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Image: Jose-Luis"ClVares

Previously on CMP784

* multi-layer perceptrons

e activation functions

* chain rule

* backpropagation algorithm

« computational graph

e distributed word representations




Lecture overview

data preprocessing and normalization

welight initializations

ways to Improve generalization

optimization

babysitting the learning process

hyperparameter selection

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Fei-Fei Li, Andrej Karpathy and Justin Johnson’'s CS231n class

—Roger Grosse's CSC321 class

—Shubhendu Trivedi and Risi Kondor's CMSC 35246 class

—Efstratios Gavves and Max Welling's UVA deep learning class

—Hinton's Neural Networks for Machine Learning class
—Justin Johnson's EECS 498/598 class
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Activation Functions

Sigmoid =7

o) =1/1+e")

tanh  tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout max(w{a: + by, wgaz + bs)

x it >0
ELU fle) = { if;z;ZO




Activation Functions
o(x)=1/(1+e" ")

op————  Squashes numbers to range [0, 1]

, * Historically popular since they
have nice interpretation as a
saturating “firing rate” of a
S neuron

B>
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Activation Functions

o(z)(1 —o(x))

R

<

o(x) = 1/(1+e ")

8L 9o OL

Ox Oz Oo

»

dolsigmoid U($)=1/(1+e—i)

oz| 9ate <
o * Squashes numbers to range [0, 1]
0o

* Historically popular since they
have nice Interpretation as a
saturating “firing rate” of a
neuron

3 problems:

Image credit: Jefkine Kafunah

Sigfhoid

1. Saturated neurons “kill” the gradients
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Activation Functions
o(x)=1/(1+e" ")

/-,-—-—  Squashes numbers to range [0, 1]

08

* Historically popular since they
/ have nice Interpretation as a
saturating “firing rate” of a
//""”E neuron

1 " A A " T D U RN U | W T VS W |

3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

12



Consider what happens when the input to
a neuron (x) is always positive:

Inputs weights sum non-linearity

bias

What can we say about the gradients on W?

13



Consider what happens when the input to
a neuron (x) is always positive:

allowed
gradient
update
directions
I
Zlg zag path
f E w;x; + b - 9720 p
. gradient
1 update
directions
hypothetical
: 5 optimal w
VWhat can we say about the gradients on W: vector

(this Is also why you want zero-mean datal)

14



Activation Functions
o(x)=1/(1+e" ")

op_————  Squashes numbers to range [0, 1]

/ * Historically popular since they
/ have nice Interpretation as a
i saturating “firing rate” of a
//""” ; neuron

3 problems:

Sigmoid 1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. expl) I1s a bit compute expensive

15



Activation Functions

1.0 /
0.5}

/ » Squashes numbers to range [-1,1]
* ‘ » zero centered (nice)
/} « still kills gradients when saturated :f
tanh(x)

[LeCun et al., 1991]

16



Activation Functions

10 |

..................

1 1

RelLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

Does not saturate (In +region)
Very computationally efficient
Converges much faster than
sigmoid/tanh In practice (e.g. 6x)

[Krizhevsky et al., 2012]
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Activation Functions

{O,ifx§0

bite=0 « Computes f(x) = max(0,x)
\ ¥ 5 Rel U J(x)zmax(O,;c)
‘BL 5o 0L oc| gate /< oL * Does not saturate (in +region)
z__ 0z do do « Very computationally efficient
« (Converges much faster than
to} sigmoid/tanh In practice (e.g. 6x)

Not zero-centered output
An annoyance:

.......... e e Hint: what is the gradient when x < 0?

[Krizhevsky et al., 2012]



active RelLU

\

dead Rel.U
will never activate
— never update

20



active RelLLU

— people like to initialize RelLU

neurons with slightly positive dead Rel.U
biases (e.g. 0.01) will never activate

— never update

21



Activation Functions

 Does not saturate
 Computationally efficient

« (Converges much faster than

_ sigmoid/tanh in practice! (e.g. 6x)
.......... « will not “die”.

Leaky RelLU
f(x) = max(0.01z, x)

[Mass et al., 2013]
[He et al., 2015]

22



Activation Functions

10 F

....................

Leaky RelLU
f(x) = max(0.01z, x)

 Does not saturate
 Computationally efficient
 (Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
 will not "die”.

Parametric Rectifier (PRelLU)

f(x) = max(ax, x)

backprop into \alpha

(parameter) [Mass et al., 2013]
[He et al., 2015]

23



f(x)

Activation Functions
Exponential Linear Units (ELU)

x ifx >0
a(exp(z) — 1) if £ <0

All benefits of ReLU
Does not die

Closer to zero mean outputs

Computation requires exp()

[Clevert et al., 2015]

24



Activation Functions
Scaled Exponential Linear Units (SELU)

SELU activation function

3 « Scaled version of ELU

« Stable and attracting fixed points
for the mean and variance

* No need for batch normalization
_____________________________________________  ~100 pages long of pure math

% 5 0 ; a "Using the Banach fixed-point theorem, we
( ¥ prove that activations close to zero mean and
f(%) _ )\ ) L if x>0 unit variance that are propagated through
oz(exp(:z:) . 1) if r < 0 many network layers will converge towards

\ zero mean and unit variance — even under

o = 1.6732632423543772848170429916717  the presence of noise and perturbations.
2 = 1.0507009873554804934193349852946 Klambauer et al., 20171 ,



Maxout "Neuron”

* Does not have the basic form of dot product ->
nonlinearity

* Generalizes RelLU and Leaky RelLU
 Linear Regime! Does not saturate! Does not die!

max(wi z + by, w, = + by)

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

26



Data Preprocessing and
Normalization



Data preprocessing

» Scale input variables to have similar diagonal covariances ¢; = Z(x,ﬁ”))Z

— Similar covariances — more balanced rate of learning for different weights
— Rescaling to 1 1s a good choice, unless some dimensions are less important

Tr = [$17x2,$3]T7 0 = [(917 (92, 93]T, a = tanh(Qng) :L,l7 562, 563 — much different covariances
n /\ ,.// = u:‘fuuhl: x) . a E _
VD O el | Generated gradients — : much different
00f = — 61 — -
< > 52 ) )
63 05| ‘ « > oL / 0ot
I I Gradient update harder: '+t = ' — p, |OL/06?
0L / 683_

28



Data preprocessing

* Input variables should be as decorrelated as possible
— Input variables are “more independent”
— Network Is forced to find non-trivial correlations between inputs
— Decorrelated inputs — Better optimization
— Obviously not the case when inputs are by definition correlated (sequences)

* Extreme case
— Extreme correlation (linear dependency) might cause problems [CAUTION]

29



Data preprocessing

original data zero-centered data normalized data

10 10 - 10

....

wo A
..
1

-10 - -10 -
1G -10 -5 0 5 1G -10 = 0 5 10

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)



Data preprocessing

In practice, you may also see PCA and Whitening of the data

10

original data

10

decorrelated data

(data has diagonal
covariance matrix)

10

whitened data

(covariance matrix Is
the identity matrix)

31



Data preprocessing

In practice, you may also see PCA and Whitening of the data

original images top 144 eigenvectors reduced images whitened images
e 1"’;?’., ',.-'i 4 : : '

- n' a " M
- | . I

32



TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image
(mean iImage = [32,32,3] array)

- Subtract per-channel mean
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

33



Weight Initialization



Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

35



First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

36



First idea: Small random numbers

(Gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

37



Lets look
at some
activation
statistics

E.g. 10-layer net with 500
neurons on each layer,
using tanh non-linearities,
and initializing as described
In last slide.

# assume some unit gaussian 10-D input data

D = np.random.randn(1000, 500)

hidden layer sizes = [500]*10

nonlinearities = ['tanh']*len(hidden layer sizes)

act = {'relu’':lambda x:np.maximum(©,x), 'tanh':lambda x:np.tanh(x)}
Hs = {}
for i in xrange(len(hidden layer sizes)):

X =D if i == 0 else Hs[i-1] # input at this layer

fan in = X.shape[1]

fan out = hidden layer sizes[i]

W = np.random.randn(fan_in, fan out) * 0.01 # layer initialization

H = np.dot(X, W) # matrix multiply
H = act[nonlinearities[i]](H) # nonlinearity
Hs[i] = H # cache result on this layer
# look at distributions at each layer
print 'input layer had mean %f and std %f' % (np.mean(D), np.std(D))
layer means = [np.mean(H) for i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H in Hs.iteritems()]
for i,H in Hs.iteritems():
print 'hidden layer %d had mean %f and std %f' % (i+1l, layer means[i], layer stds[i])

# plot the means and standard deviations
plt.figure()

plt.subplot(121)

plt.plot(Hs.keys(), layer means, 'ob-')
plt.title('layer mean')

plt.subplot(122)

plt.plot(Hs.keys(), layer stds, ‘or-')
plt.title('layer std')

# plot the raw distributions

plt.figure()

for i,H in Hs.iteritems():
plt.subplot(1l,len(Hs),i+1)
plt.hist(H.ravel(), 30, range=(-1,1))

38



input layer had mean 0.000927 and std 0.998388

hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std 0.002378
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std ©0.000119
hidden layer 7 had mean 0.000000 and std 0.000026
hidden layer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 0.000000 and std 0.000001
hidden layer 10 had mean -0.000000 and std 0.000000

0000 layer mean 25 layer std

000000 »- e — gy - -
-0.00002

05 .

-0.00010

ARMT o s —
=0i000L2 1 ) 3 3 5 3 8 o 1 2 3 5 7 g
60000 500 36500 369400 3900 3§00 333} 00 400 00
S0000 250900 50400 250400 0400 50400 LY 00 250900
30000 150400 150900 150400 150400 150400 150400 150400 150900
20000 100goc 100400 100400 100400 100400 100400 100400 100400
10000 0400 <0400 0400 0400 0300 S0300 50300 0400

Ly 0 05 l’J-Cl -05 00 05 10-1.0-0500 05 IUEIC—OS 00 05 10-10-0500 05 10-1.0-05 00 05 l‘J—:lC—'i-‘.- 00 05 IC:—:';C—-JS 00 05 13-312--35- 00 05

All activations
become zero!

Q: think about the
backward pass. \What

do the gradients look
like?

Hint: think about backward pass
for a W*X gate.
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W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean 0.001800 and std 1.001311

hidden layer 1 had mean -0.000430 and std ©.981879
hidden layer 2 had mean -0.000849 and std ©.981649
hidden layer 3 had mean 0.000566 and std ©.981601
hidden layer 4 had mean 0.000483 and std 0.981755 % . %
hidden layer 5 had mean -0.000682 and std 0.981614 1 O | n Stea d Of O O 1
hidden layer 6 had mean -0.000401 and std ©0.981560 - -
hidden layer 7 had mean -0.000237 and std ©0.981520
hidden layer 8 had mean -0.000448 and std ©0.981913
hidden layer 9 had mean -0.000899 and std ©0.981728
hidden layer 10 had mean 0.000584 and std ©.981736

00006 . layer mean 000045 F2-815¢-1 layer std

00004 [ , 000040 "

00002 000035 [\ i

000030
00000 \
000025 A \
=0.0002 A / N\ - -
i 000020

=0.0004 ..".'. S0661% ‘-..> : »

-0.0006 000010 < o

-0.0008 000005 b

AT APES e .

=904, 1 2 3 ] B 3 7 B 3 0090 1 2 3 3 5 3 ? 9
250000 700 2 00 255400 3500 oo S3500 255900 3500 Q0

200000 200Q00 200900 200800 200Q00 200§00 200000 200p00 200900 200400

150000 150400 150Q00 150400 150900 150Q00 150900 15000 150800 150900

100000 100400 10000 10000 100400 10000 100Q00 10000 100Q00 100400

S0000 SORoo SOgo0 SOgoo SOgo0 SOgo0 SOgo0 SORo0 SORO0 SOR00

—ch—OSCG 05 1‘3—:15—053‘3 05 JJ—ClC—C-S 00 05 l-S—CiC—('ECJ 05 ZJ—CIC—OS 00 05 IOE‘.C—-Z-SCCI 05 13—213—05 00 05 l'J—CZC—'i'SCj 05 1‘3—:';':—05 00 05 I‘JEIC—C-SCO ©5 190

Almost all neurons
completely saturated,
either -1 and 1.
Gradients will be all

ZEI0.
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input layer had mean 0.001800 and std 1.001311

hidden layer 1 had mean 0.001198 and std 0.627953
hidden layer 2 had mean -0.000175 and std 0.486051
hidden layer 3 had mean 0.000055 and std 0.407723
hidden layer 4 had mean -0.000306 and std ©.357108
hidden layer 5 had mean 0.000142 and std 0.320917
hidden layer 6 had mean -0.000389 and std ©.292116
hidden layer 7 had mean -0.000228 and std 0.273387
hidden layer 8 had mean -0.000291 and std 0.254935
hidden layer 9 had mean 0.000361 and std 0.239266
hidden layer 10 had mean 0.000139 and std ©0.228008

layer mean

np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

Keep the variance the same " Xavier initialization”
across every layer! [Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

If a hidden unit has a big fan-in,
small changes on many of its
Incoming weights can cause the

learning to overshoot.
— We generally want smaller
iIncoming weights when the fan-
In Is big, so initialize the weights
to be proportional to sqgrt(fan-in).

« We can also scale the learning

rate the same way. More on this
later!

(from Hinton's notes)
42




input layer had mean 0.000501 and std 0.999444

W

= np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

but when using the ReLU nonlinearity

hidden layer 1 had mean 0.398623 and std 0.582273
hidden layer 2 had mean 0.272352 and std 0.403795
hidden layer 3 had mean 0.186076 and std 0.276912
hidden layer 4 had mean 0.136442 and std ©0.198685
hidden layer 5 had mean 0.099568 and std 0.140299
hidden layer 6 had mean 0.072234 and std 0.103280 .
hidden layer 7 had mean ©.049775 and std ©.072748 | t b fea kS .
hidden layer 8 had mean 0.035138 and std 0.051572
hidden layer 9 had mean 0.025404 and std 0.038583
hidden layer 10 had mean 0.018408 and std 0.026076
222 layer mean S layer std
03S
05
030
s 04 '\
020 &2 .
015 : 'y
02 by S
TR
0.10 e N
.,_.h C -"’,.
008 e B —.—
——— - Badescs -4
S JCC 1 2 3 “ S 6 7 g 9 W 1 2 3 4 S 6 7 8 $
300000 854500 83500 00 3700 3500 2500 0o L8550 65900
250000 20400 250400 200400 300400 350400 350400 e
e st o A B P 200400
300400 200402 ek itk
250000 25040
200000 200400 200400 300400
250000 250400 anndon anndan
200400 200400 2satan 00 E2 ok
150000 150400 150400 200000 200400
150doo 150400 200900 o 13 L~ L8
150400 150400 1 e
100000 100400 100400 150¢00
100400 100400 soodoo 0800
: i 100000 100400 100400
50000 50400 50400 s0d00 0400 o ) [
s0qc00 300 50300
%‘32610152 3253‘3%‘3351315202 533%35 51015202 530%08513]3202533%% 51'3152‘32530% JCSIC!S.’\JJSEC%OC 510152'32530%3531-3152 32‘33'3‘%035] 01520253 3% 0051015202530
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input layer had mean 0.000501 and std 0.999444

W = np.random.randn(fan in, fan out) / np.sqrt(fan in/2) # layer initialization

hidden layer 1 had mean 0.562488 and std 0.825232
hidden layer 2 had mean 0.553614 and std 0.827835
hidden layer 3 had mean 0.545867 and std ©.813855 H e e-t a | 2 O ’I 5
hidden layer 4 had mean 0.565396 and std 0.826902 "y
hidden layer 5 had mean 0.547678 and std 0.834092
hidden layer 6 had mean 0.587103 and std 0.860035 ",
hidden layer 7 had mean ©.596867 and std 0.870610 n Ote a I 't I O n a 2
hidden layer 8 had mean 0.623214 and std ©0.889348
hidden layer 9 had mean ©0.567498 and std 0.845357
hidden layer 10 had mean 0.552531 and std ©0.844523
g3 layer mean 599 layer std .
062 \ 088
061 "-._" oy Y
- > 0386 »
059 \
f// \ 085 \
058 2  “——
/ \ 084 7 R (S N |- i
057 ./: \ ‘
056 [~ / \ " e - 0.95
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300000 00 53500 400 5500 00 2700 2083900 =50 263900 5 0.85
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200000 200000 200400 200400 200400 200400 200400 200400 200400 200400 orsH AVariw] =1 Xavier
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100000 10000 100900 10000 100900 100400 100400 100900 100900 100400 i
S0000 S0400 0400 50400 0400 S04o00 S0400 S0400 S0400 S0¢00
%3251-3!52 3253*3%0:5!31520253 3%0531'3152‘3253020331315202533%-3:510152'32‘:30% 00 51‘32530253’3%0: 510132'32530% 3331-3!52]2533%0: 51015202 533%0[31*3152 02530
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Proper initialization is an active area of
research...

 Understanding the difficulty of training deep feedforward neural networks. Glorot and Bengio,
2010

« Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et
al, 2013

« Random walk initialization for training very deep feedforward networks. Sussillo and Abbott,
2014

* Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification.
He et al., 2015

« Data-dependent Initializations of Convolutional Neural Networks. Krahenbuhl et al., 2015
« All you need is a good init. Mishkin and Matas, 2015
 How to start training: The effect of initialization and architecture. Hanin and Rolnick, 2018

 How to Initialize your Network? Robust Initialization for WeightNorm & ResNets. Arpit et al.,
2019
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Batch Normalization

“you want unit Gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

/f(k) 2B _E[z(®)
\/ Var[z(®)] this is a vanilla differentiable
function...

[loffe and Szegedy, 2015]

47



Batch Normalization

“you want unit gaussian activations? just make them so.”

1. compute the empirical mean and

A A A _ |
variance independently for each
dimension.
N X >
2. Normalize
- (k) _ R [p(F)
VVYY CIZ(k) = x|
\/Var[a:(k)]
D

[loffe and Szegedy, 2015]



Batch Normalization

l

FC

v

BN

v

tanh

v

FC

v

BN

v

tanh

v

Usually inserted after Fully
Connected / (or Convolutional, as
we'll see soon) layers, and before

nonlinearity.
Problem: do we (k) (k)
necessarily want a unit fg(k) . —BElz "]
Gaussian input to a tanh (k)
layer? \/Var[x ]

[loffe and Szegedy, 2015]
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Batch Normalization

Normalize:

(k) — () _E[z(®)]
\/Var[a:(k)]

And then allow the network to squash
the range If it wants to:

yF) = ~F)gk) o g(k)

Note, the network can learn:

~(F) — \/Var[x(k)]
5(’%) _ E[:c(k)]

to recover the identity mapping.
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Batch Normalization

Input: Values of z over a mini-batch: B = {z1 _,,};
Parameters to be learned: v, 3

Output: {y; = BN, g(z;)}

1 m
= E i // mini-batch
LB m 2 1) mini-batch mean
1 m
2 9 S .
— — T; — // mini-batch variance
OB = ;:1:( 1B)
T; < - // normalize
Vo +€
Y; + 7Z; + B = BN, g(x;) // scale and shift

Improves gradient flow
through the network

Allows higher learning rates

Reduces the strong
dependence on initialization

Acts as a form of regularization
iIn a funny way, and slightly
reduces the need for dropout,
maybe

[loffe and Szegedy, 2015]
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Batch Normalization

Input: Values of x over a mini-batch: B = {z1. ., };
Parameters to be learned: v, 3

Output: {y; = BN, 5(z;)}

1 ™m
§— = i // mini-batch
LB = ; T mini-batch mean
1 ™m
2 9 Sl :
g = i — // mini-batch variance
o7; e ;(m 1B)
s g — .
T; 4 i // normalize
\/ 0123 + €
Y; — vz; + B = BN, g(x;) // scale and shift

Note: at test time BatchNorm
layer functions differently:

The mean/std are not computed
based on the batch. Instead, a
single fixed empirical mean of
activations during training is used.

(e.g. can be estimated during
training with running averages)

[loffe and Szegedy, 2015]
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Other normalization schemes

Batch Norm Layer Norm

 Layer Normalization
Ba et al., Layer Normalization, arXiv preprint, 2016

* Weight Normalization Z 2 T
Salimans, Weight Normalization: A Simple s T 11
Reparameterization to Accelerate Training of Deep Neural =
Networks, NIPS, 2016 =

C N C N

* Instance Normalization

Instance Norm Group Norm

Ulyanov et al., Instance normalization: The missing
ingredient for fast stylization. arXiv preprint, 2016

« Batch Renormalization

loffe, Batch Renormalization: Towards Reducing Minibatch -
Dependence in Batch-Normalized Models, NIPS 2017

H, W

NAVAAVAVAN
NAVAVAVAVAN

 Group Renormalization
Wu and He, Group Normalization, ECCV 2018

O
Z
O
Z
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Improving Generalization



Preventing Overfitting

* Approach 1: Get more data! * Approach 3: Average many
— Almost always the best bet if you different models.
have enough compute power to — Use models with different forms.

train on more data. — Or train the model on different

subsets of the training data (this is

 Approach 2: Use a model that called “bagging”).

has the right capacity:
— enough to fit the true regularities. * Approach 4: (Bayesian) Use a
— not enough to also fit spurious single neural network
regularities (if they are weaker). architecture, but average the
predictions made by many
different weight vectors.
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Some ways to limit the capacity of a
neural net

* The capacity can be controlled in many ways:

* Architecture: Limit the number of hidden layers and the number of units
per layer.

 Early stopping: Start with small weights and stop the learning before it
overfits.

 Weight-decay: Penalize large weights using penalties or constraints on
their squared values (L2 penalty) or absolute values (L1 penalty).

* Noise: Add noise to the weights or the activities.

 Typically, a combination of several of these methods is used.
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Regularization

* Neural networks typically have thousands, if not millions of parameters
— Usually, the dataset size smaller than the number of parameters

* Overfitting Is a grave danger
* Proper weight regularization is crucial to avoid overfitting

0% +_ a,rgmgilfl Z Uy, ar(z;01,...1))+\Q0)
(z,y) C(X,Y)

* Possible regularization methods
— [,-regularization
— [,-regularization
— Dropout
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[,-regularization

* Most important (or most popular) regularization

0" argm@m Z f(y,aL(il?;HL...,L))ﬂL §ZZ:HQZHQ

(z,y)C(X,Y)

* The I,-regularization can pass inside the gradient descend update rule

0D =0 — (VoL + N0;) =
(9(t+1) — (1 — )\nt)e(t) — UtVQL:

« 1 is usually about 10-1, 102
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[,-regularization

* [,-regularization is one of the most important technigues

0" argm@m Z f(y,aL(il?;HL...,L))ﬂL 5;”9”’

(z,y)C(X,Y)

» Also [,-regularization passes inside the gradient descend update rule

H(t)

(t+1) _ g(t) _

VoL

* [,-regularization — sparse weights
AT — more weights become 0
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Data augmentation [Krizhevsky2012]

Flip Random crop

Original




Noise as a regularizer

» Suppose we add Gaussian noise to the inputs.

— The variance of the noise is amplified by the squared
weight before going into the next layer.

* In a simple net with a linear output unit directly
connected to the inputs, the amplified noise gets
added to the output.

* This makes an additive contribution to the
squared error.

— So minimizing the squared error tends to minimize the
squared weights when the inputs are noisy.

Not exactly equivalent to using an L2 weight penalty.

y; + NO,w o;)

Wi

x;, + N(O,07)

Gaussian noise
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Multi-task Learning

Improving generalization by pooling the examples
arising out of several tasks.

Different supervised tasks share the same input x,
as well as some intermediate-level representation
h(shared)

— Task-specific parameters

— Generic parameters (shared across all the tasks)

Ou®
O©OLO
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Early stopping

« Start with small weights and stop the learning before it overfits.

* Think early stopping as a very efficient hyperparameter selection.
— The number of training steps is just another hyperparameter.

— - Training error
Underfitting zone| Overfitting zone

—— (Generalization error

Error

0 Optimal Capacity
Capacity



Model Ensembles

* Train several different models
separately, then have all of the
models vote on the output for
test examples.

* Different models will usually
not make all the same errors
on the test set.

e Usually ~2% gain!

Original dataset

First resampled dataset Cﬁﬂjﬁmwfj

Second resampled dataset Second ensemble member

@D > (=>0)
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Model Ensembles

* \We can also get a small boost from averaging multiple
model checkpoints of a single model.

» keep track of (and use at test time) a running average
parameter vector:

True:

data batch = dataset.sample data batch()
loss = network.forward(data batch)

dx = network.backward()
X += - learning rate * dx
X test = 0.995*x test + 0.005*x
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Dropout

I

11

randomly set some neurons to zero Iin the forward pass

O
AN

®
\
/3

X

"\#
9,

»
A\
'@

0.7 ®
RN RN
Ny

SAXY
oy S
ORI
‘.\\\P b’(._\\sb b’l’

e g i o

[Srivastava et al., 2014]

(b) After applying dropout.

Standard Neural Net

T,
@<
~—r
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Waaaait a second...
How could this possibly be a good idea?




Waaaait a second...

How could this possibly be a good idea?

T

has an ear
has a tall
s furry

has claws

mischievous
look

Forces the network to have a redundant representation.

AV4
/\

.

I score

/'
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Waaaait a second...

How could this possibly be a good idea?

Another interpretation:

Dropout Is training a large
ensemble of models (that
share parameters).

Each binary mask is one

model, gets trained on only

~0one datapoint.

ove
G

oo

o

cjo

©
O

©,
®

aaaaaaaaa

Cloe®

o O oy

Ol ©

G s

Ensemble of Sub-Networks




At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with different
dropout masks, average all predictions
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At test time....

Can In fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

wO W
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At test time....

Can In fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

(this can be shown to be an
approximation to evaluating the

w0 W1 whole ensemble)
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At test time....

Can In fact do this with a single forward pass! (approximately)
Leave all input neurons turned on (no dropout).

during test: @ = WO*X + w1¥*y  With p=0.5, using all

inputs in the forward

3 . .
durlng train: pass would inflate the
Elal =12 * (wO*0 + w1*0 activations by 2x from
x % what the network was
w0™0 + wi Y “used to" during
w0 w1 wO*x + w1%*0 rnnd
wO*x + w1*y) orfponeet |
\ compensate by scaling

=4 * (2 WOX + 2 w1 ¥y) /o ecive ons back
=1 * (W0*xX + w1*
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We can do something approximate
analytically

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \Ve must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below) """
p= 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
""" X contains the data """

# forward pass for example 3-layer neural network
H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
Hl *= Ul # drop!

HZ = np.maximum(®, np.dot(WZ2, HI) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)
# perform parameter update... (not shown)

def predict(X):

# ensembled forward pass
H1l = np.maximum(®, np.dot(Wl, X) + bl)|* p # NOTE: scale the activations
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations

out = np.dot(W3, H2) + b3

drop In forward pass

scale at test time
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More common: “Inverted dropout”

p=0.5# probability of keeping a unit active. higher = less dropout

def train_step(X):

# forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout mask. Notice /p!
H1 *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, Hl) + b2)

J

U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

# backward pass: compute gradients... (not shown)

perform parameter update... (not shown)

test time Is unchanged!
def predict(X): ""”’_’,,———”””””””
# ensembled forward pass

H1 = np.maximum(®, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, Hl) + b2)
out = np.dot(W3, H2) + b3

H-



Optimization



Training a neural network, main loop:

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad
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Training a neural network, main loop:

while True:
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights=grad # perform parameter upa

simple gradient descent update
now: complicate.
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Gradients

* When we write Vy, L(W), we mean the vector of partial derivatives wrt all
coordinates of W':

oL OL or 1%
L — L
Vw L(W) oW, OWs' ’an]

where

measures how fast the loss changes
)
vs. change inW;

=05

* In figure: loss surface is blue, gradient vectors are red: _ .,

-2.0
-2.5

» When Vi L(W) = 0, it means all the partials are =
zero, i.e. the loss is not changing in any direction.

* Note: arrows point out from a minimum, in toward

d maximum Slide adapted from John Canny 84



Optimization

* Visualizing gradient descent in one dimension:
C(w)

SOULQ iniFoali ration

MUAT MU

globa)

M v an

W

7

* The regions where gradient descent converges to a particular local
minimum are called basins of attraction.
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Local Minima

» Since the optimization problem is non-convex, it probably has local
minima.

* This kept people from using neural nets for a long time, because
they wanted guarantees they were getting the optimal solution.

* But are local minima really a problem?

— Common view among practitioners: yes, there are local minima, but
they're probably still pretty good.

* Maybe your network wastes some hidden units, but then you can just make it larger.
— It's very hard to demonstrate the existence of local minima in practice.
—In any case, other optimization-related issues are much more important.
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Saddle Points

* At a saddle point, j—V[L/ = (0 even though

we are not at a minimum. Some
directions curve upwards, and others
curve downwards.

* \When would saddle points be a problem?

— If we're exactly on the saddle point, then
we're stuck.

— If we're slightly to the side, then we can get
unstuck.
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Saddle Points

* At a saddle point, g—V[L/ = (0 even though

we are not at a minimum. Some
directions curve upwards, and others

curve downwards.

* \\When would saddle points be a problem?
— If we're exactly on the saddle point, then
we're stuck.

— If we're slightly to the side, then we can get
unstuck.

Saddle points much more common in high dimensions!

Y. Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS 2014 85



Plateaux

» A flat region is called a plateau. (Plural: plateaux)

LRI T 112
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Plateaux

* An important example of a plateau is a saturated unit. This is
when it is In the flat region of its activation function.

 If ¢'(z)) Is always close to zero, then the weights  *
will get stuck.

0.6}

>

* It there is a ReLU unit whose input z; is always
negative, the weight derivatives will be exactly 0. o
We call this a dead unit. 0.9
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Batch Gradient Descent

Algorithm 1 Batch Gradient Descent at lteration &
Require: Learning rate ¢,
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
5 g 5 VoY, LF(xD:0),y )
4. Apply Update: 0 < 0 — €g
5. end while

* Positive: Gradient estimates are stable

* Negative: Need to compute gradients over the entire training for
one update
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Gradient Descent
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Gradient Descent
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Gradient Descent

)



Gradient Descent
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Gradient Descent
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Gradient Descent
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Stochastic Batch Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration &
Require: Learning rate ¢
Require: Initial Parameter 6

1: while stopping criteria not met do

2: Sample example (x,y(®) from training set

3 Compute gradient estimate:

4 g+ +VoL(f(x9;6),y)

5: Apply Update: 0 < 0 — €g

6: end while




Minibatching

» Potential Problem: Gradient estimates can be very noisy
* Obvious Solution: Use larger mini-batches

« Advantage: Computation time per update does not depend on
number of training examples N

* This allows convergence on extremely large datasets

» See: Large Scale Learning with Stochastic Gradient Descent by
Leon Bottou
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent



Stochastic Gradient Descent
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Stochastic Gradient Descent



Stochastic Gradient Descent
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——— — sgd
-  momentum |
ol — nag i
- adagrad §
-1F adadelta S
N
5 rmsprop \
3L
_4 1 ‘}
_5
-2 -1 5
100 - . . . .
80 | -
60 | -
40} -
20+ .
O | | | | |
0 20 40 60 80 100 120

Image credits: Alec Radford
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Suppose loss function is steep vertically but shallow

Q: What is the trajectory along which we converge towards
the minimum with SGD?
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Suppose loss function is steep vertically but shallow
horizontally:

Q: What is the trajectory along which we converge towards
the minimum with SGD?
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Suppose loss function is steep vertically but shallow
horizontally:

Q: What is the trajectory along which we converge towards

the minimum with SGD?
very slow progress along flat direction, jitter along steep

one
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Momentum update

SGD

Tip1 = o¢ — aV f(xy)

while True:
dx = compute_gradient(x)
X += learning_rate * dx

SGD+Momentum
Vi1 = pvg + V f ()

Li+1 — Lt — QU411

VX = 0

while True:

dx = compute_gradient(x)
vX = rho * vx + dx
X += learning_rate * vx
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Momentum update

SGD SGD+Momentum
Vir1 = pvg + V f(xy)

Li+1 — Lt — QU411

Li4+1 = Lt — OéVf(Q?t)

while True: vX = 0
dx = compute_gradient(x) while True:
X += learning_rate * dx dx = compute_gradient(Xx)

vX = rho * vx + dx
X += learning_rate * vx

« Build up “velocity” as a running mean of gradients
* Rho gives “friction”; typically rho=0.9 or 0.99




SGD vs Momentum

sgd
= momentum |
= Nag

- adagrad
adadelta
rmsprop

notice momentum
\T\\\\\g overshooting the target,

— but overall getting to the
\\\ minimum much faster.

1/ B S, (5 A S AT

80 100 120
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SGD + Momentum

Momentum update

momentu

step
actual step

>

gradient
step
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Nesterov Momentum

Combine gradient at current point
with velocity to get step used to
update weights

Momentum update

momentu

step
actual step

>

gradient
step

“Look ahead” to the point where updating using velocity
would take us; compute gradient there and mix it with
velocity to get actual update direction

Nesterov momentum update

“lookahead”
gradient step (bit
momentum different than
step original)
actual step

Nesterov: the only difference...

v = pvg—1 — €V f(Or—1|+ pvp 1

0: = 0t_1 + vy
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Nesterov Momentum

Vt+1 — PUr — OéVf(ﬂZ’t + ,OUt)

Tit1 = Tg + Vet
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Nesterov Momentum

Ui+1 =

Lt+1 =

pvy — aV f(

Tt + pUg)

Tt + Vi1

Change of variables I; = x; + pv; and

rearrange:

Ut4+1 — PUt — OéVf(.’jft)
Tip1 = Ty — pvg + (1 + p)vega
= Tt + Vg1 + p(Vir1 — Vt)

Annoying, usually we want
update in terms of ¢, V f(x¢)

dx = compute_gradient(x)

old_v = v

v = rho * v - learning_rate * dx
X += -rho * old_v + (1 + rho) * v
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/f// /',f’ E [ — Sgd
7 7 —— momentum |}
' —— nag ;
— adagrad |\ "aq —
adadelta | ag =
/lf Accelerated
Gradient
—s (LI
-2 -1 0 >
100 u 1 ; ' T
80 |- -
60 -
40 + -
20 + -
0 1 1 1 1 1
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AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

"Per-parameter learning rates” or “adaptive learning
rates”

[Duchi et al., 2011]
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AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dX
X -= learning_rate * dx / (np.sgrt(grad_squared) + 1le-7)

Q: What happens with AdaGrad?

Weights that receive high gradients will have their effective
learning rate reduced, while weights that receive small
updates will have their effective learning rate increased! 123




AdaGrad update

grad_squared = 0

while True:
dx = compute_gradient(x)
[grad_squared += dx * dX
X -= learning_rate * dx / (np.sgrt(grad_squared) + 1le-7)

Q2: What happens to the step size over long time?

The adaptive learning scheme i1s monotonic, which Is usually
too aggressive and stops the learning process too early.

124



RMSProp

grad_squared = 0
while True:

AdaGrad dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

grad_squared = 0

while True:

F%qussF)r()F) dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + le-7)

RMSProp divides the learning rate by
an exponentially-decaying average of squared gradients. [Tieleman and Hinton, 2012]



sgd

L

- momentum
—  nag :
- adagrad §
— adadelta N
N
— rmsprop || T
|
| |
|
|
_5 : ! l \ \ | | | | |
-2 -1 0 1 2 3 4 5
100 1 | | I |
80 | .
60 .
40} -
20} .
0 | | | | |
0 20 40 00 80 100 120

adagrad
rmsprop
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Adaptive Moment Estimation (Adam)
(incomplete, but close)

first_moment = 0
second_moment = 0
while True:

dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx momentum
second_moment = beta second_moment + - beta X 2R A
X -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7)) AdaGrad / RMSPFOD

Looks a bit like RMSProp with momentum

[Kingma and Ba, 2014]
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(num_iterations):
dx_ = compute gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx momentum

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) : _
second unbias = second moment / (1 - beta2 ** t) BlaS correction

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)) AdaGrad / RMSProp

The bias correction compensates for the fact that m,v are
Initialized at zero and need some time to “warm up”.

[Kingma and Ba, 2014]
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Adam (full form)

first_moment = 0

second_moment = 0

for t in range(num_iterations):
dx = compute_gradient(x)

first_moment = betal * first_moment + (1 - betal) * dx momentum

second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) : :
second unbias = second moment / (1 - beta2 ** t) B|as correction

X -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7)) AdaGrad / RMSProp

Adam with betal = 0.9,
The bias correction compensates for the fact that m,v are | beta2 = 0.999, and

initialized at zero and need some time to “warm up”. learning_rate = 1e-3 or 5e-4
IS a great starting point for

many models!

[Kingma and Ba, 2014]
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Optimization Algorithm Comparison

Tracks second

Tracks first Leaky . :
: moments Bias correction for
Algorithm moments . second .
(Adaptive moment estimates
(Momentum) . moments
learning rates)
SGD X X X X
SGD+Momentum V4 X X X
Nesterov v X X X
AdaGrad X N4 X X
RMSProp b'¢ v v X
Adam v Vv v v
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L2 Regularization vs Weight Decay

Optimization Algorithm

Lw) = Lggra(W) + Lyeg (w)

9t = VL(w)
sy = optimizer(g;)
Wt+1 = W — A5t
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lgara(W) + Lyeg (w) L(w) = Lggra(W) + Alw|*

9t = VL(Wt) Jt = VL(Wt) — VLdata(Wt) + let
sy = optimizer(g;) s¢ = optimizer(g;)

Wt+1 — Wt — afSt Wt+1 — Wt o aSt
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(w) = Lggea(w) + Lreg (w) L(w) = Lggea(W) + A|W|2

9t = VL(Wt) Jt = VL(Wt) — VLdata(Wt) + let
sy = optimizer(g;) s¢ = optimizer(g;)

Wiyq1 = W — St Wiy1 = W — ASt

Weight Decay

L(w) = Lgata(W)
9t = VLgata(We)
s, = optimizer(g;) +
Wti1 = Wr — A5t
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L2 Regularization vs Weight Decay

Optimization Algorithm L2 Regularization

L(W) — Ldata(W) T Lreg (W) L(w) = Ldata(W) + A|W|2

9t = VL(Wt) 9t = VL(Wt) — VLdata(Wt) + let
sy = optimizer(g;) s¢ = optimizer(g;)

Wiyq1 = W — St Wiyq1 = W — aSt

L2 Regularization and Weight Decay are Weight Decay

equivalent for SGD, SGD+Momentum so —

people often use the terms L(W) — Ldata (W)

interchangeably! 9t = VLdata(Wt)

s, = optimizer(g;) +
Wti1 = Wr — A5t
[Loshchilov and Hutter, 2019]
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L2 Regularization vs Weight Decay

Optimization Algorithm

L(w) = Lagta(w) + Lieg (w)
ge = VL(w;)

sy = optimizer(g;)

Wiy1 = We — A5t

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so
people often use the terms
interchangeably!

But they are not the same for adaptive
methods (AdaGrad, RMSProp, Adam,
etc)

L2 Regularization

L(W) = Lgqeq(W) + A|w|?

9t = VL(W¢) = VLggea (W) + 24w,
sy = optimizer(g;)

Wir1 = W — &5¢

Weight Decay

Lw) = Laata (w)
gt = VLgara(We)
s, = optimizer(g;) +
Wti1 = Wr — A5t
[Loshchilov and Hutter, 2019]
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AdamW: Decoupled Weight Decay

Algorithm 2 Adam with L regularization and Adam with decoupled weight decay (AdamW)

1: given o = 0.001, 51 = 0.9, 82 = 0.999,e =107, A € R

2: initialize time step ¢ <— 0, parameter vector 8;—o € R", first moment vector m;—y < 0, second moment

vector vi—g < 0, schedule multiplier n.—¢ € R

3: repeat

4: t<+t+1

5. Vfi(0:—1) < SelectBatch(6:_1) > select batch and return the corresponding gradient
6: g, Vfi(0i—1) +A0¢1

7. my < Bimi—1 + (1 — B1)g, > here and below all operations are element-wise
8:  wi < Bavi—1 4+ (1 — Bg)gf

9: iy +—my/(1— B7) > (1 is taken to the power of ¢
10: b < v /(1 — B5) > (2 is taken to the power of ¢
11: ne <— SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

12 O < 01— (aﬁlt/(\/E-F €) +A0;¢_4 )

13: until stopping criterion is met
14: return optimized parameters 0

[Loshchilov and Hutter, 2019]
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AdamW: Decoupled Weight Decay

Algorithm 2 'Adam with L regularization and Adam with decoupled weight decay (Ac‘amW)

1: given o = 0.001, 51 = 0.9, 82 = 0.999,e =107, A € R

vector v;—g <— 0, schedule multiplier n,—g € R

AdamW should probably be your
“default” optimizer for new problems

80 vy < Bavi—1 + (1 — Ba2)g?

9: iy +—my/(1— B7) > (1 is taken to the power of ¢
10: b < ve/(1— B3) > (2 is taken to the power of ¢
11: ne <— SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

12: 0y < 601 — 1y (aﬁzt/(\/ﬁ—i— €) +A0;_1 )

13: until stopping criterion is met
14: return optimized parameters 0
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SGD, SGD+Momentum, Adagrad, RMSProp,
Adam all have learning rate as a hyperparameter

low learning rate

high learning rate

good learning rate

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every few epochs.

exponential decay:
a=oge ™

1/t decay:
a=ay/(1+ kt)
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SGD, SGD+Momentum, Adagrad, RMSProp,
Adam all have learning rate as a hyperparameter.

low learning rate
high learning rate

good learning rate

A Loss

Learning rate decay!

|

Epoch
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So far: First-Order Optimization

1) Use gradient form linear approximation
2) Step to minimize the approximation

N

Loss

w1
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Second-Order Optimization

1) Use gradient and Hessian (H) to form quadratic approximation
2) Step to the minima of the approximation

A
Loss

w1
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Second order optimization methods

second-order Taylor expansion:

7(8) ~ J(8y) + (8 — &) " Vo (60) + 5 (6 — ) TH(6 — 6)

Solving for the critical point we obtain the Newton parameter update:

0" =0, — H 'VoJ(8,) notice:

no hyperparameters! (e.g. learning rate)

Q: what is nice about this update?
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Second order optimization methods

second-order Taylor expansion:

J(0) =~ J(0y)+ (Q—Q))TVGJ(Oo)—i— %(H—OO)TH(H— 0o )

Solving for the critical point we obtain the Newton parameter update:

0" =0, — H 'VoJ(0,)

notice:
no hyperparameters! (e.g. learning rate)

Q2: why is this impractical for training Deep Neural Nets?
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Second order optimization methods

0* =0, — H 'VoJ(6,)

* Quasi-Newton methods (BGFS most popular):

instead of inverting the Hessian (O(nA3)), approximate inverse
Hessian with rank 1 updates over time (O(nA2) each).

 L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.
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Babysitting the Learning Process



Say we start with one hidden layer of b0 neurons:

50 hidden

Neurons  +

\

fout | 10 output
outputiayer neurons, one

CIFAR-10 input layer oer class
Images, 3072 hidden layer
numbers
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Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

0.0001 * np.random.randn(input size, hidden size)
model[ ‘D = np.zeros(hidden size)
model['W2'] = 0.0001 * np.random.randn(hidden size, output size)
model['b2'] = np.zeros(output size)

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train| 0.0 disable regularization

loss ~2.3.

2.30261216167 ~—
“correct “ for returns the loss and the gradient for
10 classes all parameters
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Double check that the loss is reasonable:

def init two layer model(input size, hidden size, output size):

0.0001 * np.random.randn(input size, hidden size)
model[ ‘D = np.zeros(hidden size)
model['W2'] = 0.0001 * np.random.randn(hidden size, output size)
model['b2'] = np.zeros(output size)

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes

loss, grad = two layer net(X train, model, y train, le3 crank up regularization
print loss

3.06859716482 \
loss went up, good. (sanity check)
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Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

model = init_two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()

X tiny = X train[:20] # take 20 examples

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)

- use simple vanilla 'sgd’
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Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

model =
trainer =

ClassifierTrainer()

y tiny = y train[:20]

init _two layer model(32%32%*3, 50,

X tiny = X train[:20] # take 20 examples

10) # input size,

hidden size, number of classes

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num_epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)
Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
. Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
Fawmambhad PR Ea¥al Lo BNRNA. . -~ " nACTTEN RN . N CcCcnnnn cam1 N CcCcnAnnnn " - NANNANAN~ NN
Flnlshed epoch 195 / 200: cost 0.902694 train: 1.000000 val 1.000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, 1lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, 1lr 1.000000e-03
_> Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, 1lr 1.000000e-03
finished optimization. best validation accuracy: 1.000000
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model = init two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes

Lets try to traln nOW .. trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

Sta I't Wlth Sma” sample batches = True,
) . ] learning rate=le-6, verbose=True)
regularization and find
learning rate that makes
the loss go down.
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Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

model = init two layer model(32%*32*3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,

sampte—batches—Frye,

learning rate=le-6,|verbose=True)
Finished epoch 1 / 10:|cost 2.302576, |trainj: ©.080000, val 0.103000, lr
Finished epoch 2 / 10:|cost 2.302582, |train: ©.121000, val 0.124000, lr
Finished epoch 3 / 10:|cost 2.302558, |train: ©.119000, val 0.138000, lr
Finished epoch 4 / 10:|cost 2.302519, |trainf: 0.127000, val 0.151000, lr
Finished epoch 5 / 10:|cost 2.302517, |train: ©.158000, val 0.171000, lr
Finished epoch 6 / 10:|cost 2.302518, |[train: ©.179000, val 0.172000, 1r
Finished epoch 7 / 10:|cost 2.302466, |train: ©.180000, val 0.176000, lr
Finished epoch 8 / 10:|cost 2.302452, |train: 0.175000, val 0.185000, lr
Finished epoch 9 / 10:|cost 2.302459, |[train: 0.206000, val 0.192000, lr
Finished epoch 10 / 10} cost 2.302420| train: 0.190000, [val 0.192000, lr 1.000000e-06
finished optimization.lbest validation accﬂ?EE?T'UTT§7660

Loss barely changing

O e e e

.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
.000000e-06
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. model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
LetS try tO traln NOW... trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,

. update='sgd', learning rate decay=1,
StartVVWk|Sﬂﬂa” sampte—batches—Frye,
) . . learning rate=le-6,|verbose=True)
regU|arlzat|On and flnd Finished epoch 1 / 10:|cost 2.302576, |trairl: ©.080000, Val ©.103000, lr 1.000000e-06
. Finished epoch 2 / 10:|cost 2.302582, |train: ©.121000, Val 0.124000, lr 1.000000e-06
|ea|’n|ng rate that makes Finished epoch 3 / 10:|cost 2.302558, |trair: ©.119000, Val ©.1380600, lr 1.000000e-06
Finished epoch 4 / 10:|cost 2.302519, |train: 0.127000, val 0.151000, lr 1.000000e-06
Finished epoch 5 / 10:|cost 2.302517, |train: ©.158000, val 0.171000, lr 1.000000e-06
'tf\EB |()ESES EJCD Cj()\ﬂdrw- Finished epoch 6 / 10:|cost 2.302518, |train: ©.179000, val 0.172000, 1lr 1.000000e-06
Finished epoch 7 / 10:|cost 2.302466, |train: ©0.180000, Vjal 0.176000, lr 1.000000e-06
Finished epoch 8 / 10:|cost 2.302452, |train: ©.175000, val 0.185000, lr 1.000000e-06
Finished epoch 9 / 10:|cost 2.302459, |[train: 0.206000, val 0.192000, lr 1.000000e-06
1 . Finished epoch 10 / 10} cost 2.302420| train: 0.190000, [val 0.192000, lr 1.000000e-06
IOSS nOt QOIng down' finished optimization.lbest validatiom accuracy: 0.192000

learning rate too low Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes t0 20%

though, what's up with that?
(remember this is softmax)
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Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=1e6, verbose=True)

N

Okay now lets try learning rate 1e6. \What could
possibly go wrong?
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Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

model = init_two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

model, two layer net,

num epochs=10, reg=0.000001,

update='sgd', learning rate decay=1,

sample batches = True,

learning rate=le6, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log

data loss = -np.sum(np.log(probs[range(N), y])) / N
/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:48: RuntimeWarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis=1, keepdims=True))

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, 1lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: 0.100000, val 0.087000, lr 1.000000e+06

cost: NaN almost always
means high learning
rate...
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Lets try to train now...

Start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

Finished
Finished
Finished
Finished
Finished
Finished

epoch
epoch
epoch
epoch
epoch
epoch

DU bEs WN =
Dot e A T gy

10:
10:
10:
10:
10:
10:

cost
cost
cost
cost
cost
cost

model, two layer net,

num epochs=10, reg=0.000001,
update='sgd', learning rate decay=1,
sample batches = True,

learning rate=3e-3, verbose=True)

2.186654, train: 0.308000, val 0.306000, lr 3.000000e-03
2.176230, train: 0.330000, val 0.350000, lr 3.000000e-03
1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03
1.827868, train: 0.329000, val 0.310000, Llr 3.000000e-03
inf, train: 0.128000, val ©0.128000, lr 3.000000e-03
inf, train: 0.144000, val 0.147000, lr 3.000000e-03

3e-3 is still too high. Cost
explodes....

=> Rough range for learning rate we
should be cross-validating Is
somewhere [1e-3 ... 1e-5]
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Hyperparameter Selection



Everything is a hyperparameter

* Network size/depth

« Small model variations

* Minibatch creation strategy
* Optimizer/learning rate

* Models are complicated and opague, debugging can be difficult!

Adapted from Graham Neubig 160



Cross-validation strategy

First do coarse -> fine cross-validation Iin stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early
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For example: run coarse search for 5 epochs

for: towit Iexrae (Baxicomnt: note it's best to optimize in
reg = 10**uniform(-5, 5)
ir = 10**uniform(-3, -6) ¢ log space!

trainer = ClassifierTrainer()
model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update='momentum’, learning rate decay=0.9,
sample batches = True, batch size = 100,
learning rate=lr, verbose=False)

val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)

val acc: 0.214000, lr: 7.231888e-06, reg: 2.32128le-04, (2 / 100)

val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)

val acc: 0.196000, 1lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)

val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)

val acc: 0.223000, Llr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)

] val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100)
nice val acc: 0.241000, lr: 6.749231e-05, reqg: 4.226413e+01, (8 / 100)
» | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100)

val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)

val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)
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Now run finer search...

max_count = 166 ' max_count = 100
for count in xrange(max_count): adJUSt range for count in xrange(max count):

reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)

lr = 1e**uniform(-3, -6) lr = 10**uniform(-3, -4)
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val acC: 0.492000, Lr: Z2.Z2/9484e-04, reg: 9.9913450e-04, (1 / 100)
val _acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) :
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) _
val acc: 0.522000, Llr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) for a 2-layer neural net
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden
val _acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val _acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) neurons.
val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)

[ val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |

val acc: 0.509000, Lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.03378le-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val _acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100)
val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-62, (20 / 100)
val acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
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Now run finer search...

max count = 100 : 5
e 3 _ ran max_count = 100
for count in xrange(max_count): adJUSt ange for count in xrange(max count):

reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)

Lr = 16**uniform(-3, -6) lr = 10**uniform(-3, -4)
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val acC: 0.492000, Lr: Z2.Z2/9484e-04, reg: 9.9913450e-04, (1 / 100)
val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) o -
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) _
val acc: 0.522000, lr: 5.58626le-04, reg: 2.312685e-04, (7 / 100) for a 2-layer neural net
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden
val_acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val_acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) neurons.
val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val_acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100) :

val acc: 0.531000. 1r: 9.471549-04. reg: 1.433895¢-03. (14 / 100) |«4— BUt this best cross-

val acc: 0.509000, Lr: 3.140888¢-04, reg: 2.857518e-01, (15 / 100) PP :
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781le-01, (16 / 100) validation result is
val_acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100) i 2
val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100) worrying. Why:
val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
val_acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100)
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Now run finer search...

max count = 100 : 5
i 2 _ ran max_count = 100
for count in xrange(max_count): adJUSt ange for count in xrange(max count):

reg = 10**uniform(-5, 5) > reg = 10**uniform(-4, 0)

Lr = 16**uniform(-3, -6) lr = 10**uniform(-3, -4)
val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
val acC: 0.492000, Lr: Z2.Z2/9484e-04, reg: 9.9913450e-04, (1 / 100)
val_acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-62, (3 / 100)
val_acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100) o :
val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100) 53% - relatively good
val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) )
val acc: 0.522000, Llr: 5.586261e-04, reg: 2.312685e-04, (7 / 100) for a 2-layer neural net
val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100) with 50 hidden
val_acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
val_acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100) neurons.
val_acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
val_acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100) :

val acc: 0.531000. 1r: 9.471549-04. reg: 1.433895¢-03. (14 / 100) |«4— BUt this best cross-

val acc: 0.509000, r: 3.140888e-04, req: 2.857518e-01, (15 / 100) : 1o :
val_acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100) validation result is
val_acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100) worrying
val_acc: 0.509000, lr: 9.752279e-04, reg: 2.850865e-03, (18 / 100) '
val_acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100) ,
val_acc: 0.516000, lr: 8.039527e-04, reg: 1.528291e-02, (21 / 100) Learning rate close

to the edge, need

more wider search!
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Random Search vs. Grid Search

Grid Layout Random Lavyout
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Important parameter Important parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Hyperparameters to play with:

- network architecture
- learning rate, 1ts decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
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Monitor and visualize the loss curve
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Loss

time
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Loss

Bad initialization
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lossfunctions.tumblr.com

5.8
56
i

52 1

48

valid

Loss function specimen

500

400

s 300

200

0

\

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

e—Seriesl

0.70

0.65

0.60

w
w055}

0451

0.40

Training Loss

10

20

Epoch

30

50

172



lossfunctions.tumblr.com

1000

—— task0
—— taskl
- task2
— task3

task4
~— task5
— task6
—— task7
— task8
— task9

task10
—— taskll
— taskl2
—— taskl3
— taskl4
—— taskl5

task16
~— taskl7
—— taskl8
—— taskl9

173



1|

»,

L W
W 1

Tl
‘,
i

¥ ""m A Mda d_m,i'!”.
0y I""M o ARANNITE
i 'W"‘"W»ﬂr“ 'rm«
A (f" AA DN MAAAaA

0
: AMAMA W

lossfunctions.tumblr.com

task13
task14
task15
task16
task17
task18
task19
task20
task21
task22
task23
task24
task25
task26
task27
task28
task29
task30
task31
task32
task33
task34
tack3s

— task0
—— taskl
— task2
—— task3
~—— task4
—— task5
—— taské
—— task7
— task8
— task9
~— taskl0
—— task1ll
— task12
— task1l3
—— taskl4
—— taskl5
~ taskl6
—— task1l7
—— taskl8
—— task19
— task20
— task21
~—— task22
—— task23
— task24
—— task35
YT i
AANREK2 7
~— task28
— task29
— task30
— task31
task32

—— task33
~—— task34
—— task35
— task36

174



Monitor and visualize the accuracy:
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big gap = overfitting

=> Increase regularization strength

NO gap
=> Increase model capacity?
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The Double Descent Phenomenon

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

- Tra,lnlng I‘lSk

——

interpolation threshold

—— —— — —_— — — — — — — — — — — .

Capaaty of H

» Test error follows the traditional U-shaped curve in the

under-parameterized case and monotonically decreases
IN the over-parameterized case.

Neal et al., 2018).

Spigler et al., 2018)
Geiger et al., 2019)
Belkin et al., 2019)

— — — —
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Visualization

» Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have high
variance

* Good training: hidden units are
sparse across samples

samples

hidden unit

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 475



Visualization

» Check gradients numerically by finite differences

* \isualize features (features need to be uncorrelated) and have high
variance

» Bad training: many hidden units
ignore the input and/or exhibit
strong correlations

2
.
L
i

q

hidden unit

From Marc'Aurelio Ranzato, CVPR 2014 tutorial 479



Visualization

» Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have high

variance

* Visualize parameters: learned features should exhibit structure and
should be uncorrelated and are uncorrelated

BAD

too noisy

BAD

‘._‘-'-‘

-
J
-—

too correlated

SFCSTY L

lack structure
From Marc'Aurelio Ranzato, CVPR 2014 tutorial 159



Take Home Messages



Optimization Tricks

« SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data
« Start with large learning rate & divide by 2 until loss does not diverge
* Decay learning rate by a factor of ~100 or more by the end of training

* Use RelLU nonlinearity

* |[nitialize parameters so that each feature across layers has similar
variance. Avolid units In saturation.

From Marc'Aurelio Ranzato, CVPR 2014 tutorial  1g9



Ways To Improve Generalization

* \Weight sharing (greatly reduce the number of parameters)

* Dropout
* Weight decay (L2, L1)

« Sparsity in the hidden units

From Marc'Aurelio Ranzato, CVPR 2014 tutorial  1g3



Babysitting

» Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have high
variance

* Visualize parameters: learned features should exhibit structure and
should be uncorrelated and are uncorrelated

* Measure error on both training and validation set

* Test on a small subset of the data and check the error — 0.

From Marc'Aurelio Ranzato, CVPR 2014 tutorial g4



Next lecture:
Convolutional
Neural Networks



