals an embedding.
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Supervised Learning 

• Supervised learning is not how we learn!
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Babies don’t get supervision for 
everything they see!



Solution: Self-Supervised Learning

• Lets build methods that learn from ”raw” data – no annotations required

• Unsupervised Learning: Model isn’t told what to predict. Older terminology, 
not used as much today.

• Self-Supervised Learning: Model is trained to predict some 
naturally-occurring signal in the raw data rather than human annotations.
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Solution: Self-Supervised Learning

• Lets build methods that learn from ”raw” data – no annotations required

• Unsupervised Learning: Model isn’t told what to predict. Older terminology, 
not used as much today.

• Self-Supervised Learning: Model is trained to predict some 
naturally-occurring signal in the raw data rather than human annotations.

• Semi-Supervised Learning: Train jointly with some labeled data 
and (a lot) of unlabeled data.
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Self-Supervised Learning 

• Given unlabeled data, design supervised tasks that induce a good
representation for downstream tasks. 

• No good mathematical formalization, but the intuition is to “force” the
predictor used in the task to learn something “semantically meaningful” 
about the data. 
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Encoder:
𝜙

Decoder:
𝜓

Input Image: 𝑥 Features: 𝜙 𝑥 Prediction: ො𝑦

Loss: 
𝐿 ො𝑦, 𝑦

Step 1: Pretrain a 
network on a pretext 
task that doesn’t 
require supervision

Self-Supervised Learning: Pretext then Transfer
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Encoder:
𝜙

Decoder:
𝜓

Input Image: 𝑥 Features: 𝜙 𝑥 Prediction: ො𝑦

Loss: 
𝐿 ො𝑦, 𝑦

Step 1: Pretrain a 
network on a pretext 
task that doesn’t 
require supervision

Self-Supervised Learning: Pretext then Transfer

Step 2: Transfer 
encoder to 
downstream tasks 
via linear classifiers, 
KNN, finetuning

Encoder:
𝜙

Input Image: 𝑥 Features: 𝜙 𝑥

Downstream tasks:
Image classification, object 
detection, semantic 
segmentation



Generative: Predict part of 
the input signal
• Autoencoders (sparse, 

denoising, masked)
• Autoregressive
• GANs
• Colorization
• Inpainting

Discriminative: Predict 
something about the input 
signal
• Context prediction
• Rotation
• Clustering
• Contrastive

Multimodal: Use some 
additional signal in addition 
to RGB images
• Video
• 3D
• Sound
• Language

Self-Supervised Learning: Pretext then Transfer
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Self-Supervised Learning 

► Predict any part of the input from any
other part. 

► Predict the future from the past. 

► Predict the future from the recent past. 

► Predict the past from the present. 

► Predict the top from the bottom. 

► Predict the occluded from the visible

► Pretend there is a part of the input you
don’t know and predict that. 

13Slide by Yann LeCun



Self-Supervised
Learning in NLP
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Word Embeddings

• Semantically meaningful vector representations of words
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Word embeddings

Semantically meaningful vector representations of words

Tiger
Lion

Table

Example: Inner product (possibly scaled, i.e. cosine 
similarity) correlates with word similarity.  

Tiger
Lion

Table

Example: Inner product (possibly scaled, 
i.e. cosine similarity) correlates with word
similarity. 



Word Embeddings

• Semantically meaningful vector representations of words

16

Example: Can use embeddings to do 
sentiment classification by training a 
simple (e.g. linear) classifier

Word embeddings

Semantically meaningful vector representations of words

The ser ice is great  fast 
and friendl  

Example: Can use embeddings to do 
sentiment classification by training a 
simple (e.g. linear) classifier 

"The service is great, 
fast and friendly!"



Word Embeddings

• Semantically meaningful vector representations of words
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Example: Can train a “simple” network that if
fed word embeddings for two languages, can 
effectively translate.

Word embeddings

Semantically meaningful vector representations of words

English  It s raining 
o tside

German  Es regnet
draussen

Example  Can train a simple  
network that if fed word embeddings 
for two languages, can effectively
translate.

English: "It’s raining
outside".

German: "Es regnet
draussen".



Word Embeddings via Predictive Learning

• Basic task: predict the next word, given a few previous ones.

   

   In other words, optimize for
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Word Embeddings via Predictive Learning
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• Basic task: predict the next word, given a few previous ones.

   

Inspired by classical assumptions in NLP that the underlying distribution 
is Markov – that is, 𝑥𝑡 only depends on the previous few words.

(Of course, this is violated if you wish to model long texts like paragraphs / books.)

The main issue: The trivial way of parametrizing
is a “lookup table” with 𝑉𝐿 entries. 



Word Embeddings via Predictive Learning

[Bengio-Ducharme-Vincent-Janvin ‘2003]: A neural 
parametrization of the above probabilities.

Main ingredients:

• Embeddings: A word embedding 𝐶(𝑤) for all words 𝑤 in 
dictionary.

• Non-linear transforms: Potentially deep network taking as 
inputs i, 𝐶(𝑥𝑡−1), 𝐶(𝑥𝑡−2),...,𝐶(𝑥𝑡−𝐿), and outputting some vector 
o. Can be recurrent net too.

• Softmax: Softmax distribution for 𝑥𝑡 with parameters given by 
o.
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• Basic task: predict the next word, given a few previous ones.

   



Word Embeddings via Predictive Learning
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• Related: predict middle word in a sentence, given surrounding ones.

   

CBOW (Continuous Bag of Words): proposed by Mikolov et al. ‘13   

Parametrization is chosen s.t. 

vectors v 

vectors w 



Word Embeddings via Predictive Learning
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• Related: predict middle word in a sentence, given surrounding ones.

   

Skip-Gram: also proposed by Mikolov et al. ‘13   

Parametrization is chosen s.t.

In practice, lots of other tricks are tacked on to deal with the slowest part of 
training: the softmax distribution (partition function sums over entire
vocabulary).

Common ones are negative sampling, hierarchical softmax, etc. 

vectors v 

vectors w 



Word Embeddings via Predictive Learning
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• Related: predict middle word in a sentence, given surrounding ones.

   

Skip-Gram: also proposed by Mikolov et al. ‘13   

vectors v 

vectors w 



Evaluating Word Embeddings

• First variant (predict next word, given previous ones) can be used as a 
generative model for text. (Also called language model.) The other ones 
cannot.

• In former case, a natural measure is the cross-entropy

• For convenience, we often take exponential of this (called perplexity) 

• If we do not have a generative model, we have to use indirect means.
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Evaluating Word Embeddings

• Intrinsic tasks: Test performance of word embeddings on tasks measuring 
their “semantic” properties. Examples include solving

“which is the most similar word” queries, analogy queries (i.e. “man is to 
woman as king is to ??”

• Extrinsic tasks: How well can we “finetune” the word embeddings to solve 
some (supervised) downstream task. “Finetune” usually means train a 
(relatively small) feedforward network. Examples of such tasks include:

– Part-of-Speech Tagging (determine whether a word is noun/verb/...), 

– Named Entity Recognition (recognizing named entities like persons, places) – e.g. 
label a sentence as Picasso[person] died in France[country], many others.
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Semantic Similarity
• Observation: similar words tend to have larger (renormalized) inner products

(also called cosine similarity). 

• Precisely, if we look at the word embeddings for words i,j

Example: the nearest neighbors to “Frog” look like

• To solve semantic similarity query like “which is the most similar word to”, output
the word with the highest cosine similarity. 

26

tends to be larger for similar words i,j

0. frog
  1. frogs
  2. toad
  3. litoria
  4. leptodactylidae
  5. rana
  6. lizard
  7. eleutherodactylus 3. litoria 4. leptodactylidae 5. rana 7. eleutherodactylus



Semantic Clustering

• Consequence: clustering word embeddings should give “semantically” relevant 
clusters.

27

t-SNE projection of word embeddings for artists (clustered by genre). Image from https://medium.com/free-code-
camp/learn-tensorflow-the- word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a

https://medium.com/free-code-camp/learn-tensorflow-the-%20word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a
https://medium.com/free-code-camp/learn-tensorflow-the-%20word2vec-model-and-the-tsne-algorithm-using-rock-bands-97c99b5dcb3a


Analogies

• Observation: You can solve analogy queries by linear algebra. 

Precisely, 𝑤 = queen will be the solution to: 

28

Man
King

Queen
Woman



Language Models (LMs)

• A statistical model that assigns probabilities to the words in a sentences. 

• Most commonly: Given previous words, what should the next one be? 

• Neural language model: Model the probability of words given others using
neural networks. 

29



Recurrent Architectures for LM

• We can use recurrent architectures.

• LSTM, GRU ...

• Great for variable length inputs, like sentences. 

30



Recurrent Architectures for LM

• What are some of the problems with recurrent architectures? 

– Not parallelizable across instances.

– Cannot model long dependences.

– Optimization difficulties (vanishing gradients). 

• Attention to the rescue! 

31



Transformers

Properties of the transformer architecture: 

• Fully feed forward.

• Equivariance properties of scaled dot product
attention (important): 

– How does the output change if we permute the
order of queries? (equivariance) 

– How does the output change if we permute the
key-value pairs in unison? (invariance) 

32



Performance Comparison

33



Pretraining Language Models

• Can we use large amounts of text data to pretrain language models?

• Considerations: 

►How can we fuse both left-right and right-left context? 

►How can we facilitate non-trivial interactions between input tokens? 

• Previous approaches: 

►ELMO (Peters. et. al., 2017): Bidirectional, but shallow. 

►GPT (Radford et. al., 2018): Deep, but unidirectional. 

►BERT (Devlin et. al., 2018): Deep and bidirectional!

34



BERT Workflow

• The BERT workflow includes: 

► Pretrain on generic, self-supervised tasks, using large amounts of data (like all of 
Wikipedia) 

► Fine-tune on specific tasks with limited, labelled data. 

• The pretraining tasks (will talk about this in more detail later): 

►Masked Language Modelling (to learn contextualized token representations) 

►Next Sentence Prediction (summary vector for the whole input) 

35



BERT Architecture

36



BERT Architecture

Properties:

• Two input sequences.

►Many NLP tasks have two inputs (question answering, paraphrase detection, entailment
detection etc. )

• Computes embeddings

► Both token, position and segment embeddings. 

► Special start and separation tokens.

• Architecture 

► Basically the same as transformer encoder. 

• Outputs: 

► Contextualized token representations. 

► Special tokens for context. 
37



BERT Embeddings

• How we tokenize the inputs is very important!

• BERT uses the WordPiece tokenizer (Wu et. al. 2016) 

38



(Aside) Tokenizers

• Tokenizers have to balance the following:

– Being comprehensive (rare words? translation to different languages) 

– Total number of tokens

– How semantically meaningful each token is. 

• This is an activate area of research. 

39



Pretraining tasks

• Masked Language Modelling, i.e. Cloze Task (Taylor, 1953) 

• Next sentence prediction

40



Masked Language Modelling

• Mask 15% of the input tokens. (i.e. replace with a dummy masking token) 

• Run the model, obtain the embeddings for the masked tokens.

• Using these embeddings, try to predict the missing token.

• ”I love to eat peanut ___ and jam. ” Can you guess what’s missing? 

• This procedure forces the model to encode context information in the
features of all of the tokens. 

41



Next Sentence Prediction

• Goal is to summarize the complete context (i.e. the two segments) in a 
single feature vector. 

• Procedure for generating data 
► Pick a sentence from the training corpus and feed it as ”segment A”. 

► With 50% probability, pick the following sentence and feed that as ”segment B”. 

► With 50% probability, pick the a random sentence and feed it as ”segment B”. 

• Using the features for the context token, predict whether segment B is the
following sentence of segment A. 

• Turns out to be a very effective pretraining technique! 
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Fine Tuning

Procedure: 

• Add a final layer on top of BERT representations.

• Train the whole network on the fine-tuning dataset.

• Pre-training time: In the order of days on TPUs.

• Fine tuning task: Takes only a few hours max. 
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Fine Tuning

44



45

Self-Supervised
Learning in Vision



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts

Context Prediction

46



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts

Context Prediction

47

CNN CNNShared 
Weights

Concatenate

Classification over 8 positions



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts

Context Prediction

48

CNN CNNShared 
Weights

Concatenate

Classification over 8 positions

Two networks with shared 
weights sometimes called a 
”Siamese network”



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Model predicts relative location of 
two patches from the same image.
Discriminative pretraining task

Intuition: Requires understanding 
objects and their parts

Context Prediction
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CNN CNNShared 
Weights

Concatenate

Classification over 8 positions

“For experiments, we use a 
ConvNet trained on a K40 GPU for 
approximately four weeks.”



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context Prediction: Nearest Neighbors in Feature 
Space

50

Input Patch



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context Prediction: Nearest Neighbors in Feature 
Space

51

Input Patch Random Init



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context Prediction: Nearest Neighbors in Feature 
Space

52

Input Patch Random Init Supervised AlexNet



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context Prediction: Nearest Neighbors in Feature 
Space

53

Input Patch Random Init Supervised AlexNet Their Features

Works well! 
Similar to 
AlexNet



Doersch et al, “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context Prediction: Nearest Neighbors in Feature 
Space

54

Input Patch Random Init Supervised AlexNet Their Features

Works well! 
Similar to 
AlexNet

Failure 
modes



Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016

Jigsaw puzzles

55

Extension: Solving Jigsaw Puzzles

Rather than predict relative position of two patches, instead 
predict permutation to “unscramble” 9 shuffled patches



Noroozi and Favoro, “Unsupervised learning of visual representations by solving jigsaw puzzles”, ECCV 2016

Jigsaw puzzles

56

Extension: Solving Jigsaw Puzzles

Rather than predict relative position of two patches, instead 
predict permutation to “unscramble” 9 shuffled patches

Problem: These methods only work on 
patches, not whole images!



Context Encoders: Learning by Inpainting

• The most obvious analogy to word embeddings: predict parts of image from remainder of 
image. 

57Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016



Context Encoders: Learning by Inpainting

• The most obvious analogy to word embeddings: predict parts of image from remainder
of image. 

58Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016



Context Encoders: Learning by Inpainting

• The most obvious analogy to word embeddings: predict parts of image from remainder
of image. 

• Much trickier than in NLP:
As we have seen, meaningful losses for vision are much more difficult to design. Choice
of region to mask out is much more impactful. 
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Architecture:
An encoder E takes a part of image, constructs
a representation. 

A decoder D takes representation, 
tries to reconstruct missing part. 

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016



Context Encoders: Learning by Inpainting

60Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Input Image

Encoder:
𝜙

Decoder:
𝜓



Context Encoders: Learning by Inpainting

61Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Input Image

Encoder:
𝜙

Decoder:
𝜓

Predict Missing Pixels

Human Artist



Context Encoders: Learning by Inpainting

62Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Input Image

Encoder:
𝜙

Decoder:
𝜓

Predict Missing Pixels

L2 Loss
(Best for feature learning)



Context Encoders: Learning by Inpainting

63Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Input Image

Encoder:
𝜙

Decoder:
𝜓

Predict Missing Pixels

L2 + Adversarial Loss
(Best for nice images)



Inpainting

• The most obvious analogy to word embeddings: predict parts of image from remainder of 
image. 

• How to choose the region?

64Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016

Task should be “solvable”, but not “too easy”.

• Fixed (central region): tends to produce less
generalizeable representations

• Random blocks: slightly better, but square borders
still hurt.

• Random silhouette (fully random doesn’t make
sense – prediction task is too ill-defined) – even
better!



Predicting rotations

• In principle, what we want is a task “hard enough”, that any model that does well on it, should learn
something “meaningful” about the task. 

• Task: predict one of 4 possible
rotations of an image. 

65Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018



Predicting rotations

• In principle, what we want is a task “hard enough”, that any model that does well on it, should learn
something “meaningful” about the task. 

• Task: predict one of 4 possible
rotations of an image. 

66Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018

– Representation: penultimate
layer of a neural net used to
solve task. 

– Intuition: a rotation is a global 
transformation. ConvNets are
much better at capturing local
transformations (as convolutions
are local), so there is no obvious
way to “cheat”.



Predicting rotations

• In principle, what we want is a task “hard enough”, that any model that does well on it, should learn
something “meaningful” about the task. 

• Task: predict one of 4 possible
rotations of an image. 

67Gidaris et al, “Unsupervised Representation Learning by Predicting Image Rotations”, ICLR 2018

– Less finicky to get right: no
obvious artifacts the model can 
make use of to cheat.

– The 90 deg. rotations also don’t
introduce any additional artifacts
due to discretization.



Image coloring

68Source: Richard Zhang / Philip Isola



Image coloring

69Source: Richard Zhang / Philip Isola



Learning features from colorization: 
Split-brain Autoencoder
• Idea: cross-channel predictions

70Source: Richard Zhang / Philip Isola



Learning features from colorization: 
Split-brain Autoencoder
• Idea: cross-channel predictions

71Source: Richard Zhang / Philip Isola



Learning features from colorization: 
Split-brain Autoencoder
• Idea: cross-channel predictions

72Source: Richard Zhang / Philip Isola



Split-brain Autoencoder: Transfer learned 
features to supervised learning
• Self-supervised learning 

on ImageNet 
(entire training set).

• Use concatenated 
features from F1 and F2

• Labeled data is 
from the Places 
(Zhou 2016).

73Source: Richard Zhang / Philip Isola



Contrastive Representation Learning

74

attract

repel



Contrastive Representation Learning
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A formulation of contrastive learning

• What we want:

• x: reference sample; x+ positive sample; x- negative sample

• Given a chosen score function, we aim to learn an encoder function f that 
yields high score for positive pairs (x, x+) and low scores for negative pairs 
(x, x-).
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A formulation of contrastive learning

• Loss function given 1 positive sample and N - 1 negative samples:
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A formulation of contrastive learning

• Loss function given 1 positive sample and N - 1 negative samples:
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A formulation of contrastive learning

• Loss function given 1 positive sample and N - 1 negative samples:

• This seems familiar..

79

score for
the positive pair

score for the N-1
negative pairs



A formulation of contrastive learning

• Loss function given 1 positive sample and N - 1 negative samples:

• This seems familiar..

Cross entropy loss for a N-way softmax classifier!
i.e., learn to find the positive sample from the N samples

80

score for
the positive pair

score for the N-1
negative pairs



A formulation of contrastive learning

• Loss function given 1 positive sample and N - 1 negative samples:

• Commonly known as the InfoNCE loss (van den Oord et al., 2018) 
A lower bound on the mutual information between f(x) and f(x+)

• The larger the negative sample size (N), the tighter the bound 

81



SimCLR: A Simple Framework for Contrastive Learning

• Cosine similarity as the score function:

• Use a projection network h(·) to project 
features to a space where contrastive 
learning is applied.

• Generate positive samples through data 
augmentation:
• random cropping, random color distortion, 

and random blur.

82Source: Chen et al., 2020



SimCLR: Generating positive samples from data 
augmentation

83Source: Chen et al., 2020



SimCLR: Generating positive samples from data 
augmentation

84Source: Chen et al., 2020

Generate a positive pair
by sampling data 
augmentation functions



SimCLR: Generating positive samples from data 
augmentation

85Source: Chen et al., 2020

Generate a positive pair
by sampling data 
augmentation functions

InfoNCE loss:
Use all non-
positive samples
in the batch as x-



SimCLR: Generating positive samples from data 
augmentation

86Source: Chen et al., 2020

Generate a positive pair
by sampling data 
augmentation functions

InfoNCE loss:
Use all non-
positive samples
in the batch as x-

Iterate through and use
each of the 2N sample as 
reference, compute
average loss



SimCLR: mini-batch training
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SimCLR: mini-batch training
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Training linear classifier on SimCLR features

• Train feature encoder on 
ImageNet (entire training set) 
using SimCLR.

• Freeze feature encoder, train a 
linear classifier on top with 
labeled data.

89Source: Chen et al., 2020



Training linear classifier on SimCLR features

• Train feature encoder on 
ImageNet (entire training set) 
using SimCLR.

• Finetune the encoder with 1% / 
10% of labeled data on 
ImageNet.

90Source: Chen et al., 2020



SimCLR design choices: projection head

91

• Linear / non-linear projection heads 
improve representation learning.

• A possible explanation:
• contrastive learning objective may discard 

useful information for downstream tasks

• representation space z is trained to be 
invariant to data transformation.

• by leveraging the projection head g(ᐧ), more 
information can be preserved in the h 
representation space

Source: Chen et al., 2020



SimCLR design choices: large batch size

92

• Large training batch size is 
crucial for SimCLR!

• Large batch size causes large 
memory footprint during 
backpropagation: 
requires distributed training 
on TPUs (ImageNet 
experiments)

Source: Chen et al., 2020



Momentum Contrastive Learning (MoCo)

93

• Key differences to SimCLR:

• Keep a running queue of keys (negative 
samples).

• Compute gradients and update the 
encoder only through the queries.

• Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

Source: He et al., 2020



Momentum Contrastive Learning (MoCo)
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• Key differences to SimCLR:

• Keep a running queue of keys (negative 
samples).

• Compute gradients and update the 
encoder only through the queries.

• Decouple min-batch size with the 
number of keys: can support a large 
number of negative samples.

• The key encoder is slowly progressing 
through the momentum update rules:

Source: He et al., 2020



MoCo
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Generate a positive pair
by sampling data 
augmentation functions

No gradient through
the positive sample

Update the FIFO negative
sample queue

Use the running queue of 
keys as the negative
samples

InfoNCE loss

Update f_k through
momentum

Source: He et al., 2020



MoCo v2
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• A hybrid of ideas from SimCLR and 
MoCo:

• From SimCLR: non-linear projection 
head and strong data augmentation.

• From MoCo: momentum-updated 
queues that allow training on a large 
number of negative samples (no TPU 
required!).

Source: Chen et al., 2020



Momentum Contrastive Learning (MoCo)
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• Key takeaways:

• Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

Source: Chen et al., 2020



Momentum Contrastive Learning (MoCo)
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• Key takeaways:

• Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

• Decoupling mini-batch size with 
negative sample size allows 
MoCo-v2 to outperform SimCLR with 
smaller batch size 
(256 vs. 8192).

Source: Chen et al., 2020



Momentum Contrastive Learning (MoCo)
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• Key takeaways:

• Non-linear projection head and strong 
data augmentation are crucial for 
contrastive learning.

• Decoupling mini-batch size with 
negative sample size allows 
MoCo-v2 to outperform SimCLR with 
smaller batch size 
(256 vs. 8192).

• ... all with much smaller memory 
footprint! (“end-to-end” means SimCLR 
here)

Source: Chen et al., 2020



Instance vs. Sequence Contrastive Learning
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Instance-level contrastive learning: contrastive
learning based on

positive & negative instances. 

Examples: SimCLR, MoCo, MoCo v2

Sequence-level contrastive learning:
contrastive learning based on
sequential / temporal orders. 

Example: Contrastive Predictive Coding (CPC)



Contrastive Predictive Coding (CPC)
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• Contrastive: contrast between “right” 
and “wrong” sequences using 
contrastive learning.

• Predictive: the model has to predict 
future patterns given the current 
context.

• Coding: the model learns useful feature 
vectors, or “code”, for downstream 
tasks, similar to other self-supervised 
methods.

Source: van den Oord et al., 2018



Contrastive Predictive Coding (CPC)
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1. Encode all samples in a sequence
into vectors zt = genc(xt).

Source: van den Oord et al., 2018



Contrastive Predictive Coding (CPC)
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1. Encode all samples in a sequence
into vectors zt = genc(xt).

2. Summarize context (e.g., half of a 
sequence) into a context code ct using an 
auto-regressive model (gar). 
The original paper uses GRU-RNN here.

Source: van den Oord et al., 2018



CPC example: modeling audio sequences

104Source: van den Oord et al., 2018



CPC example: modeling audio sequences
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Linear classification on trained
representations (LibriSpeech dataset)

Source: van den Oord et al., 2018



CPC example: modeling audio sequences
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• Idea: split image into patches, model rows of patches from top to bottom as 
a sequence. I.e., use top rows as context to predict bottom rows.

Source: van den Oord et al., 2018



CPC example: modeling audio sequences
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• Compares favorably with other pretext task-based 
self-supervised learning method.

• Doesn’t do as well compared to newer instance-
based contrastive learning methods on image 
feature learning.

Source: van den Oord et al., 2018



Masked Autoencoders (MAE)

108He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer



Masked Autoencoders (MAE)
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A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Divide image into 
nonoverlapping patches, 
discard most of them



Masked Autoencoders (MAE)
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A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Encode remaining 
patches with a ViT

Divide image into 
nonoverlapping patches, 
discard most of them



Decoder is a small ViT that 
predicts pixel values of the 
masked patches

Masked Autoencoders (MAE)

111He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

A new old method dethrones contrastive learning? Denoising Autoencoder with Vision Transformer

Encode remaining 
patches with a ViT

Divide image into 
nonoverlapping patches, 
discard most of them



Masked Autoencoders (MAE)

112He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

Input Patches Prediction Actual Image



Masked Autoencoders (MAE)
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Input Patches Prediction Actual Image



Masked Autoencoders (MAE)

114He et al, “Masked Autoencoders are Scalable Vision Learners”, CVPR 2022

Input Patches Prediction Actual Image



Masked Autoencoders (MAE)
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Multimodal Self-Supervised Learning
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video
Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017



Multimodal Self-Supervised Learning
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video
Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud
Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021



Multimodal Self-Supervised Learning
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Don’t learn from isolated images -- take images together with some context

Video: Image together with adjacent video frames
Agrawal et al, “Learning to See by Moving”, ICCV 2015
Wang et al, “Unsupervised Learning of Visual Representations using Videos”, ICCV 2015
Pathak et al, “Learning Features by Watching Objects Move”, CVPR 2017

Sound: Image with audio track from video
Owens et al, “Ambient Sound Provides Supervision for Visual Learning”, ECCV 2016
Arandjelovic and Zisserman, “Look, Listen and Learn”, ICCV 2017

3D: Image with depth map or point cloud
Xie et al, “PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding”, ECCV 2020
Zhang et al, “Self-supervised pretraining of 3D features on any point-cloud”, CVPR 2021

Language: Image with natural-language text
Sariyildiz et al, “Learning Visual Representations with Caption Annotations”, ECCV 2020
Desai and Johnson, “VirTex: Learning Visual Representations from Textual Annotations”, CVPR 2021
Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021
Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021
Desai et al, “RedCaps: Web-curated Image-Text data created by the people, for the people”, NeurIPS 2021



Matching Images and Text

121
Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021

Contrastive loss: Each 
image predicts which 
caption matches



Matching Images and Text: CLIP
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Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Jia et al, “Scaling up Visual and Vision-Language Representation Learning with Noisy Text Supervision”, ICLR 2021

Contrastive loss: Each 
image predicts which 
caption matches

Large-scale training on 
400M (image, text) pairs 
from the internet



Matching Images and Text: CLIP

123Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Performance continues to 
improve with larger models

Very strong performance on many 
downstream vision problems!



CLIP: Zero-Shot Classification

124Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Language enables 
zero-shot classification: 
Classify images into 
categories without any 
additional training data!



CLIP: Zero-Shot Classification

125Radford et al, “Learning Transferable Visual Models form Natural Language Supervision”, ICML 2021

Language enables 
zero-shot classification: 
Classify images into 
categories without any 
additional training data!

Problem: CLIP training 
dataset is private; can’t 
reproduce results



Summary

126

• Self-Supervised Learning (SSL) aims to scale up to larger datasets without human 
annotation

• First train for a pretext task, then transfer to downstream tasks

• Many pretext tasks: context prediction, jigsaw, colorization, clustering, rotation

• SSL has been wildly successful for language

• Intense research on SSL in vision; current best are contrastive, masked autoencoding

• Multimodal SSL uses images together with additional context

• Multimodal SSL with vision + language has been very successful; seems very promising!
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