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Previously on CMP784
• what is deep learning

• a brief history of deep learning

• compositionality

• end-to-end learning

• distributed representations
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Lecture overview
• what is learning?
• types of machine learning problems
• image classification
• linear regression
• generalization
• cross-validation
• maximum likelihood estimation

• Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Bernhard Schölkopf’s MLSS 2017 lecture,
—Tommi Jaakkola’s 6.867 class,
—Fei-Fei Li, Andrej Karpathy and Justin Johnson’s CS231n class
—Hongsheng Li’s ELEG5491 class
—Justin Johnson’s EECS 498/598 class

3



Pre-quiz
• Due Date: 5pm, Sat, Oct 12, 2024. 

• Each student enrolled to CMP784 
must complete and pass this quiz!
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Good news, everyone!
• Practical 1 will be out next week
• Multi-layer perceptrons
• Word embeddings
• Due October 24, 2024
• Get familiar with 

Google CoLab
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What is learning?
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Two definitions of learning
• “Learning is the acquisition of knowledge about the world.“

Kupfermann (1985)

• “Learning is an adaptive change in behavior caused by experience.“
Shepherd (1988)
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Machine learning aims at learning a function
• Given an input value or vector, a function assigns it with a value or vector.

• “One-to-many” mapping is not a function. “Many-to-one” mapping is a function.

• Note that a function can have a vector output or matrix output. For instance, the 
following formula is still a function
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Function estimation
• We are interested in predicting y from input x and assume there exists a 

function that describes the relationship between y and x, e.g., y = f(x).

• If the function f ’s parametric form is fixed, prediction function f can be 
parametrized by a parameter vector 𝜃.
• Estimating f from a training set D = {(x1train , y1 ), (x2train , y2 ), · · · , 
(xntrain , yn )}.

• With a better design of the parametric form of the function, the learner could 
achieve better performance.

• This design process typical involves domain knowledge.
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Empirical Inference
• Drawing conclusions from empirical data (observations, 

measurements)

• Example 1: scientific inference

10



Empirical Inference
• Drawing conclusions from empirical data (observations, 

measurements)

• Example 1: scientific inference

11



Empirical Inference
• Drawing conclusions from empirical data (observations, 

measurements)

• Example 1: scientific inference

12
Leibniz, Weyl, Chaitin



Empirical Inference
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Empirical Inference
• Drawing conclusions from empirical data (observations, 

measurements)

• Example 2: perception
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The choice of representation may determine whether 
the learning task is very easy or very difficult!



Generalization
• observe 1,   2,   4,   7, …

• What’s next?

• 1,2,4,7,11,16,…: 𝑎!"# = 𝑎! + 𝑛 ("lazy caterer’s sequence")

• 1,2,4,7,12,20,…: 𝑎!"$ = 𝑎!"# + 𝑎!+1

• 1,2,4,7,13,24,…: "Tribonacci"-sequence

• 1,2,4,7,14,28     : divisors of 28

• 1,2,4,7,1,1,5,… : decimal expansions of 𝜋=3.14159… and
𝑒=2.718… interleaved (thanks to O. Bousquet)

• don’t need 𝑒: 1247 appears at position 16992 in 𝜋
• The On-Line Encyclopedia of Integer Sequences: > 600 hits…
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+1 +2 +3
Image credit: mathspice.com

mailto:https://oeis.org


Generalization, II
• Question: which continuation is correct ("generalizes")?

• Answer? There’s no way to tell ("induction problem")

• Question of statistical learning theory: how to come up with
a law that generalizes ("demarcation problem")
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Types of ML problems
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Types of machine learning problems
Based on the information available:
• Supervised learning

• Unsupervised learning

• Semi-supervised learning

• Reinforcement learning
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Supervised learning
• Input:

• Task: Predict target     from input 
−Classification: Discrete output
−Regression: Real-valued output
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{(x, y)}

xy

Face detection

cat

Image classification



Unsupervised learning
• Input:

• Task: Reveal structure in the observed data
−Clustering: Partition data into groups
−Feature extraction: Learning meaningful features 

automatically
−Dimensionality reduction: Learning a 

lower-dimensional representation of input
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{x}
Topic Models of Text Documents 
Agglomerative clustering

Topic modeling

Anomaly detection



Semi-supervised learning
• Input:

Few labeled examples

Many unlabeled examples

• Task: Predict target      from input 
−Classification: Discrete output
−Regression: Real-valued output

Try to improve predictions based on 
examples by making use of the additional “unlabeled” examples
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{(x, y)}

xy

{x}

Image credit: Wikipedia

interactive segmentation



What is Reinforcement Learning?

I Branch of machine learning concerned with taking
sequences of actions

I Usually described in terms of agent interacting with a
previously unknown environment, trying to maximize
cumulative reward

Agent Environment

action

observation, reward

Reinforcement learning
• Input:

Interaction with an environment; 
the agent receives a numerical 
reward signal

• Task: A way of behaving that is very rewarding 
in the long run 

• Goal is to estimate and maximize the 
long-term cumulative reward 
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Example: TD-Gammon (Tesauro, 1990-1995)

• Early predecessor of AlphaGo

• Learning from self-play, using TD-learning

• Became the best player in the world

• Discovered new ways of opening not used by people before

Deep Learning Summer School, Montreal, 2016 6

TD-Gammon (Tesauro, 1990-1995)

Adapted from Doina Precup



Types of machine learning problems
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“If intelligence was a cake, 
unsupervised learning would 
be the cake, supervised 
learning would be the icing on 
the cake, and reinforcement 
learning would be the cherry 
on the cake. We know how to 
make the icing and the cherry, 
but we don't know how to 
make the cake.”

– Yann LeCun
NeurIPS 2016 Keynote
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Image classification
— non-parametric vs. parametric models
— nearest neighbor classifier
— hyperparameter
— cross-validation



Image Classification: a core task in 
Computer Vision
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cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}



The problem:
semantic gap
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Images are represented as 
3D arrays of numbers, with 
integers between [0, 255].

e.g. 
300 x 100 x 3 

(3 for 3 color channels RGB)



Challenges: Viewpoint Variation
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Challenges: Illumination
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Challenges: Deformation
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Challenges: Occlusion
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Challenges: Background clutter
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Challenges: Intraclass variation
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An image classifier
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Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for 
recognizing a cat, or other classes.



Data-driven approach:
1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images
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Example training set



First classifier: Nearest Neighbor 
Classifier
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Remember all training 
images and their labels

Predict the label of the 
most similar training image
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Example dataset: CIFAR-10
10 labels 
50,000 training images, each image is tiny: 32x32
10,000 test images.
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For every test image (first column), 
examples of nearest neighbors in rows

Example dataset: CIFAR-10
10 labels 
50,000 training images
10,000 test images.
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How do we compare the images? What is the distance metric?

L1 distance:

add

d1(I1, I2) =
X

p

|Ip1 � Ip2 |
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Nearest Neighbor classifier
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remember the training data

Nearest Neighbor classifier
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for every test image:
− find nearest train image 

with L1 distance
− predict the label of 

nearest training image

Nearest Neighbor classifier
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Q: how does the 
classification speed 
depend on the size of 
the training data?

Nearest Neighbor classifier
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Q: how does the 
classification speed 
depend on the size of the 
training data? linearly :(

This is backwards:
• test time performance 

is usually much more 
important in practice. 

• Deep Neural Networks 
flip this: expensive 
training, cheap test 
evaluation

Nearest Neighbor classifier
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Aside: Approximate Nearest Neighbor
find approximate nearest neighbors quickly
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The choice of distance is a hyperparameter
common choices:

L1 (Manhattan) distance L2 (Euclidean) distance

d1(I1, I2) =
X

p

|Ip1 � Ip2 |
<latexit sha1_base64="8ZCuuBcKC46GWTRjjXrSdj3abFo=">AAACFHicbZDNSgMxFIUz9a/Wv6pLN8EiKNQyUwR1IYhudKdgbaEzDpk004ZmZkJyRyhtX8KNr+LGhYpbF+58G9M6C209EDh8915u7gmk4Bps+8vKzczOzS/kFwtLyyura8X1jVudpIqyGk1EohoB0UzwmNWAg2ANqRiJAsHqQfd8VK/fM6V5Et9ATzIvIu2Yh5wSMMgvllu+s3vpO+VLv7p34uo08iV2BQthYOid3Df8TrqKtzsw8Islu2KPhaeNk5kSynTlFz/dVkLTiMVABdG66dgSvD5RwKlgw4KbaiYJ7ZI2axobk4hprz++aoh3DGnhMFHmxYDH9PdEn0Ra96LAdEYEOnqyNoL/1ZophEden8cyBRbTn0VhKjAkeBQRbnHFKIieMYQqbv6KaYcoQsEEWTAhOJMnT5tatXJcsa8PSqdnWRp5tIW20S5y0CE6RRfoCtUQRQ/oCb2gV+vRerberPef1pyVzWyiP7I+vgEd250s</latexit><latexit sha1_base64="8ZCuuBcKC46GWTRjjXrSdj3abFo=">AAACFHicbZDNSgMxFIUz9a/Wv6pLN8EiKNQyUwR1IYhudKdgbaEzDpk004ZmZkJyRyhtX8KNr+LGhYpbF+58G9M6C209EDh8915u7gmk4Bps+8vKzczOzS/kFwtLyyura8X1jVudpIqyGk1EohoB0UzwmNWAg2ANqRiJAsHqQfd8VK/fM6V5Et9ATzIvIu2Yh5wSMMgvllu+s3vpO+VLv7p34uo08iV2BQthYOid3Df8TrqKtzsw8Islu2KPhaeNk5kSynTlFz/dVkLTiMVABdG66dgSvD5RwKlgw4KbaiYJ7ZI2axobk4hprz++aoh3DGnhMFHmxYDH9PdEn0Ra96LAdEYEOnqyNoL/1ZophEden8cyBRbTn0VhKjAkeBQRbnHFKIieMYQqbv6KaYcoQsEEWTAhOJMnT5tatXJcsa8PSqdnWRp5tIW20S5y0CE6RRfoCtUQRQ/oCb2gV+vRerberPef1pyVzWyiP7I+vgEd250s</latexit><latexit sha1_base64="8ZCuuBcKC46GWTRjjXrSdj3abFo=">AAACFHicbZDNSgMxFIUz9a/Wv6pLN8EiKNQyUwR1IYhudKdgbaEzDpk004ZmZkJyRyhtX8KNr+LGhYpbF+58G9M6C209EDh8915u7gmk4Bps+8vKzczOzS/kFwtLyyura8X1jVudpIqyGk1EohoB0UzwmNWAg2ANqRiJAsHqQfd8VK/fM6V5Et9ATzIvIu2Yh5wSMMgvllu+s3vpO+VLv7p34uo08iV2BQthYOid3Df8TrqKtzsw8Islu2KPhaeNk5kSynTlFz/dVkLTiMVABdG66dgSvD5RwKlgw4KbaiYJ7ZI2axobk4hprz++aoh3DGnhMFHmxYDH9PdEn0Ra96LAdEYEOnqyNoL/1ZophEden8cyBRbTn0VhKjAkeBQRbnHFKIieMYQqbv6KaYcoQsEEWTAhOJMnT5tatXJcsa8PSqdnWRp5tIW20S5y0CE6RRfoCtUQRQ/oCb2gV+vRerberPef1pyVzWyiP7I+vgEd250s</latexit>
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sX

p

(Ip1 � Ip2 )
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find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

k-Nearest Neighbor

http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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For every test image (first column), 
examples of nearest neighbors in rows

Example dataset: CIFAR-10
10 labels 
50,000 training images
10,000 test images.
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Q: what is the accuracy of the nearest 
neighbor classifier on the training data, 
when using the Euclidean distance?

the data NN classifier 5-NN classifier
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Q2: what is the accuracy of the k-nearest 
neighbor classifier on the training data?

the data NN classifier 5-NN classifier
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What is the best distance to use?
What is the best value of k to use?

i.e. how do we set the hyperparameters?
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What is the best distance to use?
What is the best value of k to use?

i.e. how do we set the hyperparameters?

Very problem-dependent. 
Must try them all out and see what works best.
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Try out what hyperparameters work best on test set.
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Trying out what hyperparameters work best on test set:
Very bad idea. The test set is a proxy for the generalization performance!
Use only VERY SPARINGLY, at the end.
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Validation data
use to tune hyperparameters
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Cross-validation
cycle through the choice of which 
fold is the validation fold, average 
results.
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Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome. 

The line goes
through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works 
the best for this data)



k-Nearest Neighbor on images never used.

78

- terrible performance at test time
- distance metrics on level of whole images can be 

very unintuitive

(all 3 images have same L2 distance to the one on the left)



Nearest Neighbor with ConvNet features works well!

79
Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Justin Johnson January 10, 2022

Nearest Neighbor with ConvNet features works well!

Lecture 2 - 88

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015



Nearest Neighbor with ConvNet features works well!
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Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Example: Image Captioning with Nearest Neighbor

Justin Johnson January 10, 2022

Nearest Neighbor with ConvNet features works well!

Lecture 2 - 89

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

Example: Image Captioning with Nearest Neighbor
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The learning problem
— linear classification
— hypothesis class, estimation algorithm
— loss and estimation criterion
— sampling, empirical and expected losses



The Learning Problem

• Steps
—entertain a (biased) set of possibilities (hypothesis class)
—adjust predictions based on available examples (estimation) 
—rethink the set of possibilities (model selection)

• Principles of learning are “universal”
—society (e.g., scientific community) 
—animal (e.g., human)
—machine
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cat

car
frog

Image  
Classification

Hypothesis class

• Representation: examples are binary vectors of length d = 64

x = [111 . . . 0001]T =

and labels y 2 {�1, 1} (“no”,”yes”)

• The mapping from examples to labels is a “linear classifier”

ŷ = sign ( ✓ · x ) = sign ( ✓1x1 + . . . + ✓dxd )

where ✓ is a vector of parameters we have to learn from
examples.

Tommi Jaakkola, MIT CSAIL 19

Digit 
Recognition



Hypothesis class
• Representation: examples are binary vectors of length d = 64 

and labels

• The mapping from examples to labels is a “linear classifier”

where θ is a vector of parameters we have to learn from examples.

83

Hypothesis class

• Representation: examples are binary vectors of length d = 64

x = [111 . . . 0001]T =

and labels y 2 {�1, 1} (“no”,”yes”)

• The mapping from examples to labels is a “linear classifier”
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Linear classifier/experts
• We can understand the simple linear classifier

as a way of combining expert opinion (in this case simple binary 
features)
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Linear classifier/experts

• We can understand the simple linear classifier

ŷ = sign ( ✓ · x ) = sign ( ✓1x1 + . . . + ✓dxd )

as a way of combining expert opinion (in this case simple
binary features)

. . .

xdx1 x2

✓1 ✓d

“votes”

ŷ = sign ( ✓1x1 + . . . + ✓dxd )

combined “votes”

Expert 1
✓2

majority rule

1 10

Tommi Jaakkola, MIT CSAIL 20

Hypothesis class

• Representation: examples are binary vectors of length d = 64

x = [111 . . . 0001]T =

and labels y 2 {�1, 1} (“no”,”yes”)

• The mapping from examples to labels is a “linear classifier”

ŷ = sign ( ✓ · x ) = sign ( ✓1x1 + . . . + ✓dxd )

where ✓ is a vector of parameters we have to learn from
examples.

Tommi Jaakkola, MIT CSAIL 19



Estimation

• How do we adjust the parameters θ based on the labeled 
examples?

• For example, we can simply refine/update the parameters 
whenever we make a mistake (perceptron algorithm): 

if prediction was wrong
85

Estimation

x y
0111111001110010000000100000001001111110111011111001110111110001 +1
0001111100000011000001110000011001111110111111001111111100000011 +1
1111111000000110000011000111111000000111100000111110001101111111 -1

. . . . . .
• How do we adjust the parameters ✓ based on the labeled

examples?

ŷ = sign ( ✓ · x )

Tommi Jaakkola, MIT CSAIL 21
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Estimation

x y
0111111001110010000000100000001001111110111011111001110111110001 +1
0001111100000011000001110000011001111110111111001111111100000011 +1
1111111000000110000011000111111000000111100000111110001101111111 -1

. . . . . .
• How do we adjust the parameters ✓ based on the labeled

examples?

ŷ = sign ( ✓ · x )

For example, we can simply refine/update the parameters
whenever we make a mistake:

✓i ✓i + y xi, i = 1, . . . , d if prediction was wrong

Tommi Jaakkola, MIT CSAIL 22



Evaluation
• Does the simple mistake driven algorithm work?

(average classification error as a function of the number of examples 
and labels seen so far)
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Evaluation

• Does the simple mistake driven algorithm work?
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Illustration of Convergence 
• Convergence of the perceptron learning algorithm
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Illustration of Convergence 
•  Convergence of the perceptron learning algorithm 

Slide credit: Russ Salakhutdinov
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Linear classifier: image classification

[32x32x3]
array of numbers 0...1
(3072 numbers total)

f(x,W)
image parameters

10 numbers, 
indicating class 
scores
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Linear classifier: image classification

[32x32x3]
array of numbers 0...1

10 numbers, 
indicating class 
scores
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3072x1

10x1 10x3072

parameters, or “weights”

[32x32x3]
array of numbers 0...1

10 numbers, 
indicating class 
scores

Linear classifier: image classification
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3072x1

10x1 10x3072

parameters, or “weights”

[32x32x3]
array of numbers 0...1

10 numbers, 
indicating class 
scores

Linear classifier: image classification

(+b) 10x1
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Example with an image with 4 pixels, and 
3 classes (cat/dog/ship)
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Interpreting a Linear Classifier (Visual Viewpoint)

Q: what does the 
linear classifier do, in 
English?
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Example trained weights of a 
linear classifier trained on 
CIFAR-10:

Interpreting a Linear Classifier (Visual Viewpoint)
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Linear classifier has one 
“template” per category 

A single template cannot capture 
multiple modes of the data 

e.g. horse template has 2 heads! 

Interpreting a Linear Classifier (Visual Viewpoint)
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[32x32x3]
array of numbers 0...1
(3072 numbers total)

Interpreting a Linear Classifier (Geometric Viewpoint)
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[32x32x3]
array of numbers 0...1
(3072 numbers total)

Interpreting a Linear Classifier (Geometric Viewpoint)

car score 
increases 
this way

deer score 
increases 
this way

airplane score 
increases 
this way



Model selection
• The simple linear classifier cannot solve all the problems 

• Can we rethink the approach to do even better?

• We can, for example, add “polynomial experts”
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Model selection

• The simple linear classifier cannot solve all the problems
(e.g., XOR)

�1
x1

x2

xx

xx
1

�11

• Can we rethink the approach to do even better?

We can, for example, add “polynomial experts”

ŷ = sign ( ✓1x1 + . . . + ✓dxd + ✓12x1x2 + . . . )
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Hard Cases for a Linear Classifier

Lecture 3 - 32

Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else



Model selection (cont’d)
Model selection cont’d
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linear 2nd order polynomial

4th order polynomial 8th order polynomial



Review: The learning problem

• Hypothesis class: we consider some restricted set      of mappings   
from images to labels

• Estimation: on the basis of a training set of examples and labels,  
, we find an estimate 

• Evaluation: we measure how well     generalizes to yet unseen examples, 
i.e., whether                agrees with  

100

cat

car
frogImage  Classification

Review: the learning problem
• Recall the image (face) recognition problem

Jaakkola

Indyk

Barzilay

Collins

• Hypothesis class: we consider some restricted set F of
mappings f : X ! L from images to labels

• Estimation: on the basis of a training set of examples and
labels, {(x1, y1), . . . , (xn, yn)}, we find an estimate f̂ 2 F

• Evaluation: we measure how well f̂ generalizes to yet unseen
examples, i.e., whether f̂(xnew) agrees with ynew
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Hypothesis and estimation
• We used a simple linear classifier, a parameterized mapping             from images       

to labels     , to solve a binary image classification problem (2’s vs 3’s): 

where     is a pixel image and

• The parameters θ were adjusted on the basis of the training examples and labels 
according to a simple mistake driven update rule (written here in a vector form)

• The update rule attempts to minimize the number of errors that the classifier 
makes on the training examples

101

Hypotheses and estimation
• We used a simple linear classifier, a parameterized mapping

f(x; ✓) from images X to labels L, to solve a binary image
classification problem (2’s vs 3’s):

ŷ = f(x; ✓) = sign
�
✓ · x

�

where x is a pixel image and ŷ 2 {�1, 1}.
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Hypotheses and estimation
• We used a simple linear classifier, a parameterized mapping

f(x; ✓) from images X to labels L, to solve a binary image
classification problem (2’s vs 3’s):

ŷ = f(x; ✓) = sign
�
✓ · x

�

where x is a pixel image and ŷ 2 {�1, 1}.

• The parameters ✓ were adjusted on the basis of the training
examples and labels according to a simple mistake driven
update rule (written here in a vector form)

✓  ✓ + yixi, whenever yi 6= sign
�
✓ · xi

�

• The update rule attempts to minimize the number of errors
that the classifier makes on the training examples

Tommi Jaakkola, MIT CSAIL 6



Estimation criterion
• We can formulate the binary classification problem more explicitly by defining 

a zero-one loss:

so that 

gives the fraction of prediction errors on the training set. 

• This is a function of the parameters θ and we can try to minimize it directly. 
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Estimation criterion
• We can formulate the estimation problem more explicitly by

defining a zero-one loss:

Loss
�
y, ŷ

�
=

⇢
0, y = ŷ
1, y 6= ŷ

so that

1
n

nX

i=1

Loss
�
yi, ŷi

�
=

1
n

nX

i=1

Loss
�
yi, f(xi; ✓)

�

gives the fraction of prediction errors on the training set.

• This is a function of the parameters ✓ and we can try to
minimize it directly.
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Suppose: 3 training examples, 3 classes.
With some W the scores                          are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Multiclass SVM loss:

Given an example
where       is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 5.1 - 3.2 + 1) 
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

2.9Losses:

Suppose: 3 training examples, 3 classes.
With some W the scores                          are:

Multiclass SVM loss:

Given an example
where       is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Suppose: 3 training examples, 3 classes.
With some W the scores                          are:

Multiclass SVM loss:

Given an example
where       is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9
= max(0, 2.2 - (-3.1) + 1) 

+max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3) + max(0, 5.6)
= 5.3 + 5.6
= 10.9

Suppose: 3 training examples, 3 classes.
With some W the scores                          are:

Multiclass SVM loss:

Given an example
where       is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9
L = (2.9 + 0 + 10.9)/3 

= 4.6

Suppose: 3 training examples, 3 classes.
With some W the scores                          are:

Multiclass SVM loss:

Given an example
where       is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:

and the full training loss is the 
mean over all examples in the 
training data:
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

0Losses: 2.9 10.9

Q: what is the min/max 
possible loss?

Suppose: 3 training examples, 3 classes.
With some W the scores                          are:

Multiclass SVM loss:

Given an example
where       is the image and
where       is the (integer) label,

and using the shorthand for the 
scores vector:

the SVM loss has the form:
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There is something missing in the loss:

e.g. suppose that we found a W such that L = 0. 
Is this W unique?
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Suppose: 3 training examples, 3 classes.
With some W the scores are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 

+max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0
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Weight Regularization
𝜆 = regularization strength
(hyperparameter)

In common use:
L2 regularization

L1 regularization
Elastic net (L1 + L2)
Max norm regularization
Dropout (will see later)
Batch normalization (will see later)



119

L2 regularization: motivation

x = [1, 1, 1, 1]
<latexit sha1_base64="034ovEbkMS5Qsdpd4iRqrZn2FDg=">AAAB+nicbVDLSsNAFL3xWesr1qWbwaK4kJKIoC6EohuXFYwtJKFMppN26OTBzERaQn/FjQsVt36JO//GaZqFtp7LhcM59zJ3TpByJpVlfRtLyyura+uVjerm1vbOrrlXe5RJJgh1SMIT0QmwpJzF1FFMcdpJBcVRwGk7GN5O/fYTFZIl8YMap9SPcD9mISNYaalr1kboGF0j1z4tyve8atesWw2rAFokdknqUKLVNb+8XkKyiMaKcCyla1up8nMsFCOcTqpeJmmKyRD3qatpjCMq/by4fYKOtNJDYSJ0xwoV6u+NHEdSjqNAT0ZYDeS8NxX/89xMhZd+zuI0UzQms4fCjCOVoGkQqMcEJYqPNcFEMH0rIgMsMFE6rmkI9vyXF4lz1rhqWPfn9eZNmUYFDuAQTsCGC2jCHbTAAQIjeIZXeDMmxovxbnzMRpeMcmcf/sD4/AG0gZEv</latexit><latexit sha1_base64="034ovEbkMS5Qsdpd4iRqrZn2FDg=">AAAB+nicbVDLSsNAFL3xWesr1qWbwaK4kJKIoC6EohuXFYwtJKFMppN26OTBzERaQn/FjQsVt36JO//GaZqFtp7LhcM59zJ3TpByJpVlfRtLyyura+uVjerm1vbOrrlXe5RJJgh1SMIT0QmwpJzF1FFMcdpJBcVRwGk7GN5O/fYTFZIl8YMap9SPcD9mISNYaalr1kboGF0j1z4tyve8atesWw2rAFokdknqUKLVNb+8XkKyiMaKcCyla1up8nMsFCOcTqpeJmmKyRD3qatpjCMq/by4fYKOtNJDYSJ0xwoV6u+NHEdSjqNAT0ZYDeS8NxX/89xMhZd+zuI0UzQms4fCjCOVoGkQqMcEJYqPNcFEMH0rIgMsMFE6rmkI9vyXF4lz1rhqWPfn9eZNmUYFDuAQTsCGC2jCHbTAAQIjeIZXeDMmxovxbnzMRpeMcmcf/sD4/AG0gZEv</latexit><latexit sha1_base64="034ovEbkMS5Qsdpd4iRqrZn2FDg=">AAAB+nicbVDLSsNAFL3xWesr1qWbwaK4kJKIoC6EohuXFYwtJKFMppN26OTBzERaQn/FjQsVt36JO//GaZqFtp7LhcM59zJ3TpByJpVlfRtLyyura+uVjerm1vbOrrlXe5RJJgh1SMIT0QmwpJzF1FFMcdpJBcVRwGk7GN5O/fYTFZIl8YMap9SPcD9mISNYaalr1kboGF0j1z4tyve8atesWw2rAFokdknqUKLVNb+8XkKyiMaKcCyla1up8nMsFCOcTqpeJmmKyRD3qatpjCMq/by4fYKOtNJDYSJ0xwoV6u+NHEdSjqNAT0ZYDeS8NxX/89xMhZd+zuI0UzQms4fCjCOVoGkQqMcEJYqPNcFEMH0rIgMsMFE6rmkI9vyXF4lz1rhqWPfn9eZNmUYFDuAQTsCGC2jCHbTAAQIjeIZXeDMmxovxbnzMRpeMcmcf/sD4/AG0gZEv</latexit>

w1 = [1, 0, 0, 0]

w2 = [0.25, 0.25, 0.25, 0.25]
<latexit sha1_base64="PeymmKechcW/2rBFkCmk748qcOg=">AAACF3icbVC7TsMwFHXKq5RXgJHFogIxVCGpQMCAVMHCWCRKK7VR5LhOseo4ke1QVVU/g4VfYWEAxAobf4OTZqAtx/LV0Tn3yr7HjxmVyrZ/jMLC4tLySnG1tLa+sbllbu/cyygRmDRwxCLR8pEkjHLSUFQx0ooFQaHPSNPvX6d+85EISSN+p4YxcUPU4zSgGCkteebxwHPgIbxsOxU7PW6nUxp41UyyreppZbq4nlm2LTsDnCdOTsogR90zvzvdCCch4QozJGXbsWPljpBQFDMyLnUSSWKE+6hH2ppyFBLpjrLFxvBAK10YREJfrmCm/p0YoVDKYejrzhCpBznrpeJ/XjtRwbk7ojxOFOF48lCQMKgimKYEu1QQrNhQE4QF1X+F+AEJhJXOsqRDcGZXnieNqnVh2bcn5dpVnkYR7IF9cAQccAZq4AbUQQNg8ARewBt4N56NV+PD+Jy0Fox8ZhdMwfj6BXKJmLg=</latexit><latexit sha1_base64="PeymmKechcW/2rBFkCmk748qcOg=">AAACF3icbVC7TsMwFHXKq5RXgJHFogIxVCGpQMCAVMHCWCRKK7VR5LhOseo4ke1QVVU/g4VfYWEAxAobf4OTZqAtx/LV0Tn3yr7HjxmVyrZ/jMLC4tLySnG1tLa+sbllbu/cyygRmDRwxCLR8pEkjHLSUFQx0ooFQaHPSNPvX6d+85EISSN+p4YxcUPU4zSgGCkteebxwHPgIbxsOxU7PW6nUxp41UyyreppZbq4nlm2LTsDnCdOTsogR90zvzvdCCch4QozJGXbsWPljpBQFDMyLnUSSWKE+6hH2ppyFBLpjrLFxvBAK10YREJfrmCm/p0YoVDKYejrzhCpBznrpeJ/XjtRwbk7ojxOFOF48lCQMKgimKYEu1QQrNhQE4QF1X+F+AEJhJXOsqRDcGZXnieNqnVh2bcn5dpVnkYR7IF9cAQccAZq4AbUQQNg8ARewBt4N56NV+PD+Jy0Fox8ZhdMwfj6BXKJmLg=</latexit><latexit sha1_base64="PeymmKechcW/2rBFkCmk748qcOg=">AAACF3icbVC7TsMwFHXKq5RXgJHFogIxVCGpQMCAVMHCWCRKK7VR5LhOseo4ke1QVVU/g4VfYWEAxAobf4OTZqAtx/LV0Tn3yr7HjxmVyrZ/jMLC4tLySnG1tLa+sbllbu/cyygRmDRwxCLR8pEkjHLSUFQx0ooFQaHPSNPvX6d+85EISSN+p4YxcUPU4zSgGCkteebxwHPgIbxsOxU7PW6nUxp41UyyreppZbq4nlm2LTsDnCdOTsogR90zvzvdCCch4QozJGXbsWPljpBQFDMyLnUSSWKE+6hH2ppyFBLpjrLFxvBAK10YREJfrmCm/p0YoVDKYejrzhCpBznrpeJ/XjtRwbk7ojxOFOF48lCQMKgimKYEu1QQrNhQE4QF1X+F+AEJhJXOsqRDcGZXnieNqnVh2bcn5dpVnkYR7IF9cAQccAZq4AbUQQNg8ARewBt4N56NV+PD+Jy0Fox8ZhdMwfj6BXKJmLg=</latexit>

wT
1 x = wT

2 x = 1
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Estimation criterion  (revisited)
• We have reduced the estimation problem to a minimization problem

—valid for any parameterized class of mappings from examples to predictions
—valid when the predictions are discrete labels, real valued, or other provided 

that the loss is defined appropriately
—may be ill-posed (under-constrained) as stated

• But why is it sensible to minimize the empirical loss in the first place 
since we are only interested in the performance on new examples?
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Estimation criterion cont’d
• We have reduced the estimation problem to a minimization

problem

find ✓ that minimizes

empirical lossz }| {
1
n

nX

i=1

Loss
�
yi, f(xi; ✓)

�

– valid for any parameterized class of mappings from
examples to predictions

– valid when the predictions are discrete labels, real valued,
or other provided that the loss is defined appropriately

– may be ill-posed (under-constrained) as stated

• But why is it sensible to minimize the empirical loss in the
first place since we are only interested in the performance on
new examples?
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Training and test performance: sampling
• We assume that each training and test example-label pair,          is drawn 

independently at random from the same but unknown population of 
examples and labels.

• We can represent this population as a joint probability distribution 
so that each training/test example is a sample from this distribution

121
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Training and test performance: sampling
• We assume that each training and test example-label pair,

(x, y), is drawn independently at random from the same but
unknown population of examples and labels.

• We can represent this population as a joint probability
distribution P (x, y) so that each training/test example is
a sample from this distribution (xi, yi) ⇠ P
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Training and test performance: sampling
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Training and test performance: sampling
• We assume that each training and test example-label pair,

(x, y), is drawn independently at random from the same but
unknown population of examples and labels.

• We can represent this population as a joint probability
distribution P (x, y) so that each training/test example is
a sample from this distribution (xi, yi) ⇠ P

Empirical (training) loss =
1
n

nX

i=1

Loss
�
yi, f(xi; ✓)

�

Expected (test) loss = E(x,y)⇠P

�
Loss

�
y, f(x; ✓)

� 

• The training loss based on a few sampled examples and labels
serves as a proxy for the test performance measured over the
whole population.
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Regression, example
Linear regression
— Estimation, errors, analysis



Regression
• The goal is to make quantitative (real valued) predictions on the basis of a (vector 

of) features or attributes 

• Example: predicting vehicle fuel efficiency (mpg) from 8 attributes 

• We need to
—specify the class of functions (e.g., linear) 
—select how to measure prediction loss
—solve the resulting minimization problem 124

Regression
• The goal is to make quantitative (real valued) predictions on

the basis of a (vector of) features or attributes

• Example: predicting vehicle fuel e�ciency (mpg) from 8
attributes

y x
cyls disp hp weight . . .

18.0 8 307.0 130.00 3504 . . .
26.0 4 97.00 46.00 1835 . . .
33.5 4 98.00 83.00 2075 . . .
. . .

• We need to
– specify the class of functions (e.g., linear)
– select how to measure prediction loss
– solve the resulting minimization problem

Tommi Jaakkola, MIT CSAIL 15



Linear regression

• We begin by considering linear regression (easy to extend to more complex 
predictions later on)

where      are parameters we need to set. 

125

Linear regression
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• We begin by considering linear regression (easy to extend to
more complex predictions later on)

f : R! R f(x;w) = w0 + w1x

f : Rd! R f(x;w) = w0 + w1x1 + . . . wdxd

where w = [w0, w1, . . . , wd]T are parameters we need to set.
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Linear regression: squared loss

• We can measure the prediction loss in terms of squared error,
, so that the empirical loss on n training samples becomes 

mean squared error

126
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Linear regression: squared loss
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f : R! R f(x;w) = w0 + w1x

f : Rd ! R f(x;w) = w0 + w1x1 + . . . wdxd

• We can measure the prediction loss in terms of squared error,
Loss(y, ŷ) = (y� ŷ)2, so that the empirical loss on n training
samples becomes mean squared error

Jn(w) =
1
n

nX

i=1

�
yi � f(xi;w)

�2
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Linear regression: estimation
• We have to minimize the empirical squared loss 

• By setting the derivatives with respect to w1 and w0 to zero, we get necessary 
conditions for the “optimal” parameter values 
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Linear regression: estimation
• We have to minimize the empirical squared loss

Jn(w) =
1
n

nX

i=1

�
yi � f(xi;w)

�2

=
1
n

nX

i=1

(yi � w0 � w1xi)2 (1-dim)

By setting the derivatives with respect to w1 and w0 to zero,
we get necessary conditions for the “optimal” parameter
values

@

@w1
Jn(w) = 0

@

@w0
Jn(w) = 0
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Optimality conditions: derivation
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Optimality conditions: derivation
@

@w1
Jn(w) =

@

@w1

1
n

nX

i=1

(yi � w0 � w1xi)2

=
1
n

nX

i=1

@

@w1
(yi � w0 � w1xi)2

=
2
n

nX

i=1

(yi � w0 � w1xi)
@

@w1
(yi � w0 � w1xi)

=
2
n

nX

i=1

(yi � w0 � w1xi)(�xi) = 0

@

@w0
Jn(w) =

2
n

nX

i=1

(yi � w0 � w1xi)(�1) = 0
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Optimality conditions: derivation
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Optimality conditions: derivation
@

@w1
Jn(w) =

@

@w1

1
n

nX

i=1

(yi � w0 � w1xi)2

=
1
n

nX

i=1

@

@w1
(yi � w0 � w1xi)2

=
2
n

nX

i=1

(yi � w0 � w1xi)
@

@w1
(yi � w0 � w1xi)

=
2
n

nX

i=1

(yi � w0 � w1xi)(�xi) = 0

@

@w0
Jn(w) =

2
n

nX

i=1

(yi � w0 � w1xi)(�1) = 0
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Optimality conditions: derivation
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Optimality conditions: derivation
@

@w1
Jn(w) =

@

@w1

1
n

nX

i=1

(yi � w0 � w1xi)2

=
1
n

nX

i=1

@

@w1
(yi � w0 � w1xi)2

=
2
n

nX

i=1

(yi � w0 � w1xi)
@

@w1
(yi � w0 � w1xi)

=
2
n

nX

i=1

(yi � w0 � w1xi)(�xi) = 0

@

@w0
Jn(w) =

2
n

nX

i=1

(yi � w0 � w1xi)(�1) = 0
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Optimality conditions: derivation
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Optimality conditions: derivation
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Optimality conditions: derivation
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Linear regression: matrix notation
• We can express the solution a bit more generally by resorting to a matrix notation 

so that
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Linear regression: matrix notation
• We can express the solution a bit more generally by resorting

to a matrix notation

y =

2

64
y1

· · ·
yn

3

75 , X =

2

64
1 x1

· · · · · ·
1 xn

3

75 , w =


w0

w1

�

so that

1
n

nX

t=1

(yt � w0 � w1xt)2 =
1
n

�������

2

64
y1

· · ·
yn

3

75�

2

64
1 x1

· · · · · ·
1 xn

3

75


w0

w1

�
�������

2

=
1
n
ky �Xwk2
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Linear regression: solution
• By setting the derivatives of                           to zero, we get the same 

optimality conditions as before, now expressed in a matrix form 

which gives

• The solution is a linear function of the outputs y
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Linear regression: solution
By setting the derivatives of ky �Xwk2/n to zero, we get
the same optimality conditions as before, now expressed in a
matrix form

@

@w
1
n
ky �Xwk2 =

@

@w
1
n
(y �Xw)T (y �Xw)

=
2
n
XT (y �Xw)

=
2
n
(XTy �XTXw) = 0

which gives

ŵ = (XTX)�1XTy

• The solution is a linear function of the outputs y
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Alternative: Gradient Descent Algorithm

• One straightforward method: gradient descent 
− initialize θ (e.g., randomly)

− repeatedly update θ based on the gradient 

• 𝛼 is the learning rate

139

Optimizing the Objective

One straightforward method: gradient descent

I initialize w (e.g., randomly)

I repeatedly update w based on the gradient

w w � �
@`

@w

� is the learning rate

For a single training case, this gives the LMS update rule:

w w + 2� (t(n) � y(x (n)))| {z }
error

x (n)

Note: As error approaches zero, so does the update (w stops changing)

Urtasun, Zemel, Fidler (UofT) CSC 411: 02-Regression Jan 13, 2016 11 / 22

MACHINE LEARNING
Topics: gradient descent
• Gradient descent for empirical risk minimization
‣ initialize 
‣ for N iterations

-  

• bµ = 1
T

P
t
x(t)

• b�2 = 1
T�1

P
t
(x(t) � bµ)2

• b⌃ = 1
T�1

P
t
(x(t) � bµ)(x(t) � bµ)>

• E[bµ] = µ E[b�2] = �
2 E

h
b⌃
i
= ⌃

• bµ�µp
b�2/T

• µ 2 bµ±�1.96
p

b�2/T

•
b✓ = argmax

✓

p(x(1)
, . . . ,x(T ))

•
p(x(1)
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Effect of learning rate λ

• Large λ => Fast convergence but larger residual error 
                   Also possible oscillations

• Small λ => Slow convergence but small residual error

142Slide credit: Erik Sudderth



Local and Global Optima
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MACHINE LEARNING
Topics: local and global optima
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Stochastic Gradient Descent
• Two ways to generalize this for all examples in training set:

1.Batch updates: sum or average updates across every example n, then 
change the parameter values

2.Stochastic/online updates: update the parameters for each training case 
in turn, according to its own gradients 

144Slide adapted from Sanja Fidler
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Linear regression: generalization
• As the number of training examples increases our solution 

gets “better”

We’d like to understand the error a bit better 
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Linear regression: types of errors
• Structural error measures the error introduced by the limited 

function class (infinite training data): 

where                are the optimal linear regression parameters. 

• Approximation error measures how close we can get to the optimal linear 
predictions with limited training data: 

where               are the parameter estimates based on a small training set 
(therefore themselves random variables). 
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1) are the optimal linear regression parameters.

• Approximation error measures how close we can get to the
optimal linear predictions with limited training data:
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1x� ŵ0 � ŵ1x)2

where (ŵ0, ŵ1) are the parameter estimates based on a small
training set (therefore themselves random variables).
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Linear regression: error decomposition
• The expected error of our linear regression function decomposes into the sum of 

structural and approximation errors 
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Bias-Variance Tradeoff
• Variance of trained model: does it vary a lot if the training set changes

• Bias of trained model: is the average model close to the true solution?

• Generalization error can be seen as the sum of bias and the variance

148



Parametric vs. non-parametric models
• Parametric model: its capacity is fixed and does not increase with 

the amount of training data 
−examples: linear classifier, neural network with fixed number of hidden units, 

etc. 

• Non-parametric model: the capacity increases with the amount of 
training data 
−examples: k nearest neighbors classifier, neural network with adaptable 

hidden layer size, etc.

149



151

Beyond linear regression models
— additive regression models, examples
— generalization and cross-validation
— population minimizer



Linear regression
• Linear regression functions,

combined with the squared loss, are convenient because they are linear in the parameters. 

—we get closed form estimates of the parameters 

where, for example, 

—the resulting prediction errors                                      are uncorrelated with any linear 
function of the inputs 

—we can easily extend these to non-linear functions of the inputs while still keeping 
them linear in the parameters 
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Linear regression

• Linear regression functions,

f : R! R f(x;w) = w0 + w1x, or

f : Rd ! R f(x;w) = w0 + w1x1 + . . . + wdxd

combined with the squared loss, are convenient because they
are linear in the parameters.

– we get closed form estimates of the parameters

ŵ = (XTX)�1XTy

where, for example, y = [y1, . . . , yn]T .

– the resulting prediction errors ✏i = yi � f(xi; ŵ) are
uncorrelated with any linear function of the inputs x.

– we can easily extend these to non-linear functions of the
inputs while still keeping them linear in the parameters
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uncorrelated with any linear function of the inputs x.

– we can easily extend these to non-linear functions of the
inputs while still keeping them linear in the parameters

Tommi Jaakkola, MIT CSAIL 6

Linear regression

• Linear regression functions,

f : R! R f(x;w) = w0 + w1x, or

f : Rd ! R f(x;w) = w0 + w1x1 + . . . + wdxd

combined with the squared loss, are convenient because they
are linear in the parameters.

– we get closed form estimates of the parameters
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Beyond linear regression
• Example extension: mth order polynomial regression where 

is given by 

—linear in the parameters, non-linear in the inputs
—solution as before

where
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f : R! R is given by

f(x;w) = w0 + w1x + . . . + wm�1x
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Polynomial regression
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Polynomial regression
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Underfitting and Overfitting
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CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0

y

Underfitting

x0

y

Appropriate capacity

x0

y

Overfitting

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113
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Underfitting
• The learner cannot find a solution that fits training examples well 

• For example, use linear regression to fit training examples {x(i),y(i)}
where y(i) is an quadratic function of x(i).

• Underfitting means that the learner cannot capture some 
important aspects of the data.

• Reasons for underfitting happens 
• Model is not rich enough 
• Difficult to find the global optimum of the objective function on the 

training set or easy to get stuck at local minimum 
• Limitation on the computation resources (not enough training iterations 

of an iterative optimization procedure) 

• Underfitting commonly happens in non-deep learning approaches 
with large scale training data and could be even a more serious 
problem than overfitting in some cases.
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So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as
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Overfitting
• The learner fits the training data well, but loses the ability 

to generalize well, i.e. it has small training error but larger 
generalization error
• A learner with large capacity tends to overfit.

• The family of functions is too large (compared with the size of 
the training data) and it contains many functions which all fit the 
training data well. 

• Without sufficient data, the learner cannot distinguish which 
one is most appropriate and would make an arbitrary choice 
among these apparently good solutions.

• A separate validation set helps to choose a more appropriate 
one.

• In most cases, data is contaminated by noise. The learner with 
large capacity tends to describe random errors or noise instead 
of the underlying models of data (classes).
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have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
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Model complexity (capacity)
• The goal is to classify novel examples not seen yet, but not the 

training examples! 

• Generalization. The ability to correctly classify new examples that 
differ from those used for training
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Overly complex models lead to complicated decision 
boundaries. It leads to perfect classification on the 
training examples, but would lead to poor performance 
on new patterns. 

The decision boundary might represent the optimal tradeoff 
between performance on the training set and simplicity of 
classifier, therefore giving highest accuracy on new patterns. 



Generalization and Capacity
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0 Optimal Capacity

Capacity

E
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Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||

2
2.

The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
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Typical relationship between capacity and both training and generalization (or test) error. 

- As capacity increases, training error can 
be reduced, but the optimism 
(difference between training and 
generalization error) increases. 

- At some point, the increase in optimism 
is larger than the decrease in training 
error (typically when the training error is 
low and cannot go much lower), and we 
enter the overfitting regime, where 
capacity is too large, above the optimal 
capacity. 

- Before reaching optimal capacity, we 
are in the underfitting regime. 



Bias and Variance
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The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter ✓. As is clear from
equation 5.54, evaluating the MSE incorporates both the bias and the variance.
Desirable estimators are those with small MSE and these are estimators that
manage to keep both their bias and variance somewhat in check.

Capacity

Bias Generalization
error Variance

Optimal
capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
section 5.2 and figure 5.3.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-
eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in figure 5.6, where we see again the U-shaped
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
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Image credit: Ian Goodfellow

sufficiently simpler 
models are more likely 
to generalize



What about generalization ability of deep 
models?
• Deep nets have so many parameters they could just act like look up 

tables, regurgitating their training data

• Instead, they learn rules that generalize 

• Defies classical theory!
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Why do deep nets generalize?
• Deep nets have so many parameters they could just act like look up tables, 

regurgitating their training data 

• Instead, they learn rules that generalize 

• Defies classical theory!

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]
[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019] Sl
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Complexity and overfitting
• With limited training examples our polynomial regression model may achieve 

zero training error but nevertheless has a large test (generalization) error 

• We suffer from overfitting when the training error no longer bears 
any relation to the generalization error 
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Complexity and overfitting

• With limited training examples our polynomial regression
model may achieve zero training error but nevertless has a
large test (generalization) error

train
1
n

nX

t=1

(yt � f(xt; ŵ))2 ⇡ 0

test E(x,y)⇠P (y � f(x; ŵ))2 � 0
−2 −1 0 1 2
−5

0

5

x

y

• We su↵er from over-fitting when the training error no longer
bears any relation to the generalization error

Tommi Jaakkola, MIT CSAIL 9



Avoiding overfitting: cross-validation
• Cross-validation allows us to estimate the 

generalization error based on training examples 
alone 

Leave-one-out cross-validation treats each training 
example in turn as a test example: 

where         are the least squares estimates of the 
parameters without the ith training example. 
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Avoiding over-fitting: cross-validation

• Cross-validation allows us to estimate the generalization error
based on training examples alone

Leave-one-out cross-validation treats
each training example in turn as a
test example:

CV =
1
n

nX

i=1

�
yi � f(xi; ŵ�i)

�2

where ŵ�i are the least squares
estimates of the parameters without
the ith training example.
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Polynomial regression: example (cont’d)
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Polynomial regression: example cont’d
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degree = 1, CV = 0.6 degree = 3, CV = 1.5
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degree = 5, CV = 6.0 degree = 7, CV = 15.6
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Additive models
• More generally, predictions can be based on a linear combination of 

a set of basis functions (or features)                                , where each              
, and 

• Examples 
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Additive models

• More generally, predictions can be based on a linear
combination of a set of basis functions (or features)
{�1(x), . . . ,�m(x)}, where each �i(x) : Rd ! R, and

f(x;w) = w0 + w1�1(x) + . . . + wm�m(x)

• Examples:

If �i(x) = xi, i = 1, . . . ,m, then

f(x;w) = w0 + w1x + . . . + wm�1x
m�1 + wmxm

If m = d, �i(x) = xi, i = 1, . . . , d, then

f(x;w) = w0 + w1x1 + . . . + wdxd
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Additive models (cont’d)
• The basis functions can capture various (e.g., qualitative) properties of 

the inputs. 

• For example: we can try to rate companies based on text descriptions 
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Additive models cont’d

• The basis functions can capture various (e.g., qualitative)
properties of the inputs.

For example: we can try to rate companies based on text
descriptions

x = text document (collection of words)

�i(x) =
⇢

1 if word i appears in the document
0 otherwise

f(x;w) = w0 +
X

i2words

wi�i(x)

Tommi Jaakkola, MIT CSAIL 14



Additive models (cont’d)
• We can view the additive models graphically in terms of simple “units” 

and “weights” 

• In neural networks, the basis functions themselves have adjustable parameters 
(cf. prototypes) 
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Additive models cont’d

• We can view the additive models graphically in terms of
simple “units” and “weights”

. . .

f(x;w)

x1 x2

�1(x) �m(x)

w1

1
w0

wm

• In neural networks the basis functions themselves have
adjustable parameters (cf. prototypes)

Tommi Jaakkola, MIT CSAIL 16



Take-home messages

(Bias)

(Variance)

(Train-test data 
mismatch)

(Overfit dev set)
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Andrew'Ng

Andrew'Ng

New'recipe'for'machine'learning

Training'error'high?
Bigger'model
Train'longer
New'model'architecture

(Bias)Yes

Train<Dev'error'high?
More'data
Regularization
New'model'architecture

(Variance)Yes

No

No

Done!

Dev'error'high?
Make'training'data'more'''''''
similar'to'test'data.'

Data'synthesis
(Domain'adaptation.)
New'model'architecture

(Train<test'data'
mismatch)Yes

No

Test'error'high? More'dev'set'data (Overfit'dev'
set)Yes

No
Andrew'Ng

General'Human/Bias/Variance'analysis'

General
speech%data%
(50,000%hours)

In>car
speech%data%
(10%hours)

Performance of'
humans Human<level error' (Carry'out'human'

evaluation'to'measure.)

Performance on'
examples'you’ve'trained'
on

Training'error (Insert some'in<car'data'into'
training'set'to'measure.)

Performance'on'
examples'you'haven’t'
trained'on

Training<Dev'error Dev/Test'error

“Avoidable'bias”

“Variance”/degree'of'
overfitting

Data'mismatch

Andrew'Ng

Human'level'performance

You’ll'often'see'the'fastest'performance'improvements'on'a'task'while'the'
ML'is'performing'worse'than'humans.'
• Human<level'performance'is'a'proxy'for'Bayes'optimal'error,'which'we'

can'never'surpass.
• Can'rely'on'human'intuition:'(i)'Have'humans'provide'labeled'data.''''''

(ii)'Error'analysis'to'understand'how'humans'got'examples'right.''''''''''
(iii)'Estimate'bias/variance.'E.g.,'On'an'image'recognition'task,'training'
error'='8%,'dev'error'='10%.'What'do'you'do?'Two'cases:'

Human'level'error'……….'1%

Training'set'error'………...'8%

Dev'set'error'……………'10%'

Focus'on'bias.

Human'level'error'……….'7.5%

Training'set'error'………...'8%

Dev'set'error'……………'10%'

Focus'on'variance.

“Avoidable'bias”

“Variance”

“Avoidable'bias”

“Variance”

Andrew'Ng

Quiz:'Medical'imaging

Suppose'that'on'an'image'labeling'task:
Typical'human'………………..…'3%'error
Typical'doctor'…………………...'1%'error
Experienced'doctor'…………….'0.7%'error
Team'of'experienced'doctors'….'0.5%'error

What'is'“human<level'error”?

Answer:'For'purpose'of'driving'ML'progress,'0.5%'is'
best'answer'since'it’s'closest'to'Bayes'error.'

Slide credit: Andrew Ng
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Statistical regression models
— model formulation, motivation
— maximum likelihood estimation



Statistical view of linear regression
• In a statistical regression model we model both the function and noise

where, e.g.,  

• Whatever we cannot capture with our chosen 
family of functions will be interpreted as noise 
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Statistical view of linear regression

• In a statistical regression model we model both the function
and noise

Observed output = function + noise

y = f(x;w) + ✏

where, e.g., ✏ ⇠ N(0,�2).

• Whatever we cannot capture
with our chosen family of
functions will be interpreted as
noise
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Statistical view of linear regression
• is trying to capture the mean of the observations y given the input x: 

where                 is the conditional expectation of y given x, evaluated according to 
the model (not according to the underlying distribution P) 
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Statistical view of linear regression

• f(x;w) is trying to capture the mean of the observations y
given the input x:

E{ y |x } = E{ f(x;w) + ✏ |x }
= f(x;w)

where E{ y |x } is the conditional expectation of y given
x, evaluated according to the model (not according to the
underlying distribution P )
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Statistical view of linear regression
• According to our statistical model 

the outputs y given x are normally distributed with mean f (x; w) and variance σ2: 

(we model the uncertainty in the predictions, not just the mean) 

• Loss function? Estimation? 
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Statistical view of linear regression

• According to our statistical model

y = f(x;w) + ✏, ✏ ⇠ N(0,�2)

the outputs y given x are normally distributed with mean
f(x;w) and variance �2:

p(y|x,w,�2) =
1p

2⇡�2
exp{� 1

2�2
(y � f(x;w))2 }

(we model the uncertainty in the predictions, not just the
mean)

• Loss function? Estimation?
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Maximum likelihood estimation
• Given observations                                                   we find the parameters  

that maximize the (conditional) likelihood of the outputs 

• Example: linear function

(why is this a bad fit according to the likelihood criterion?) 
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Maximum likelihood estimation

• Given observations Dn = {(x1, y1), . . . , (xn, yn)} we find the
parameters w that maximize the (conditional) likelihood of
the outputs

L(Dn;w,�2) =
nY

i=1

p(yi|xi,w,�2)

Example: linear function

p(y|x,w,�2) =
1p

2⇡�2
exp{� 1

2�2
(y � w0 � w1x)2 }
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Maximum likelihood estimation (cont’d)
Likelihood of the observed outputs:

• It is often easier (but equivalent) to try to maximize the log-likelihood:
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Maximum likelihood estimation cont’d

Likelihood of the observed outputs:

L(D;w,�2) =
nY

i=1

P (yi|xi,w,�2)

• It is often easier (but equivalent) to try to maximize the
log-likelihood:

l(D;w,�2) = log L(D;w,�2) =
nX

i=1

log P (yi|xi,w,�2)

=
nX

i=1

✓
� 1

2�2
(yi � f(xi;w))2 � log

p
2⇡�2

◆

=
✓
� 1

2�2

◆ nX

i=1

(yi � f(xi;w))2 + . . .
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Maximum likelihood estimation (cont’d)
• Maximizing log-likelihood is equivalent to minimizing empirical loss when the 

loss is defined according to

Loss defined as the negative log-probability is known as the log-loss. 

179

Maximum likelihood estimation cont’d

• Maximizing log-likelihood is equivalent to minimizing
empirical loss when the loss is defined according to

Loss(yi, f(xi;w)) = � log P (yi|xi,w,�2)

Loss defined as the negative log-probability is known as the
log-loss.
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Maximum likelihood estimation (cont’d)
• The log-likelihood of observations 

is a generic fitting criterion and can be used to estimate the noise variance σ2 as 
well.

• Let       be the maximum likelihood (here least squares) setting of the parameters. 
What is the maximum likelihood estimate of σ2, obtained by solving 

180

Maximum likelihood estimation cont’d

• The log-likelihood of observations

log L(D;w,�2) =
nX

i=1

log P (yi|xi,w,�2)

is a generic fitting criterion and can be used to estimate the
noise variance �2 as well.

• Let ŵ be the maximum likelihood (here least squares) setting
of the parameters. The maximum likelihood estimate of the
noise variance �2 is

�̂2 =
1
n

nX

i=1

(yi � f(xi; ŵ))2

i.e., the mean squared prediction error.
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Maximum likelihood estimation cont’d

• The log-likelihood of observations

log L(D;w,�2) =
nX

i=1

log P (yi|xi,w,�2)

is a generic fitting criterion and can be used to estimate the
noise variance �2 as well.

• Let ŵ be the maximum likelihood (here least squares) setting
of the parameters. What is the maximum likelihood estimate
of �2, obtained by solving

@

@�2
log L(D;w,�2) = 0 ?
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Maximum likelihood estimation (cont’d)
• The log-likelihood of observations 

is a generic fitting criterion and can be used to estimate the noise variance σ2 as 
well.

• Let       be the maximum likelihood (here least squares) setting of the parameters. 
The maximum likelihood estimate of the noise variance σ2 is 

i.e., the mean squared prediction error.
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Polynomial regression
• Consider again a simple mth degree polynomial regression model

where 𝜎! is assumed fixed (known).

• In this model the outputs {y1,…,yn} corresponding to any inputs {x1,…,xn} are
generated according to
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Polynomial regression
• Consider again a simple mth

degree polynomial regression

model

y = w0 + w1x + . . . + wmxm + ✏, ✏ ⇠ N(0,�2)

where �2
is assumed fixed (known).
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Polynomial regression
• Consider again a simple mth

degree polynomial regression

model

y = w0 + w1x + . . . + wmxm + ✏, ✏ ⇠ N(0,�2)

where �2
is assumed fixed (known).

• In this model the outputs {y1, . . . , yn} corresponding to any

inputs {x1, . . . , xn} are generated according to

y = Xw + e, where

y =

2

64
y1

· · ·
yn

3

75 , X =

2

64
1 x1 . . . xm

1

· · · · · · · · ·
1 xn . . . xm

n

3

75 , e =

2

64
✏1
· · ·
✏n

3

75

and ✏i ⇠ N(0,�2), i = 1, . . . , n.
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ML estimator, uncertainty
• We are interested in studying how the choice of inputs {x1,…,xn} or, 

equivalently, X, affects the accuracy of our regression model

• Our model for the outputs {y1,…,yn} given X is

• We assume also that the training outputs are actually generated by a model in 
this class with some fixed but unknown parameters w* (same 𝜎!)

• We can now ask, for a given X, how accurately we are able to recover the
’’true’’ parameters w*
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Models and accuracy
• We are interested in studying how the choice of inputs

{x1, . . . , xn} or, equivalently, X, a↵ects the accuracy of our

regression model

• Our model for the outputs y = {y1, . . . , yn} given X is

y = Xw + e, e ⇠ N(0,�2I)
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Models and accuracy
• We are interested in studying how the choice of inputs

{x1, . . . , xn} or, equivalently, X, a↵ects the accuracy of our

regression model

• Our model for the outputs y = {y1, . . . , yn} given X is

y = Xw + e, e ⇠ N(0,�2I)

• We assume also that the training outputs are actually

generated by a model in this class with some fixed but

unknown parameters w⇤
(same �2

):

y = Xw⇤ + e, e ⇠ N(0,�2I)
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ML estimator, uncertainty
• The ML estimator viewed here as a function of the outputs y for a fixed X, 

is given by

• We need to understand how      varies in relation to w* when the outputs are
generated according to

• In the absence of noise e, the ML estimator would recover w* exactly
(with only minor constraints on X)
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ML estimator, uncertainty
• The ML estimator ŵ, viewed here as a function of the

outputs y for a fixed X, is given by

ŵ = (XTX)�1XTy

• We need to understand how ŵ varies in relation to w⇤
when

the outputs are generated according to

y = Xw⇤ + e, e ⇠ N(0,�2I)

• In the absence of noise e, the ML estimator would recover

w⇤
exactly (with only minor constraints on X):

ŵ = (XTX)�1XT (Xw⇤)

= (XTX)�1(XTX)w⇤

= w⇤
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ML estimator, uncertainty
• In the presence of noise we can still use the fact that

to simplify the parameter estimates

• So the ML estimate is the correct parameter vector plus an estimate based
purely on noise
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ML estimator and noise
• In the presence of noise we can still use the fact that

y = Xw⇤ + e to simplify the parameter estimates

ŵ = (XTX)�1XTy

= (XTX)�1XT (Xw⇤ + e)

= (XTX)�1(XTX)w⇤ + (XTX)�1XTe

= w⇤ + (XTX)�1XTe

So the ML estimate is the correct parameter vector plus an

estimate based purely on noise.
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Next Lecture: 
Multi-layer Perceptrons
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