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Previously on CMP784

what Is deep learning

a brief history of deep learning

compositionality

end-to-end learning

distributed representations

lllustration: generated by using Stable XL




Lecture overview

e what is learning?
 types of machine learning problems

image classification

linear regression

generalization

cross-validation

maximum likelihood estimation

Disclaimer: Much of the material and slides for this lecture were borrowed from
— Bernhard Scholkopf's MLSS 2017 lecture,
— Tommi Jaakkola’'s 6.867 class,
— Fei-Fel Li, Andrej Karpathy and Justin Johnson's CS231n class
— Hongsheng Li's ELEG5491 class
—Justin Johnson's EECS 498/598 class



Pre-quiz

Learning,
MATH PREREQU‘S‘TES QUIZ

Due Date: 50m. S
a t e . p a t FALL 2024 MATH PREREQUXSY\‘E QuIZ CMP784
I / ( :t 1 2 : 2 CMP784 Deep Fall 2024
’ 4
- Due Date: 5pm, Saturday, QOctober 12,2024 (No late subm'\ssions'.)
Each student enrolled t0 CMP784 must complete and pass this quiz on prerequisue math knowledge- The
purpose is 10 check whether you have the right background for the course. The topics covered in this problem

set are very crucial 50 if you are having trouble with solving @ problem, this indicates that you should spend
a con:iderable amount of time 1o study that topic in its entirety.

 Fach stud
u e n-t e n rO | Points and Vectors
e -t O C IV| P 7 8 4 1. GiventWo vectors X = a1, az,a3) andy = {as, —ay,a3): Write down the equation for calculating the

angle between x and y. When isx orthogonal t0 y?

| -te a n Planes
I3 e .
d p a S S -t h I S I | . Consider 2 hyperplan® described by the d-dimens'mna\ normal vector [01,- ..,0,) and offset Bo- Derive
QUIZ!

d
the equation for the signed distance of 2 point X from the hyperplane, which is defined as the perpend'\cular

distance between x and the hyperplane, multiplied by +1 if x lies o0 the same side of the plane s the
vector 8 points and by -1 if x lies on the opposite side x from the hyperplanc-

Matrices

3, Suppose that AT (AB — ) =0, where 0 isanm™m x 1 vector of zeros, derive an expression for B. Assume
that all relevant matrices needed for this calculation are invertible-

4. Find the cigenvalues and eigenvectors of the matrix A= &123 \‘n .

Probability
5. Let
. (xy-m)?
Py =x2) = *® 2t
_Ggmx)?
p(Xz =*2 | X1 = xp) = @€ 20%
where X1 and X ar¢ continuous random variables. Show that
- X2~
p(Xp = x2) = 92¢ 2%

by explicitly calculating the values of az, K2 and 02.

MLE and MAP

6. Letpbethe probability of landing head of a coin- You flip the coin 3 times and note that it landed 2 times

on tails and 1 time on heads. SupposeP can only take tWO values: 0.3 0F 0.6. Find the Maximum Likelihood
Estimate of P over the set of poss'\b\e values {0.3,0.6}

7. Suppose that you have the following prior on {he parameter P: Pp= 03)=03 andP(P= 0.6)=0.7. Given

that you flipped the coin 3 times with the observations described above, find the MAP estimate of p over
the set {0.3; 0.6}, using the prior.
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Good news, everyone!

» Practical T will be out next week
* Multi-layer perceptrons

* \\Vord embeddings Q‘ a)

 Due October 24, 2024

» Get familiar with
wd h
0B

Google Colab



What is learning?



Two definitions of learning

 "Learning is the acquisition of knowledge about the world.”
Kupfermann (1985)

« “Learning Is an adaptive change in behavior caused by experience.”
Shepherd (1988)



Machine learning aims at learning a function

* Given an input value or vector, a function assigns it with a value or vector.
* "One-to-many” mapping is not a function. “Many-to-one"” mapping is a function.

[ 2 —2—>3 | 0 =/ 0

} 3 ‘ ‘___---—-7 4 | \ 4—— | | o ‘

4 -t | 316

o5 6 | A
Not a function A function

* Note that a function can have a vector output or matrix output. For instance, the
following formula is still a function

HE IR



Function estimation

* We are interested in predicting y from input x and assume there exists a
function that describes the relationship between yand z, e.g., y = f(x).

« If the function f 's parametric form is fixed, prediction function f can be
parametrized by a parameter vector 6.

- Estimating f from a training set D = {(x,/"" |y, ), (%" |y, ), - - -,

(xntrain J yn )}

* \WWith a better design of the parametric form of the function, the learner could
achieve better performance.

* This design process typical involves domain knowledge.



Empirical Inference

* Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

A

10



Empirical Inference

* Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

A
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Empirical Inference

* Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

y=2a;k(x, x;)+b

Leibniz, Weyl, Chaitin



Empirical Inference
* Drawing conclusions from empirical data (observations,
measurements)

 Example 1: scientific inference

A y=2a;k(x, x;)+b

Leibniz, Weyl, Chaitin



Empirical Inference

« Example 2: perception

14































































The choice of representation may determine whether
the learning task is very easy or very difficult!
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Generalization

e U T OO O O OO

+1 +2 +3 eeeeeeeeeeeeeee 11 pieces 16 pieces
Image credit: mathsp|ce com
*1,2,4,7,11,16,...: a,.1 = a, + n ("lazy caterer's sequence") e

©1,2,4,7,12,20,...: apyr = pyq + ap+1
«1,2,4,7,13,24,.... "Tribonacci’-sequence
«1,2,4,7,14,28 : divisors of 28

e 1,2,4,7,1,1,5,... : decimal expansions of m=3.14159... and
e=2.718... Interleaved (thanks to O. Bousquet)

e don't need e: 1247 appears at position 16992 in
* The On-Line Encyclopedia of Integer Sequences: > 600 hits...
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Generalization, |l

» Question: which continuation is correct (‘generalizes’)?

* Answer? There's no way to tell (“induction problem")

» Question of statistical learning theory: how to come up with
a law that generalizes (“demarcation problem")

37



Types of ML problems



Types of machine learning problems

Based on the information available:
» Supervised learning

» Unsupervised learning

» Semi-supervised learning

* Reinforcement learning

39



Supervised learning

* Input: {(X,y)}

 Task: Predict targety from inputX
— Classification: Discrete output
— Regression: Real-valued output

— cat

Image classification

Face detection

40



Unsupervised learning

- Input: {x}

 Task: Reveal structure in the observed data
— Clustering: Partition data into groups

— Feature extraction: Learning meaningful features
automatically

— Dimensionality reduction: Learning a
lower-dimensional representation of input

I
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Anomaly detection
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Semi-supervised learning

* I[nput:
Few labeled examples {(X, y)}
Many unlabeled examples {x }

 Task: Predict target y from inputX
— Classification: Discrete output
— Regression: Real-valued output

Try to improve predictions based on

Interactive segmentation

examples by making use of the additional “unlabeled”™ examples

Image credit: Wikipedia 42



Reinforcement learning

* I[nput: action
Interaction with an environment; /\
the agent receives a numerical Agent Environment

reward signal \/

observation, reward

» Task: A way of behaving that is very rewarding
INn the long run

13 14 15 16 17 18 19 20 21 22 23 24

() ()
= = -

[ ) () () ®

[ ] .

sl

(]

» Goal is to estimate and maximize the “‘g‘ §““l

long-term cumulative reward .
TD-Gammon (Tesauro, 1990-1995)

Adapted from Doina Precup 43



Types of machine learning problems

- iy~ “If intelligence was a cake,
How Much Information D9e§ the Machine. Need to'Predict? — unsupervised learning would
# "Pure” Reinforcement Learning (cherry) be the cake, SU,OGI’V/SGO’
» The machine predicts a scalar /earn/'ng WOU/O’ be the iC/nQ on
reward given once in a while. '
» A few bits for some samples | the cake, and reinforcement
learning would be the cherry
on the cake. We know how to
make the icing and the cherry,
but we don't know how to

make the cake.”

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

—Yann LeCun
NeurlPS 2016 Keynote
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Image classification

— non-parametric vs. parametric models
— nearest neighbor classifier

— hyperparameter

— cross-validation

45



Image Classification: a core task in
Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat
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The problem:
semantic gap

Images are represented as
3D arrays of numbers, with
Integers between [0, 255].

e.g.
300 x 100 x 3

(3 for 3 color channels RGB)
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Challeng

es: Viewpoint Variat
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Challenges: lllumination

49



Challenges: Deformation

50



Challenges:

Occlusion

51



Challenges: Background clutter

52



Challenges: Intraclass variation
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An image classifier

def predict(image):

return class label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.
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Data-driven approach:

1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

def train(train_images, train_labels):

# build a model for images -> labels...

return model

def predict(model, test_images):

# predict test_labels using the model...

return test_labels

Example training set
cat dog hat
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First classifier: Nearest Neighbor

Classifier

return model

def predict(model, test_images):

return test_labels

def train(train_images, train_labels):
 build a model for images -> labels...

Remember all training

.~ Images and their labels

| ™« Predict the label of the

most similar training Image
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Example dataset: CIFAR-10

10 labels

50,000 training Images, each image Is tiny: 32x32
10,000 test images.
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Example dataset: CIFAR-10

10 labels
50,000 training images For every test image (first column),
10,000 test images. examples of nearest neighbors in rows
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How do we compare the images? \What is the distance metric’

L1 distance: di(Ii,1>)

test image

56
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training image
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pixel-wise absolute value differences
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o L Nearest Neighbor classifier

class NearestNeighbor:
def _init_ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
"t X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred



e L Nearest Neighbor classifier

class NearestNeighbor:
def _init_ (self):

pass
def train(self, X, y): -
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ remember the tralnlng data
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr =y

def predict(self, X):
"X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred
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e L Nearest Neighbor classifier

class NearestNeighbor:
def _init_ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
"X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num test, dtype = self.ytr.dtype)

# loop over all test rows

for i in xrange(num_test): for every test image:
# find the nearest training image to the i'th test image . . .
# using the L1 distance (sum of absolute value differences) —_ flﬂd nearest train IMage

distances = np.sum(np.abs(self.Xtr - X[1i,:]), axis = 1) . .
min_index = np.argmin(distances) # get the index with smallest distance Wlth L1 dIStance

Ypred[i] = Self.ytr[min=index] # predict the label of the nearest example _ F)FEB(ji(Dt thEB |Eﬂk)€3| C)f
return Ypred nearest training Image
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import numpy as np
class NearestNeighbor:
def init  ( -

pass

def train( ¢ KXo ¥)s

"ut X is N x D where each row is an example. Y is 1l-dimension of size N """

Xtro= X
Vit = y

def predict( S &I

""" X is N x D where each row is an example we wish to predict label for

num test = X.shape[0]

Nearest Neighbor classifier

Q: how does the
classification speed
depend on the size of
the training data?

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances np.sum(np.abs(self.Xtr - X[1,:])

min index = np.argmin(distances) -
Ypred[i] = .ytr[min_ index]

return Ypred

;o axis i="1)
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R Nearest Neighbor classifier

class NearestNeighbor:
def init  ( -

s Q: how does the
def train(self, X, y): | e | classification speed
""" X is N x D where each row is an example. Y is 1l-dimension of size N """ .
depend on the size of the
Xtr = X - .
P training data? linearly :(
def predict( )
'" X is N x D where each row is an example we wish to predict label for """ ThlS iS backwards:

num test = X.shape[0] )
« test time performance

IS usually much more
Important In practice.
« Deep Neural Networks

Ypred = np.zeros(num test, dtype = .ytr.dtype)

for i in xrange(num test):

distances = np.sum(np.abs( Xtr - X[i,:]1), axis = 1) ﬂlp this: expenSive

min index = np.argmin(distances) ..

Ypred[i] = _ytr[min_index] tralnlng, Cheap teSt
evaluation

return Ypred
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Aside: Approximate Nearest Neighbor
find approximate nearest neighbors quickly

ANN: A Library for
Approximate Nearest
Neighbor Searching

David M. Mount and Sunil Arya
Version 1.1.2
Release Date: Jan 27, 2010

FLANN - Fast Library for Approximate Nearest Neighbors

¢ Home

« News What is FLANN?

¢ Publications

FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces. It
contains a collection of algorithms we found to work best for nearest neighbor search and a system for
» Changelog automatically choosing the best algorithm and optimum parameters depending on the dataset.

¢ Repository

¢ Download

FLANN is written in C++ and contains bindings for the following languages: C, MATLAB and Python.

News
* (14 December 2012) Version 1.8.0 is out bringing incremental addition/removal of points to/from
indexes
* (20 December 2011) Version 1.7.0 is out bringing two new index types and several other
improvements.
e . « You can find binary installers for FLANN on the Point Cloud Library & project page. Thanks to the
- ' PCL developers!
» i i - ? 5 N > * Mac OS X users can install flann though MacPorts (thanks to Mark Moll for maintaining the Portfile)
ANN is a library written in C++, which supports data structures and algorithms for both exact and approximate nearest « New release introducing an easier way to use custom distances, kd-tree implementation optimized for
neighbor searching in arbitrarily high dimensions. low dimensionality search and experimental MPI| support
+ New release introducing new C++ templated API, thread-safe search, save/load of indexes and more.
In the nearest neighbor problem a set of data points in d-dimensional space is given. These points are preprocessed into a * The FLANN license was changed from LGPL to BSD.
data structure, so that given any query point q, the nearest or generally k nearest points of P to q can be reported e
efficiently. The distance between two points can be defined in many ways. ANN assumes that distances are measured How fast is it?
using any class of distance functions called Minkowski metrics. These include the well known Euclidean distance, In our experiments we have found FLANN to be about one order of magnitude faster on many datasets (in
Manhattan distance, and max distance. query time), than previously available approximate nearest neighbor search software.

Based on our own experience, ANN performs quite efficiently for point sets ranging in size from thousands to hundreds of
thousands, and in dimensions as high as 20. (For applications in significantly higher dimensions, the results are rather

spotty, but you might try it anyway.) More information and experimental results can be found in the following papers:

* Marius Muja and David G. Lowe: "Scalable Nearest Neighbor Algorithms for High Dimensional
Data”. Pattern Analysis and Machine Intelligence (PAMI), Vol. 36, 2014. [PDF] & [BibTeX]

« Marius Muja and David G. Lowe: "Fast Matching of Binary Features™. Conference on Computer

Publications

The library implements a number of different data structures, based on kd-trees and box-decomposition trees, and employs

a couple of different search strategies. and Robot Vision (CRV) 2012. [PDF] &7 [BibTeX]
i 4 X i i * Marius Muja and David G. Lowe, "Fast Appr te Nearest g s with Aut ti
The library also comes with test programs for measuring the quality of performance of ANN on any particular data sets, as Algorithm Configuration”, in International Conference on Computer Vision Theory and Applications

well as programs for visualizing the structure of the geometric data structures. (VISAPP'09), 2009 [PDF] & [BibTeX]



The choice of distance Is a hyperparameter
common choices:

L1 (Manhattan) distance L2 (Euclidean) distance

117[2 Z|Ip Ip’ d2(117]2) — \/Z (If—I§)2
p
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k-Nearest Neighbor

find the k nearest images, have them vote on the label

the data NN classifier 5-NN classifier

http://en.wikipedia.org/wiki/K-nearest neighbors algorithm
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http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Example dataset: CIFAR-10

10 labels
50,000 training images For every test image (first column),
10,000 test images. examples of nearest neighbors in rows
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the data NN classifier

Q: what Is the accuracy of the nearest

neig
whe

nbor classifier on the training data,

N using the Euclidean distance?
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VWhat Is the best distance to use?
What Is the best value of k to use?

.e. how do we set the hyperparameters’



VWhat is the best distance to use’
VWhat Is the best value of k to use’

.e. how do we set the hyperparameters’

Very problem-dependent.
Must try them all out and see what works best.



Try out what hyperparameters work best on test set.

l

train data

test data
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Trying out what hyperparameters work best on test set:

Very bad idea. The test set is a proxy for the generalization performance!

Use only VERY SPARINGLY, at the end.

l

train data

test data
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train data

test data

v

fold 1

fold 2

fold 3

fold 4

fo

dd

test data

use to tune hyperparameters
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train data test data

v

fold 1

fold 2

fold 3 fold 4 fold 5 test data

‘\ >\ 4
Cross-validation
cycle through the choice of which

fold 1s the validation fold, average
results.
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Cross-validation accuracy

Cross-validation on k
0.32 - -

Example of
b-fold cross-validation
for the value of k.

031} .

Each point: single
outcome.

o
[N
Lt

0.28 -

The line goes

through the mean, bars
Indicated standard
deviation

027

026 |

025}

(Seems that k ~= 7 works
024 1 1 1 1 A , the best for this data)

=20 0 20 40 60 80 100 120
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k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be
VEery unintuitive

original shifted messed up darkened

(all 3 images have same L2 distance to the one on the left)
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Nearest Neighbor with ConvNet features works well!

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015

79



Nearest Neighbor with ConvNet features works well!

Example: Image Captioning with Nearest Neighbor

A cat sitting in a
bathroom sink.

A bedroom with a
f bed and a couch.

A wooden bench in
front of a building.

=% A train is stopped at
a train station.

Devlin et al, “Exploring Nearest Neighbor Approaches for Image Captioning”, 2015
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The learning problem

Inear classification

nypothesis class, estimation algorithm
0SS and estimation criterion

sampling, empirical and expected losses
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The Learning Problem

Digit
Recognition

Image
Classification

« Steps
—entertain a (biased) set of possibilities (hypothesis class)
—adjust predictions based on avallable examples (estimation)
—rethink the set of possibilities (model selection)

* Principles of learning are “universal”
—soclety (e.q., scientific community)
—animal (e.g., human)

—machine
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Hypothesis class

* Representation: examples are binary vectors of length d = 64

x = [111...0001]% = H

and labels y € {—1,1} ("no","yes")

* The mapping from examples to labels is a “linear classifier”

y=sign(0-x)=sign(01x1+...+0424)

where 6 is a vector of parameters we have to learn from examples.
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Linear classifier/experts

* \\We can understand the simple linear classifier

A

y=sign(0-x)=sign(61x1+...+60424)

as a way of combining expert opinion (in this case simple binary
featureS) maJorlty rule

A y = Slgﬂ (61 + ...+ QdCBd

votes
combmed ‘votes”
Expert 1
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Estimation
X Yy
01111110011100100000001000000010011114141011140114111001110111110001 'Fl

0001111100000011000001110000011001111110111111001111111100000011 +1
1111111000000110000011000111111000000111100000111110001101111111 -1

 How do we adjust the parameters 6 based on the labeled
examples?
y =sign(60-x)

For example, we can simply refine/update the parameters
whenever we make a mistake (perceptron algorithm):

0, «—0;,+yx;, 1=1,...,d If prediction was wrong
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Evaluation

» Does the simple mistake driven algorithm work?

1

0.9f

0.8}

average error
© o o o o o
N w EN (6)] (o] ~
T

o
—

o

0 200 400 600 800 1000 1200 1400
number of examples

(average classification error as a function of the number of examples
and labels seen so far)
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lllustration of Convergence

» Convergence of the perceptron learning algorithm

1 ® g y 1

[ ]
[ ®
® (]
0.5 05¢t
@
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( J
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[ ]
1 . 1
1 0.5 0 0.5 1 1 0.5 0 0.5 1
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o ° 9 e}
[ ] [ ]
o \® ™
0.5 0.5
0 0
[ ]
0.5 L 0.5
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T o 0 05 ! < 1 Slide credit: Russ Salakhutdinov g7




Linear classifier: image classification

Image parameters

f(an) 10 numbers,

Indicating class
e sScores

[32x32x3]
array of numbers 0...1
(3072 numbers total)
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Linear classifier: image classification

flx, W) =Wx

10 numbers,
Indicating class
. sScores

[32x32x3]
array of numbers 0...1

89



Linear classifier: image classification

f(z, W)

10x1

10x3072

Wi

\

3072x1

10 numbers,

[32x32x3]
array of numbers 0...1

Indicating class
sScores

parameters, or “welights”
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Linear classifier: image classification

f(:c,W) :W‘E 3072x1 (+10)] 10x1

10x1 10x3072
\ » 10 numbers,
Indicating class
Lo SCOres

[32x32x3]
array of numbers 0...1

parameters, or “welights”



Example with an image with 4 pixels, and
3 classes (cat/dog/ship)

stretch pixels into single column

input image

1

3.2

-96.8

‘ 02 |-05| 01 | 20 5l6
15 | 1.3 | 21 | 0.0 231

e 0 |025| 02 |-03 24
|14 2

-1.2

437.9

61.95

cat score

dog score

ship score

92



Interpreting a Linear Classifier (Visual Viewpoint)

e L | | F
= wpt ; - A ! —_—— "
wiomerte. BB EES
: = ] .
v Eaall WES §
. [52 " | ' 2 - ’»\_
N E ] LT
el ' (O T T DR
e VI 5 R
-~ Zv gl coudeds : s 4 | . = B
- 71 ! \ n‘
dog E<sBrs s
..; ',.-‘;_ ~ % .~\.\ ,.‘ " 7
v BEERRDIDEEE
horse RELNPMEESE
ship AT P
w0 I R A
s, — . ey

Q: what does the

linear classifier do, In
English?
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Interpreting a Linear Classifier (Visual Viewpoint)

airplane %.% V..=&i

automobile E “- f(mz, W, b) — sz + b
ol mall WEES W

«  EEOHEEEE R | .
.g%g‘ Example trained weights of a
- EEEaEssaas  linear classifier trained on

e MNENOMERSEE CIFAR-10:

ship Egl‘ﬁgﬂ |

o< e 0 0 O
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Interpreting a Linear Classifier (Visual Viewpoint)

srplane E==5 ===i: Linear classifier has one

automobile ] 11 I

o NS b e template” per category

. Ehatnicdas

deer '3"‘% ‘ ! "f" ! f.{:h?_f T e .

-  EEenBa A sm_gle template cannot capture
e EEEHEPBEEE multiple modes of the data

rorse i O 0 5 V) IR R 1 B TR

ship 55&!‘&9!!&

e i ESEEIE c.9. horse template has 2 heads!

horse
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Interpreting a Linear Classifier (Geometric Viewpoint)

flx;, W,b) =Wzx; +b

»
V; car classifier
airplane classifier [32x32x3]
array of numbers O...1

(3072 numbers total)

/‘("‘_ -
N
-

deer classifier
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Interpreting a Linear Classifier (Geometric Viewpoint)

flx;, W,b) =Wzx; +b

car score
increases
this way

airplane score
increases
this way

airplane classifie/ &
/‘("‘_

deer classifier deer score
increases

this way

car classifier

[32x32x3]
array of numbers 0...1
(3072 numbers total)
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Model selection

* The simple linear classifier cannot solve all the problems

Class 1: Class 1: Class 1:
First and third quadrants 1<=L2norm<=2 Three modes
Class 2: Class 2: Class 2:

Second and fourth quadrants Everything else Everything else

» Can we rethink the approach to do even better?

* \We can, for example, add “polynomial experts”
il;/ = Sigﬂ((91331—|— —|—(9d513d—|—91251315132—|— )
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Model selection (cont'd)

2 : : : : : . 2

s o os 0 0.5 1 1.5 2 ds o os 0 0.5 1 1.5 2

4t order polynomial 8t order polynomial



Review: The learning problem

Image Classification

 Hypothesis class: we consider some restricted setF of mappings
f: X — L from images to labels

- Estimation: on the basis of a training set of examples and labels,
{(x1,91)y- -, (Xn,yn)}, we find an estimate f € F

- Evaluation: we measure how well f generalizes to yet unseen examples,
.e., whether f(X,eq) agrees with yneqw
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Hypothesis and estimation

« We used a simple linear classifier, a parameterized mapping f(x;6) from images X
to labels L, to solve a binary image classification problem (2's vs 3's):

y = f(x;0)= sign(H-x)

where x is a pixel image and § € {—1,1}.

* The parameters 6 were adjusted on the basis of the training examples and labels
according to a simple mistake driven update rule (written here in a vector form)

0 — 0+ y;x;, whenever y; # sign(9 ' Xi)

 The update rule attempts to minimize the number of errors that the classifier
makes on the training examples
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Estimation criterion

* \We can formulate the binary classification problem more explicitly by defining
a zero-one loss:

. 0,y =9
Loss(y,y) :{ | z#z

so that

—ZLoss yz,yZ = ZLoss Vi, | XZ,Q))

gives the fraction of predlctlon errors on the training set.

* This is a function of the parameters 8 and we can try to minimize it directly.
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wx are:

cat 3.2 1.3 2.2
car o 4.9 2.5
frog -1.7 2.0 -3.1

Multiclass SVM loss:

Given an example (Zi, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

the SVM loss has the form:

Li = )., max(0,s; — sy, +1)

103




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wx are:
Given an example (i, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(z;, W)

cat 3-2 the SVM loss has the form:

car 5. 4.9 2.5 L; = Zj;éyz. max(0, s; — sy, + 1)

_’| 7 20 _31 = max(0, 5.1-3.2 + 1)
frog rmax(0, -1.7-3.2 + 1)

L osses: 2.9 — max(0, 2.9) + max(0, -3.9)
=29+0
_ 29
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wx are:
Given an example (i, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

cat the SVM loss has the form:

car 5. 4.9 2.5 L; = Zj;éyz. max(0, s; — sy, + 1)

frog -1 7 270 -3.1 = max(0, 1.3-4.9 + 1)

+max(0, 2.0-4.9 + 1)
Losses: 2.9 0 — max(0, -2.6) + max(0, -1.9)
=0+0

-0
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wx are:
Given an example (i, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

cat the SVM loss has the form:
car 5.1 4.9 2.5 L =3, max(0,s; — sy, +1)
frog 1.7 270 -3.1 = max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 -(-3.1) + 1)
Losses: 2.9 0 10.9 - max(0, 5.3) + max(0, 5.6)
=5h3+5H06

=10.9
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Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wx are:
Given an example (i, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:

cat
Li =4, max(0,s; — sy, + 1)
car 5 1 4'9 2 . 5 and the full training loss is the
mean over all examples In the
frog -1.7 2.0 -3.1 training data:

Losses: 2.9 0 10.9 L= L3y L
L=(29+ 0+ 10.9)/3
— 46 107




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wx are:
Given an example (i, ¥i)
where z; Is the image and
where y; Is the (integer) label,

and using the shorthand for the
scores vector: s = f(xi, W)

the SVM loss has the form:

cat

L; =) ., max(0,8; — sy, + 1)
car 5. 4.9 2.5 i L

Q: what is the min/max
frog -1.7 2.0 -3.1 possible loss?

Losses: 2.9 0 10.9
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There 1s something missing In the loss:

flx, W) =Wz

L = % Zf\; D jry, max(0, f(zi; W) — f(zi; W)y, + 1)

e.g. suppose that we found a W such that L = 0.
ls this W unique?
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Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

Li = )., max(0,s; — sy, +1)

cat 3.2 1.3 2.2
car 5. 4.9 2.5
frog -1.7 2.0 -3.1
Losses: 2.9 0

Before:

= max(0, 1.3-49 + 1)
+max(0, 2.0-4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0

With W twice as large:

= max(0,2.6-98+ 1)
+max(0, 4.0-9.8 + 1)

= max(0, -6.2) + max(0, -4.8)

=0+0

=0
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A = regularization strength

Weight Regularization yerparameten
L = % sz\; D jry, max(0, f(zi; W)j — fai; W)y, + 1)\‘|‘P‘R(W)

In common use:

L2 regularization RW) =3, W

L1 regularization R(W) =212 Whi

Elastic net (L1 + L2) R(W) =3 > BW. + Wi,
Max norm regularization

Dropout

Batch normalization
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L2 regularization: motivation

r=[1,1,1,1]

w1 — 1,0,0,0]
wy = [0.25,0.25,0.25, 0.25]

wixr=wsz=1



Estimation criterion (revisited)

* \\Ve have reduced the estimation problem to a minimization problem

empirical loss

N\

rl n
find 0 that Inimi — L 19 7;;9
in at minimizes n; oss(yi, f(xi;6))

—valid for any parameterized class of mappings from examples to predictions

—valid when the predictions are discrete labels, real valued, or other provided
that the loss is defined appropriately

—may be Ill-posed (under-constrained) as stated

* But why is It sensible to minimize the empirical loss in the first place
since we are only interested in the performance on new examples?
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Training and test performance: sampling

* \WWe assume that each training and test example-label pair, (x, y) is drawn
independently at random from the same but unknown population of
examples and labels.

« We can represent this population as a joint probability distribution P(x,y)
so that each training/test example is a sample from this distribution

(Xia y’L) ~ P
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Training and test performance: sampling

* \WWe assume that each training and test example-label pair, (x, y) is drawn
independently at random from the same but unknown population of
examples and labels.

« We can represent this population as a joint probability distribution P(x,y)
so that each training/test example is a sample from this distribution

(Xz'a yz) ~ P

Empirical (training) loss

LS Loss (3 0)
i=1
Expected (test) loss = Exy)~pP {LOSS(?J;f(X; 9))}

* The training loss based on a few sampled examples and labels serves as
a proxy for the test performance measured over the whole population

122



Regression, example

Linear regression
— Estimation, errors, analysis
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Regression

* The goal I1s to make quantitative (real valued) predictions on the basis of a (vector
of) features or attributes

« Example: predicting vehicle fuel efficiency (mpg) from 8 attributes
Yy X

cyls disp hp weight

18.0| 8 307.0 130.00 3504

260 4 97.00 46.00 1835
33.5| 4 98.00 83.00 2075

* \We need to
—specify the class of functions (e.g., linear)
—select how to measure prediction loss

—solve the resulting minimization problem 124



Linear regression

* \We begin by considering linear regression (easy to extend to more complex
predictions later on)

f:R—=R f(x;w)=wy+ wix
fRESR  flxsw) =wo+wiz) + ... waTy
where w are parameters we need to set.
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Linear regression: squared loss

y
o
| !
N N =) n EN [}
» ‘ ‘ ‘ :
*

f:R—>R f(z;w)=wy+ wiz
f:RESR f(x; W) = w4+ wixy + ... Wy

NCD
Ll
o
-
N

« \We can measure the prediction loss In terms of squared error,

Loss(y, §) = (y—??)Q, so that the empirical loss on n training samples becomes
mean squared error
] — 2
Jn(W) = — Z (yi — f(xi; w))

n -
1=1 126



Linear regression: estimation

* \We have to minimize the empirical squared loss
2
—Z f(xis w))

= — E (yi — wo — wiz;)?  (1-dim)
n
1=1

Jn(W)

« By setting the derivatives with respect to w; and w, to zero, we get necessary
conditions for the “optimal”™ parameter values

0
a—len(w) = 0
0 —Jp(w) = 0

5’w0

127



Optimality conditions: derivation

%, 0 1< )
a—wl«]n(w) = 8—101 n ; (yi — wo — w1z
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Optimality conditions: derivation

%, 0 1< )
a—len(W) = 8—101 n ; (yi — wo — w1z

1~ 0O )
— 5; a—m(yz—wo—wwz)

129



Optimality conditions: derivation

%, 0 1< )
a—len(W) = 8—101 n ; (yi — wo — w1z

1~ O )
— 5; a—m(yz—wo—wwz)

2 n
= = D (Y — wo — wizi) 5—(yi — wo — wiT;)
1=1
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Optimality conditions: derivation

%, 0 1< )
a—len(W) — 8—101 E ; (yz — Wo — wlxz)

1~ 0 )
= — P ; — Wo — W1 X5
n;&wl (i — wo — w1;)
2 n
= EZ(yq;—wo—wlzm) ——(yi — wo — wizy)
1=1

2 n
- Z (yi — wo — w1x;)(—2;) =0
i=1
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Optimality conditions: derivation

%, 0 1< )
a—len(W) — 8—101 E ; (yz — Wo — wlxz)

1~ O )
— E; a—wl (yi — wo — w1x;)
2 n
= = > (g — wo — wiws) =—(ys — wo — wi;)
1=1
2 n
- Z (yi — wo — wrw;)(—z;) =0
1=1

W) = 23 (i o — wi) (<) = 0
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Linear regression: matrix notation

* \We can express the solution a bit more generally by resorting to a matrix notation

so that

Y1

X =

1 1
o]
1 x,
Y1 1
Un 1
y — Xw]|?
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Linear regression: solution

» By setting the derivatives of ||y — Xw||?/n to zero, we get the same
optimality conditions as before, now expressed in a matrix form

o 1 , o 1 .
= Ty — — —~ “(v-X _X
awnl!y Xw]| o n(y w) (y W)
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Linear regression: solution

» By setting the derivatives of ||y — Xw||?/n to zero, we get the same
optimality conditions as before, now expressed in a matrix form

9 1 , 01 .
8_wﬁ”y_XWH = Fw n(y Xw)" (y — Xw)
— 2XT(y - Xw)

n
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Linear regression: solution

» By setting the derivatives of ||y — Xw||?/n to zero, we get the same
optimality conditions as before, now expressed in a matrix form

0 1 o 1

- EHY — Xw|? = T E(Y —Xw)" (y — Xw)
y
= —X'(y - Xw)
n
2
= “(X'y—-X'Xw)=0
n

which gives
w = (X'X)"'X"y

* The solution is a linear function of the outputs y
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Alternative: Gradient Descent Algorithm

» One straightforward method: gradient descent e —

— initialize @ (e.g., randomly)

—  repeatedly update # based on the gradient ‘, :, ‘., :.,,‘ l?‘ ,,:3' _,:' || .-:

A =LY, Vol(f(x:6),5) — AV49(0) ),
0—60+aA —

* a Is the learning rate

Slide adapted from Sanja Fidler
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Effect of learning rate A

t(w)

 Large A => Fast convergence but larger residual error
Also possible oscillations

« Small L => Slow convergence but small residual error

Slide credit: Erik Sudderth 142



Local and Global Optima

6 | | .

P\

local maximum

2 |- \ >\ |
0 >/

-2 | —

local minimum

global maximum

global minimum

-6 - 1 1 | | 1

0 0.2 0.4 0.6 0.8 1 1.2
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Stochastic Gradient Descent

* Two ways to generalize this for all examples in training set:

1. Batch updates: sum or average updates across every example n, then
change the parameter values

2.Stochastic/online updates: update the parameters for each training case
In turn, according to 1ts own gradients

A= —Vol(f(x";0),y") — AVeQ(0)
0+—0+aA

Slide adapted from Sanja Fidler 144



Linear regression: generalization

* As the number of training examples increases our solution
gets “better”

6 w ‘ ‘ 2.5

N
T

—_
a1
T

mean squared error

—_
T

o
[3)]

o

50 100 150 200
-2 -1 0 1 2 number of training examples

|
o
o

We'd like to understand the error a bit better
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Linear regression: types of errors

« Structural error measures the error introduced by the limited
function class (infinite training data):

min B y)op (y = wo = w012)° = B y)np (y — wg — wiz)”

where (w{, wT) are the optimal linear regression parameters.

« Approximation error measures how close we can get to the optimal linear
predictions with limited training data:

* * ~ A 2
E g yy~p (Wo +wix — o — W)

where (W, w1)are the parameter estimates based on a small training set
(therefore themselves random variables).
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Linear regression: error decomposition

* The expected error of our linear regression function decomposes into the sum of
structural and approximation errors

By gy (y — o — n2)” =
E(CB,y)NP (y o wg)k o wfgj)z +

% *k A A 2
Egy)~p (wy + wiz — o — w1x)

2.5
o

o
- 1.5
o

3
o
n

G
o 1r
£

0.5r

O L L L
0 50 100 150 200

number of training examples 147




Bias-Variance Tradeoff

* Variance of trained model: does it vary a lot if the training set changes
 Bias of trained model: is the average model close to the true solution?

 (Generalization error can be seen as the sum of bias and the variance

possible f

O e f f*
@ E @ E ?

ibl
Pt possible f

low variance/ high variance/
high bias ' good. race-or ' low bias
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Parametric vs. non-parametric models

 Parametric model: its capacity is fixed and does not increase with
the amount of training data

—examples: linear classifier, neural network with fixed number of hidden units,
etc.

* Non-parametric model: the capacity increases with the amount of
training data

—examples: k nearest neighbors classifier, neural network with adaptable
hidden layer size, etc.
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Beyond linear regression models

— additive regression models, examples
— generalization and cross-validation
— population minimizer
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Linear regression

 Linear regression functions,
f:R—=>R f(x;w)=wy+ wix, or
f:Rd—>72 f(x;w) = wg + wixy + ... + wyxy

combined with the squared loss, are convenient because they are linear in the parameters.

—we get closed form estimates of the parameters
w = (XTX)" X'y
where, for example, ¥ = [y1, ..., yn]’.

A

—the resulting prediction errors €, = y; — f(X;; W) are uncorrelated with any linear
function of the inputs x.

—we can easily extend these to non-linear functions of the inputs while still keeping

them linear in the parameters 15



Beyond linear regression

« Example extension: m™” order polynomial regression where f: R — R
IS given by

flx;w) =wo +unz + ...+ Wp_12™ 4+ wyz™

—linear in the parameters, non-linear in the Inputs
—solution as before

w=(X'X)" X'y

where
Wo 1z 22 ]
A~ 2 m
. W1 1 xo =x T
W = , X = 2 2
W 1 z, z?2 "

- 153



Polynomial regression

degree = 1 degree = 3

degree = 5 degree = 7
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Underfitting and Overfitting

Underfitting Appropriate capacity Overfitting
o ©®
> / _ > /"\
O @

Image credit: lan Goodfellow 155



Underfitting

The learner cannot find a solution that fits training examples well
Underfitting - For example, use linear regression to fit training examples {z(/,y(V}

where y(/ is an quadratic function of z(¥/.

Underfitting means that the learner cannot capture some
Important aspects of the data.

Reasons for underfitting happens

* Model is not rich enough

« Difficult to find the global optimum of the objective function on the
0] training set or easy to get stuck at local minimum

* Limitation on the computation resources (not enough training iterations
of an iterative optimization procedure)

)

Underfitting commonly happens in non-deep learning approaches
Lo with large scale training data and could be even a more serious

problem than overfitting in some cases.
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Overfitting

* The learner fits the training data well, but loses the ability
Overfitting to generalize well, 1.e. 1t has small training error but larger

generalization error

* A learner with large capacity tends to overfit.

» The family of functions is too large (compared with the size of
the training data) and it contains many functions which all fit the
training data well.

* \Without sufficient data, the learner cannot distinguish which
one Is most appropriate and would make an arbitrary choice
O among these apparently good solutions.

» A separate validation set helps to choose a more appropriate
one.

* |n most cases, data is contaminated by noise. The learner with

x, large capacity tends to describe random errors or noise instead
of the underlying models of data (classes).
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Model complexity (capacity)

» The goal Is to classify novel examples not seen yet, but not the
training examples!

» Generalization. The ability to correctly classify new examples that
differ from those used for training

wadth width

24 salmon 224 salmon
21f 217
20t _‘l'-'
1GF v
‘Ix- }'\'
17k 17
6k 16
15
> jiphiness I4 o o opl -
4 0O 5 140 2 o ]
Overly complex models lead to complicated decision The decision boundary might represent the optimal tradeoff
boundaries. It leads to perfect classification on the between performance on the training set and simplicity of
training examples, but would lead to poor performance classifier, therefore giving highest accuracy on new patterns.

on new patterns. 158



Error

Generalization and Capacity

Typical relationship between capacity and both training and generalization (or test) error.

Underfitting zone| Overfitting zone

Training error

Generalization error

0 Optimal Capacity

Capacity

- As capacity increases, training error can

be reduced, but the optimism
(difference between training and
generalization error) Increases.

At some point, the increase in optimism
Is larger than the decrease in training
error (typically when the training error is
low and cannot go much lower), and we
enter the overfitting regime, where
capacity is too large, above the optimal
capacity.

Before reaching optimal capacity, we
are in the underfitting regime.

Image credit: lan Goodfellow 159



B | asS an d Va r| ance sufficiently simpler

models are more likely

to generalize

A

Underfitting zone Overfitting zone

(Generalization

>

Variance

Optimal Capacity
capacity

Image credit: lan Goodfellow 160



What about generalization ability of deep
models?

* Deep nets have so many parameters they could just act like look up
tables, regurgitating their training data

 |nstead, they learn rules that generalize
* Defies classical theory!

A . B

under-fitting . over-fitting

. Test risk

under-parameterized

Test risk

over-parameterized

'_\dw Mm “classical” “modern”
E Q?: regime interpolating regime
o N
O ! . . . . . . .
- ~ o Training risk ~ Training risk:
i sweet spot_ . — - - . _interpolation threshold
S A — e — &
i Capacity of H Capacity of 'H
9
n

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019] 161



Complexity and overfitting

« With limited training examples our polynomial regression model may achieve
zero training error but nevertheless has a large test (generalization) error

RS A
train EZ(yt — f(z; W) = 0

t=1
test  Ep)~p (¥ — f(2; Ww))? > 0

> -1 0 1 2
X

* \We suffer from overfitting when the training error no longer bears
any relation to the generalization error
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Avoiding overfitting: cross-validation

* Cross-validation allows us to estimate the
generalization error based on training examples
alone

Leave-one-out cross-validation treats each training
example In turn as a test example:

| | | | |
l.on A () LS} - o = N w S (4]
T T T T T T T T

S)

V= %Z (yi = ez ™))’
1=1

where W% are the least squares estimates of the
parameters without the i”* training example.

| 1 | L
lao A @ D =2 O =2 N~ ou
T T T T T T T T

N
4
)
4
]
o
3
ol
o
3
-
-
3
N
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Polynomial regression: example (cont'd)

degree = 1, CV = 0.6 degree =3, CV =15

degree = 5, CV = 6.0 degree =7, CV = 15.6
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Additive models

* More generally, predictions can be based on a linear combination of
a set of basis functions (or features) {¢1(x), ..., ¢m(x)}, where each
$i(x) : R* — R, and

f(x;w) = wg + w191(X) + . . . + Wi O (X)

 Examples
If ¢;(x) =2 i=1,...,m, then

flz;w) =wo +wiz + ...+ Wy 12+ w,, ™

165



Additive models

* More generally, predictions can be based on a linear combination of
a set of basis functions (or features) {¢1(x), ..., ¢m(x)}, where each
$i(x) : R* — R, and

f(x;w) = wg + w191(X) + . . . + Wi O (X)

 Examples
If ¢;(x) =2 i=1,...,m, then

flo;w) =wo +wiz + ... + W1 2™+ wypz™
It m=d, ¢;(x) =x;, i =1,...,d, then

f(x; W) = wo + wixy + ... + Waky
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Additive models (cont'd)

* The basis functions can capture various (e.g., qualitative) properties of
the inputs.

« For example: we can try to rate companies based on text descriptions

x = text document (collection of words)
bi(x) = 1 if word 7 appears in the document
Z B 0 otherwise

fxw) = wo+ Z w;$i(X)

iewords
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Additive models (cont'd)

* \We can view the additive models graphically in terms of simple “units”
and “weights”

b w)

* [n neural networks, the basis functions themselves have adjustable parameters
(cf. prototypes)
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Take-home messages

Bigger model
Training error high? —=————————— . onger
Y New model architecture
l No
More data
Train-Dev error high? =—————- . . (orization
Yes New model architecture

l No
Make training data more

Dev error h|gh? — similar to test data.

Yes Data synthesis
(Domain adaptation.)
NO New model architecture

T t rror h| h? — More dev set data
este g Voo
l No
Donel

(Bias)

(Variance)

(Train-test data
mismatch)

(Overfit dev set)

Slide credit: Andrew Ng 172



Statistical regression models

— model formulation, motivation
— maximum likelihood estimation
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Statistical view of linear regression

 [n a statistical regression model we model both the function and noise
Observed output = function + noise
y = f(xsw)+e

where, e.9., ¢ ~ N(0,0?).

* \Whatever we cannot capture with our chosen
family of functions will be interpreted as noise

| |
D N o N » ]
T T T T T

1.5
N
»

174



Statistical view of linear regression

- f(X; W) is trying to capture the mean of the observations y given the input X:
Ely|x} = E{f(x;w)+e|x}
= f(x;w)

where E{y|x }is the conditional expectation of y given X, evaluated according to
the model (not according to the underlying distribution P)

5
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Statistical view of linear regression

« According to our statistical model

y=f(x;w)—+e e~ N(0,0°)

the outputs y given X are normally distributed with mean f(x; w) and variance ¢*:

o 1 1 . 5
p(y|X,W,0’ ) — Wexp{ _Tﬂ(y _ f(X, W)) }

(we model the uncertainty in the predictions, not just the mean)

* |_oss function? Estimation?
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Maximum likelihood estimation

 Given observations D,, = {(x1,91),--., (Xn,yn)} we find the parameters w
that maximize the (conditional) likelihood of the outputs

n

L(Dn;w,0”%) = | | p(yilxs, w,0?)
1=1

e Example: linear function

| |
H N o N » ]
* TR o T T T

p(ylx, w,o%) = 3
| 1 ,
V2102 =P —27‘2(?; ~wo —wiz)” N

'\)05
-
o
-
N

(why is this a bad fit according to the likelihood criterion?)
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Maximum likelihood estimation (cont'd)

Likelihood of the observed outputs:

L(D7W7 02) — H P(yi‘Xivwa 02)
1=1

* |t Is often easier (but equivalent) to try to maximize the log-likelihood:

I(D;w,0?) = log L(D;w,0%) =) log P(yilxi, w,0”)
1=1

(ys — f (x4 W))2 — log v 2#02)

||
]
-

2072

n

= <—2%'2> D (yi— fxiw)*+...

1=1 178



Maximum likelihood estimation (cont'd)

« Maximizing log-likelihood Is equivalent to minimizing empirical loss when the
loss is defined according to

Loss(y;, f(xi; w)) = — log P(y;|x;, w, 0?)

Loss defined as the negative log-probability is known as the log-loss.
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Maximum likelihood estimation (cont'd)

* The log-likelihood of observations
n
lOg L(D7 W, 02) — Z log P(y’L|X’I/7 W, 02)
i=1
IS a generic fitting criterion and can be used to estimate the noise variance o¢? as
well.

 Let w be the maximum likelihood (here least squares) setting of the parameters.
What is the maximum likelihood estimate of ¢2, obtained by solving

0
W 10gL(D;W,O'2) =3 ?
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Maximum likelihood estimation (cont'd)

* The log-likelihood of observations

n
lOg L(D7 W, 02) — Z log P(y’L|X’I/7 W, 02)
i=1
IS a generic fitting criterion and can be used to estimate the noise variance o¢? as
well.

 Let w be the maximum likelihood (here least squares) setting of the parameters.
The maximum likelihood estimate of the noise variance o2 is

n

5= 3 (i~ f(xis W)

l.e., the mean squared prediction error.
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Polynomial regression

» Consider again a simple m* degree polynomial regression model

y = wotwiz+...+wyx™ +e e~ N(0,0%)

where g% is assumed fixed (known).

* |[n this model the outputs {y,,...,y,} corresponding to any inputs {x,,...,x,} are

generated according to

y = Xw+e, where
Y1
y = e, X =
YUn

and ¢, ~ N(0,0%),i=1,...
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ML estimator, uncertainty

* We are interested in studying how the choice of inputs {x,,...,x,} or,
equivalently, X, affects the accuracy of our regression model

« Our model for the outputs {y,,...,y,} given X is
y=Xw-+e, e~ N(0,o°)

* \We assume also that the training outputs are actually generated by a model In
this class with some fixed but unknown parameters w* (same ¢?)

y=Xw*+e, e~ N(0,7°I)

* \We can now ask, for a given X, how accurately we are able to recover the
“true’’ parameters w*
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ML estimator, uncertainty

* The ML estimator w viewed here as a function of the outputs y for a fixed X,
IS given by
w= (X'X)"' X'y

« \WWe need to understand how W varies in relation to w* when the outputs are
generated according to

y=Xw*+e, e~ N(0,0°1)

* [n the absence of noise e, the ML estimator would recover w* exactly
(with only minor constraints on X)

w o= (XIX)IXT(Xw*)
= (XI'X) ' XTX)w*

— VV>|<
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ML estimator, uncertainty

 |n the presence of noise we can still use the fact that y = Xw™ + e
to simplify the parameter estimates

A

W =

|
2*
_l_
5
~
s
|
<
~
o

« So the ML estimate is the correct parameter vector plus an estimate based
purely on noise
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NeXxt Lecture:

Multi-layer Perceptrons



