
Lecture #05 – Convolutional Neural Networks (CNNs)

Erkut Erdem // Hacettepe University // Fall 2024

CMP784
DEEP LEARNING

detail from the visualization of ResNet-18 // Graphcore

Previously on CMP784
• data preprocessing and normalization

• weight initializations

• ways to improve generalization

• babysitting the learning process

• hyperparameter selection

• optimization

2

visualization of mode connectivity for ResNet-20 with no skip
connections on CIFAR-10 dataset, Javier Ideami

Lecture Overview
• convolution layer

• design guidelines for CNNs

• CNN architectures

• transfer learning

• semantic segmentation networks

• object detection networks

• backpropagation in CNNs

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Andrea Vedaldi’s tutorial on Convolutional Networks for Computer Vision Applications

—Kaiming He’s ICML 2016 tutorial on Deep Residual Networks: Deep Learning Gets Way Deeper

—Ross Girshick’s talk on The Past, Present, and Future of Object Detection

—Fei-Fei Li, Andrej Karpathy and Justin Johnson’s CS231n class

—Justin Johnson’s EECS 498/598 class

4

[Rosenblatt 57]

Perceptron

 The goal is estimating the posterior probability of the binary label y of a vector x: 
 
 
 
 
 
 
 
 

8

Σ
⁞

b
w1

wD

w2

1

x1

x2

xD

S P(y = 1 | x, w, b)

linear 
weighting

accumulation non-linear 
activation

Perceptron
[Rosenblatt 57]

• The goal is estimating the posterior probability of the binary label y of
a vector x:

5

[Hubel and Wiesel 59]

Discovery of oriented cells in the visual cortex 9

oriented filter

Discovery of oriented cells in the visual cortex

[Hubel and Wiesel 59]

6

[Hubel and Wiesel 59]

Discovery of oriented cells in the visual cortex 9

oriented filter

[Hubel and Wiesel 59]

Discovery of oriented cells in the visual cortex 9

oriented filter

[Hubel and Wiesel 59]

Discovery of oriented cells in the visual cortex 9

oriented filter

7

8

Convolution
• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

9

2-D Convolution

What does this convolution kernel do?

⇤
0 1 0
1 4 1

0 1 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 17 / 29

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

1/8

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Convolution
• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

10

2-D Convolution

What does this convolution kernel do?

⇤
0 -1 0
-1 4 -1

0 -1 0

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 19 / 29

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Convolution
• Convolution = Spatial filtering

• Different filters (weights) reveal a different characteristics of the input.

11

2-D Convolution

What does this convolution kernel do?

⇤
1 0 -1
2 0 -2

1 0 -1

Roger Grosse and Nitish Srivastava CSC321 Lecture 11 Convolutional networks February 15, 2015 20 / 29

Discrete filtering in 2D
•  Same equation, one more index

–  now the filter is a rectangle you slide around over a grid of numbers

•  Usefulness of associativity
–  often apply several filters one after another: (((a * b1) * b2) * b3)
–  this is equivalent to applying one filter: a * (b1 * b2 * b3)

Slide credit: S. Marschner

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Convolutional Neural Networks in a Nutshell
• A neural network model that consists of a sequence of local &

translation invariant layers
• Many identical copies of the same neuron: Weight/parameter sharing
• Hierarchical feature learning

12

4

Review

c1 c2 c3 c4 c5 f6 f7 f8

w1 w2 w3 w4 w5 w6 w7 w8

bike

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proc. NIPS, 2012.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS
2012.

A bit of history
• Neocognitron model by Fukushima (1980)

• The first convolutional neural network (CNN) model

• so-called “sandwich” architecture
• simple cells act like filters
• complex cells perform pooling

• Difficult to train
• No backpropagation yet

13

A bit of history
• LeNet-5 model

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of
the IEEE. 86 (11): 2278–2324, 1998.

14

A bit of history
• AlexNet model

15A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS
2012.

Convolutional Neural
Network

16

4

Review

c1 c2 c3 c4 c5 f6 f7 f8

w1 w2 w3 w4 w5 w6 w7 w8

bike

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Proc. NIPS, 2012.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS
2012.

A sequence of local & shift invariant layers

Convolutional Neural Network (CNN) 5

✱

Example: convolution layer

filter bank Finput data x output data y

Convolutional layer
• Learn a filter bank (a set of filters) once

• Use them over the input data
to extract features

17

Data = 3D Tensors
• There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

18

 There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Data = 3D tensors 6

H

W

=

c = 1 c = 2 c = 3

channels

=3D  
tensor H

C

W

Convolutions with 3D Filters
• Each filter acts on multiple

input channels

19

Each filter acts on multiple input channels

Convolution with 3D filters 7

Σ

x y

FLocal 
Filters look locally  
 
 
Translation invariant  
Filters act the same  
everywhere

− Local
Filters look locally

− Translation invariant
Filters act the same everywhere

As a neural network

Linear convolution 13

Σ
⁞

b
f1

fD

f2

1
x1

x2

xD

S

ΣFq

ΣFq

lattice  
structure

multiple  
feature channels

Σ

local and translation  
invariant action

x y

Fq

As a neural network

Linear convolution 13

Σ
⁞

b
f1

fD

f2

1
x1

x2

xD

S

ΣFq

ΣFq

lattice  
structure

multiple  
feature channels

Σ

local and translation  
invariant action

x y

Fq

As a neural network

Linear convolution 13

Σ
⁞

b
f1

fD

f2

1
x1

x2

xD

S

ΣFq

ΣFq

lattice  
structure

multiple  
feature channels

Σ

local and translation  
invariant action

x y

Fq

Convolutional Layer

20

32

32

3

5x5x3 filter

32x32x3 input

Convolve the filter with the input
i.e. “slide over the image spatially,
computing dot products”

Convolutional Layer

21

32

32

3

32x32x3 input
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the input
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutional Layer

22

32

32

3

32x32x3 input
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Convolutional Layer

23

32

32

3

32x32x3 input
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Convolutional Layer
• Multiple filters produce multiple output channels

• For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

24

32

32

3

Convolutional Layer

activation maps

6

28

28

We stack these up to get an output of size 28x28x6.

Spatial Arrangement of Output Volume

• Depth: number of filters

• Stride: filter step size
(when we “slide” it)

• Padding: zero-pad the input

25

32

32

3

28

28
5

26Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

27Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

28Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

29Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

30Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

31Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

32Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

33Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

34Lex Fridman:
fridman@mit.edu

January
2017

Course 6.S191:
Intro to Deep LearningReferences: [95]

Convolutional layers
• Local receptive field

• Each column of hidden units
looks at a different input patch

35

Local receptive field

Convolutional layers 37

input  
image

features

receptive field

feature component

Receptive Fields
• For convolution with kernel size K, each element in the output depends on a

K x K receptive field in the input

36

Input Output

Justin Johnson January 31, 2022Lecture 7 - 43

Receptive Fields

Input Output

For convolution with kernel size K, each element in the
output depends on a K x K receptive field in the input

Receptive Fields
• Each successive convolution adds K – 1 to the receptive field size With L

layers the receptive field size is 1 + L * (K – 1)

37Justin Johnson January 31, 2022Lecture 7 - 44

Receptive Fields

Input Output

Each successive convolution adds K – 1 to the receptive field size
With L layers the receptive field size is 1 + L * (K – 1)

Be careful – ”receptive field in the input” vs “receptive field in the previous layer”
Hopefully clear from context!

Problem: For large images we need many layers for each output
to “see” the whole image image

Input Output

1x1 Convolution

38
Justin Johnson January 31, 2022

Example: 1x1 Convolution

Lecture 7 - 57

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

56 56

5656
64 32

(each filter has size 64x1x1,
and performs a 64-
dimensional dot product)

1x1 CONV
with 32 filters

Stacking 1x1 conv layers
gives MLP operating on
each input position

Lin et al, “Network in Network”, ICLR 2014

Other types of convolution

39

Justin Johnson January 31, 2022

Other types of convolution

Lecture 7 - 62

So far: 2D Convolution 1D Convolution

Cin

W

H

Input: Cin x H x W
Weights: Cout x Cin x K x K

Cin

W

Input: Cin x W
Weights: Cout x Cin x K

Justin Johnson January 31, 2022

Other types of convolution

Lecture 7 - 63

So far: 2D Convolution 3D Convolution

Cin

W

H

Input: Cin x H x W
Weights: Cout x Cin x K x K

Cin-dim vector
at each point
in the volume

W

D

H

Input: Cin x H x W x D
Weights: Cout x Cin x K x K x K

So far: 2D Convolution 1D Convolution 3D Convolution

Cin-dim vector at
each point

in the volume

Input: Cin x H x W
Weights: Cout x Cin x K x K

Input: Cin x W
Weights: Cout x Cin x K

Input: Cin x H x W x D
Weights: Cout x Cin x K x K x K

H

HH

W
W W

D

Cin

Cin

40

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Convolutional layers

Repeat linear / non-linear operators

41

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Linear/Non-linear Chains
• The basic blueprint of most architectures

• Stack multiple layers of convolutions

42

The basic blueprint of most architectures

Linear / non-linear chains 9

x

Σ

Σ

y

S

S

Σ S …

filtering ReLU filtering 
& downsampling

ReLU …

Feature Learning
• Hierarchical layer structure allows to learn hierarchical filters (features).

43

Feature Learning
• Hierarchical layer structure allows to learn hierarchical filters (features).

44
Slide credit: Yann LeCun

Pooling layer
• makes the representations smaller

and more manageable

• operates over each activation map
independently:

• Max pooling, average pooling, etc.

45

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2
filters and stride 2 6 8

3 4

• contains neurons that connect to the entire input volume, as in ordinary
Neural Networks

46

Fully connected layer

46

Design Guidelines

47

Design Guidelines
Guideline 1: Avoid tight bottlenecks

• From bottom to top
−The spatial resolution H⨉W decreases
−The number of channels C increases

• Guideline
−Avoid tight information bottleneck
−Decrease the data volume H ⨉ W ⨉ C slowly

48

 From bottom to top

▶ The spatial resolution H ⨉ W decreases

▶ The number of channels C increases

 Guideline

▶ Avoid tight information bottleneck

▶ Decrease the data volume 
H ⨉ W ⨉ C slowly

Guideline 1: Avoid tight bottlenecks

Design guidelines 21

image

features

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc.
ICLR, 2015.  

C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens.
Rethinking the inception architecture for computer
vision. In Proc. CVPR, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens. Rethinking the inception architecture for
computer vision. In CVPR 2016.

Receptive Field

49

Must be large enough

• Receptive field of a neuron
−The image region influencing a neuron
−Anything happening outside is invisible to the

neuron

• Importance
−Large image structures cannot be detected by

neurons with small receptive fields

• Enlarging the receptive field
−Large filters
−Chains of small filters

Design Guidelines
Guideline 2: Prefer small filter chains

• Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
• Reason: Far fewer feature channels (quadratic speed/space gain)
• Moral: Optimize your architecture

50

Guideline 2: Prefer small filter chains

Design guidelines

 Benefit 1: less parameters, possibly faster

 Benefit 2: same receptive field of big filter

 Benefit 3: packs two non-linearities (ReLUs)

23

5 ⨉ 5 filters  
+ ReLU

3 ⨉ 3 filters  
+ ReLU

prefer

3 ⨉ 3 filters  
+ ReLU

One big filter bank Two smaller filter banks

Guideline 3: Keep the number of channels at bay

Design guidelines 24

 H ⨉ W ⨉ C

 Hf ⨉ Wf ⨉ C ⨉ K

C = num. input channels 

K = num. output channels

Num. of operations

 Num. of parameters

complexity ∝ C ⨉ K

Design Guidelines

51

Guideline 3:

Keep
the number
of channels
at bay

Guideline 4: Less computations with filter groups

Design guidelines 25

split 
channels

filter  
groups

put 
back

M filters G groups of M/G filters

consider 
instead

complexity ∝(C ⨉ K) / G

Design Guidelines

52

Guideline 4:

Less
computations
with filter
groups

Did we see this before?

AlexNet

53A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS
2012.

Design Guidelines

54

Guideline 4:

Less
computations
with filter
groups

Guideline 4: Less computations with filter groups

Design guidelines

 Groups = filters, seen as a matrix, have a “block” structure

26

 ⨉ =

xFy

 ⨉ =

xFy

0 0

0

00

0

complexity: C ⨉ K

C ⨉ K

complexity: C ⨉ K / G

Full filters Group-sparse filters

Groups = filters, seen as a matrix, have a “block” structure

Design Guidelines

55

Guideline 5:

Low-rank
decompositions

Guideline 5: Low-rank decompositions

Design guidelines

 Make sure to mix the information

27

filter bank  
3 ⨉ 3 ⨉ C ⨉ K

vertical 
1 ⨉ 3 ⨉ C ⨉ K

horizontal 
3 ⨉ 1 ⨉ K ⨉ K

vertical 
1 ⨉ 3 ⨉ K ⨉ K

groups  
3 ⨉ 3 ⨉ C/G ⨉ K/G

“network in network”  
1 ⨉ 1 ⨉ K ⨉ K

decompose  
spatially

decompose  
channels

✱ ✱

✱

Make sure to mix the information

Design Guidelines

56

Guideline 6:

Dilated
Convolutions

Exponential expansion of the receptive field without loss of
resolution

a 0 b 0 c

0 0 0 0 0

d 0 e 0 f

0 0 0 0 0

g 0 h 0 i

=

3x3
5x5

7x7

25 coefficients
9 degrees of freedom

49 coefficients
18 degrees of freedom

Convolutional Neural Network Demo
• ConvNetJS demo: training on CIFAR-10

• http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

57

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

CNN Architectures

58

ImageNet Classification Challenge

59
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

AlexNet

Justin Johnson February 2, 2022

AlexNet

Lecture 8 - 50

0

5000

10000

15000

20000

25000

30000

35000

40000

con
v1

con
v2

con
v3

con
v4

con
v5 fc6 fc7 fc8

Params (K)

0

50

100

150

200

250

con
v1

con
v2

con
v3

con
v4

con
v5 fc6 fc7 fc8

MFLOP

0

100

200

300

400

500

600

700

800

900

con
v1

con
v2

con
v3

con
v4

con
v5 fc6 fc7 fc8

Memory (KB)

Most of the memory
usage is in the early
convolution layers

Nearly all parameters are in
the fully-connected layers

Most floating-point
ops occur in the
convolution layers

Most of the memory
usage is in the early
convolution layers

Nearly all parameters
are in the fully-
connected layers

Most floating-point ops
occur in the convolution
layers

ImageNet Classification Challenge

62
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

ZFNet: A Bigger AlexNet

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512
More trial and error

63Justin Johnson February 2, 2022

ZFNet: A Bigger AlexNet

Lecture 8 - 53

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512
More trial and error =(

ImageNet top 5 error: 16.4% -> 11.7%

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

ImageNet Classification Challenge

64
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

65

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image
(only forward! ~*2 for bwd)
TOTAL params: 138M parameters VGG-16 Net

Simonyan and Zissermann, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Network has 5 convolutional stages:
Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool
Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

66

Justin Johnson February 2, 2022

VGG: Deeper Networks, Regular Design

Lecture 8 - 56

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19
Simonyan and Zissermann, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015

VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

AlexNet VGG16 VGG19

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Network has 5 convolutional stages:
Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool
Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

67

Justin Johnson February 2, 2022

VGG: Deeper Networks, Regular Design

Lecture 8 - 56

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19
Simonyan and Zissermann, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015

VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

AlexNet VGG16 VGG19

VGG: Deeper Networks, Regular Design
Two 3x3 conv has same
receptive field as a single 5x5
conv, but has fewer parameters
and takes less computation!

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Network has 5 convolutional stages:
Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool
Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

68

Justin Johnson February 2, 2022

VGG: Deeper Networks, Regular Design

Lecture 8 - 56

3x3 conv, 128

Pool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

Pool

3x3 conv, 256

3x3 conv, 256

Pool

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

Pool

FC 4096

FC 1000

Softmax

FC 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

AlexNet VGG16 VGG19
Simonyan and Zissermann, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, ICLR 2015

VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

AlexNet VGG16 VGG19

VGG: Deeper Networks, Regular Design
Conv layers at each spatial
resolution take the same
amount of computation!

ImageNet Classification Challenge

69
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

Many innovations for efficiency: reduce parameter count, memory usage, and
computation

GoogLeNet

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 70

Stem network at the start aggressively downsamples input (Recall in VGG-16:
Most of the compute was at the start)

GoogLeNet

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 71

Inception module
Local unit with parallel branches
Local structure repeated many times
throughout the network
Uses 1x1 “Bottleneck” layers to reduce
channel dimension before expensive conv

GoogLeNet

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 72

Auxiliary Classifiers
Training using loss at the end of the network didn’t work well: Network is too
deep, gradients don’t propagate cleanly

As a hack, attach “auxiliary classifiers” at several intermediate points in the
network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to
use this trick

GoogLeNet

Szegedy et al, “Going deeper with convolutions”, CVPR 2015 73

ImageNet Classification Challenge

74
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

Justin Johnson February 2, 2022

Residual Networks

Lecture 8 - 85

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

A residual network is a stack of
many residual blocks

Regular design, like VGG: each
residual block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

75

Residual Net (ResNet)

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

A residual network is a stack of many
residual blocks

Regular design, like VGG: each residual
block has two 3x3 conv

Network is divided into stages: the
first block of each stage halves the
resolution (with stride-2 conv) and
doubles the number of channels

76

Residual Net (ResNet)Deep	Residual	Learning

• Plain	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

any	small
subnet

0

X(0)

weight	layer

weight	layer

relu

relu

X 0 is	any	desired	mapping,

hope	the	small	subnet	fit	X(0)

Deep	Residual	Learning

• Residual net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

X 0 is	any	desired	mapping,

hope	the	small	subnet	fit	X(0)
hope the	small	subnet	fit	Y(0)

let	X 0 = Y 0 + 0
weight	layer

weight	layer

relu

relu

0

X 0 = Y 0 + 0

identity
0

Y(0)

Residual NetPlain Net

Any two
stacked layers

He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016

Fixed identity // learned residual

Residual learning 33

✱ ReLU ✱
xn+3xn+1xn xn+2

ReLU
xn+4

Σ
xn+5

identity residual

ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU

K. He, X. Zhang, S.
Ren, and J. Sun.
Deep residual
learning for image
recognition. In Proc.
CVPR, 2016.

Residual Learning
Fixed identity
// learned residual

77

Fixed identity // learned residual

Residual learning 33

✱ ReLU ✱
xn+3xn+1xn xn+2

ReLU
xn+4

Σ
xn+5

identity residual

ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU Σ ✱ ReLU ✱ ReLU

K. He, X. Zhang, S.
Ren, and J. Sun.
Deep residual
learning for image
recognition. In Proc.
CVPR, 2016.

K. He, X. Zhang, S. Ren, and J. Sun.
Deep residual learning for
image recognition. In CVPR 2016.

Residual Learning

• “Overly deep” plain nets have higher training error

• A general phenomenon, observed in many datasets

• This is optimization issue, deeper models are harder to optimize

78

Simply	stacking	layers?

0 1 2 3 4 5 60

5

10

20

iter. (1e4)

er
ro

r (
%

)

plain-20
plain-32
plain-44
plain-56

CIFAR-10

20-layer
32-layer
44-layer
56-layer

0 10 20 30 40 50
20

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

ImageNet-1000

34-layer

18-layer

• “Overly	deep”	plain	nets	have	higher	training	error
• A	general	phenomenon,	observed	in	many	datasets

solid:	test/val
dashed:	train

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

56-layer
44-layer

32-layer

20-layer
34-layer

18-layer
solid: test/val
dashed: train

Residual Learning
• Richer solution space

• A deeper model should not have higher
training error

• A solution by construction:
− original layers: copied from a
− learned shallower model
− extra layers: set as identity
− at least the same training error

79

7x7	conv,	64,	/2

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	128,	/2

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	256,	/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	512,	/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

fc	1000

a	shallower
model

(18	layers)

a	deeper
counterpart
(34	layers)

7x7	conv,	64,	/2

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	64

3x3	conv,	128,	/2

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	128

3x3	conv,	256,	/2

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	256

3x3	conv,	512,	/2

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

3x3	conv,	512

fc	1000

“extra”	
layers

• Richer	solution	space

• A	deeper	model	should	not	have	higher	
training	error

• A	solution	by	construction:
• original	layers:	copied	from	a	

learned	shallower	model
• extra	layers:	set	as	identity
• at	least	the	same	training	error

• Optimization	difficulties:	solvers	cannot	
find	the	solution	when	going	deeper…

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

a shallower
model

(18 layers)

a deeper
counterpart
(34 layers)

"extra"
layers

Residual Learning

80

• The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and
with (right) residual connections.

Hao Li et al., "Visualizing the Loss Landscape of Neural Nets". ICLR 2018

ImageNet Classification Challenge

81
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

Comparing Complexity

82

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Comparing Complexity

83

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

Inception-v4: Resnet + Inception!

Comparing Complexity

84

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

VGG: Highest
memory, most
operations

Comparing Complexity

85

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

GoogLeNet:
Very efficient!

Comparing Complexity

86

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

AlexNet: Low
compute, lots of
parameters

Comparing Complexity

87

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

ResNet: Simple design,
moderate efficiency,
high accuracy

ImageNet Classification Challenge

88
Justin Johnson February 2, 2022

ImageNet Classification Challenge

Lecture 8 - 77

28.2
25.8

16.4

11.7
7.3 6.7

3.6 3 2.3
5.1

0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Er
ro

r R
at

e

Shallow

8 layers 8 layers

19
layers

22
layers

152
layers

152
layers

152
layers

Lin et al Sanchez &
Perronnin

Krizhevsky et al
(AlexNet)

Zeiler &
Fergus

Simonyan &
Zisserman (VGG)

Szegedy et al
(GoogLeNet)

He et al
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

Today:
More recent CNN
architectures

89

Post-ResNet Architectures

ResNet made it possible to
increase accuracy with
larger, deeper models

Many followup
architectures emphasize
efficiency: can we improve
accuracy while controlling
for model “complexity”?

Justin Johnson February 14, 2022

Post-ResNet Architectures

Lecture 11 - 10

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

69.758

73.314

76.13
77.374

78.312

64
66
68
70
72
74
76
78
80

ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

ImageNet Accuracy (Top1)
ResNet made it possible to
increase accuracy with
larger, deeper models

Many followup
architectures emphasize
efficiency: can we improve
accuracy while controlling
for model “complexity”?

Measures of Model Complexity
Parameters: How many learnable parameters does the model have?

Floating Point Operations (FLOPs): How many arithmetic operations does it take to
compute the forward pass of the model?

Watch out, lots of subtlety here:

- Many papers only count operations in conv layers (ignore ReLU, pooling, BatchNorm).

Most papers use “1 FLOP” = ”1 multiply and 1 addition” so dot product of two N-dim

vectors takes N FLOPs; some papers say MADD or MACC instead of FLOP

- Other sources (e.g. NVIDIA marketing material) count “1 multiply and one addition” = 2

FLOPs, so dot product of two N-dim vectors takes 2N FLOPs

Network Runtime: How long does a forward pass of the model take on real hardware?

90

Comparing Complexity

91

Justin Johnson February 2, 2022

Comparing Complexity

Lecture 8 - 101

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017Canziani et al, “An analysis of deep neural network models for practical applications”, 2017

92

Key ingredient:
Grouped / Separable convolution

Recall: Convolution Layer

93
Justin Johnson February 14, 2022

Recall: Convolution Layer

Lecture 11 - 14

W

H

Input: Cin x H x W Weights: Cout x Cin x K x K
K
K

Cout

W’

H’

Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Cin Cin
Cout

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Recall: Convolution Layer

94
Justin Johnson February 14, 2022

Recall: Convolution Layer

Lecture 11 - 15

W

H

Input: Cin x H x W Weights: Cout x Cin x K x K
K
K

Cout

W’

H’

Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Cin Cin
Cout

Each plane of the
output depends on the
full input and one filter

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Each plane of the
output depends on the
full input and one filter

Recall: Convolution Layer

95
Justin Johnson February 14, 2022

Recall: Convolution Layer

Lecture 11 - 16

W

H

Input: Cin x H x W Weights: Cout x Cin x K x K
K
K

Cout

W’

H’

Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Cin Cin
Cout

Each plane of the
output depends on the
full input and one filter

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Each plane of the
output depends on the
full input and one filter

Recall: Convolution Layer

96
Justin Johnson February 14, 2022

Recall: Convolution Layer

Lecture 11 - 17

W

H

Input: Cin x H x W Weights: Cout x Cin x K x K
K
K

Cout

W’

H’

Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Cin Cin
Cout

Each plane of the
output depends on the
full input and one filter

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Each plane of the
output depends on the
full input and one filter

Recall: Convolution Layer

97
Justin Johnson February 14, 2022

Recall: Convolution Layer

Lecture 11 - 18

W

H

Input: Cin x H x W Weights: Cout x Cin x K x K
K
K

Cout

W’

H’

Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Cin Cin
Cout

Each plane of the
output depends on the
full input and one filter

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Each plane of the
output depends on the
full input and one filter

Grouped Convolution

98
Justin Johnson February 14, 2022

Recall: Convolution Layer

Lecture 11 - 14

W

H

Input: Cin x H x W Weights: Cout x Cin x K x K
K
K

Cout

W’

H’

Output: Cout x H’ x W’

Each filter has the
same number of
channels as the input

Cin Cin
Cout

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Grouped Convolution

99
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 20

Cin
W

H

Input: Cin x H x W

Cout
W’

H’

Output: Cout x H’ x W’Weights: Cout x Cin x K x K
K
K

Cout

Cin

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G = 2

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=2

Input:Cin x H x W Weights: Cout x Cin x K x K Output: Cout x H’ x W’

Grouped Convolution

100
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 22

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G
groups; each group
looks at a subset of
input channels

Example:
G=2

Grouped Convolution

101
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 22

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Group Convolution

102
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 23

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=2

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Group Convolution

103
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 24

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=2

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Group Convolution

104
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 25

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=2

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Group Convolution

105
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 26

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=2

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Group Convolution

106
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 27

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=2

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Group Convolution

107
Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 28

Cin
W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
K

K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Group 1

Group 3

Example:
G = 4

Group 2

Group 4

Divide channels of input into G
groups with (Cin/G) channels each

Divide filters into G groups;
each group looks at a
subset of input channels

Each plane of the output
depends on one filter and a
subset of the input channels

Input:Cin x H x W Weights: Cout x (Cin /G) x K x K Output: Cout x H’ x W’

Divide channels of input into G
groups with (Cin/G) channels each

Example:
G=4

Each plane of the
output depends on one
filter and a subset of
the input channels

Divide filters into G
groups; each group
looks at a subset of
input channels

Special Case: Depthwise Convolution

108

Justin Johnson February 14, 2022

Special Case: Depthwise Convolution

Lecture 11 - 29

Cin
W

H

Input: Cin x H x W Weights: Cout x 1 x K x K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Number of groups equals
number of input channels

Group 1

Group 3

Group 2

Common to also set Cout = G

Output only mixes spatial
information from input;
channel information not mixed

Input:Cin x H x W Weights: Cout x 1 x K x K Output: Cout x H’ x W’

Output only mixes spatial
information from input;
channel information not
mixed

Number of groups equals
number of input channels

Common to also set Cout = G

Special Case: Depthwise Convolution

109

Justin Johnson February 14, 2022

Special Case: Depthwise Convolution

Lecture 11 - 30

Cin
W

H

Input: Cin x H x W Weights: Cout x 1 x K x K

Cout

Cout
W’

H’

Output: Cout x H’ x W’

Number of groups equals
number of input channels

Group 1

Group 3

Group 2

Can still have multiple filters per group
(e.g. Cout = 2Cin)

Output only mixes spatial
information from input;
channel information not mixed

Input:Cin x H x W Weights: Cout x 1 x K x K Output: Cout x H’ x W’

Output only mixes spatial
information from input;
channel information not
mixed

Number of groups equals
number of input channels

Can still have multiple filters
per group (e.g. Cout = 2Cin)

Grouped Convolution vs Standard Convolution

110

Grouped Convolution (G groups):
G parallel conv layers; each “sees”
Cin/G input channels and produces
Cout/G output channels

Input:Cin x H x W

Split to G x [(Cin / G) x H x W]
Weight:G x (Cout / G) x (Cin / G) x K x K
G parallel convolutions

Output: G x [(Cout / G) x H’ x W’]
Concat to Cout x H’ x W’

FLOPs: CoutCinK2HW/G

Standard Convolution (groups=1)

Input: Cin x H x W
Weight: Cout x Cin x K x K
Output: Cout x H’ x W’
FLOPs: CoutCinK2HW

All convolutional kernels touch
all Cin channels of the input

Using G groups reduces
FLOPs by a factor of G!

Improving ResNets

111Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017
Justin Johnson February 14, 2022

Improving ResNets: ResNeXt

Lecture 11 - 37

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs:
4HWC2

FLOPs:
9HWC2

FLOPs:
4HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual block

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

…

G parallel pathways

4HWCc

9HWc2

4HWCc

Total FLOPs:
(8Cc + 9c2)*HWGSame FLOPs when

9Gc2 + 8GCc – 17C2 = 0
Example: C=64, G=4, c=24; C=64, G=32, c=4Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017

“Bottleneck”
Residual block

Total FLOPs:
17HWC2

Improving ResNets: ResNeXt

112Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017
Justin Johnson February 14, 2022

Improving ResNets: ResNeXt

Lecture 11 - 37

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs:
4HWC2

FLOPs:
9HWC2

FLOPs:
4HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual block

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

…

G parallel pathways

4HWCc

9HWc2

4HWCc

Total FLOPs:
(8Cc + 9c2)*HWGSame FLOPs when

9Gc2 + 8GCc – 17C2 = 0
Example: C=64, G=4, c=24; C=64, G=32, c=4Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017

“Bottleneck”
Residual block

Total FLOPs:
17HWC2

Total FLOPs:
(8Cc + 9c2)*HWGSame FLOPs when

9Gc2 +8GCc–17C2 =0

Example: C=64, G=4, c=24; C=64, G=32, c=4

Squeeze-and-Excitation Networks (SENet)

113Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018
Justin Johnson February 14, 2022

Squeeze-and-Excitation Networks (SENet)

Lecture 11 - 42

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Global Avg Pooling

Fully-Connected

ReLU

Fully-Connected

Sigmoid

4C x H x W

4C x 1 x 1

C/4 x 1 x 1

C/4 x 1 x 1

4C x 1 x 1

4C x 1 x 1

Bottleneck ResNet block
FLOPs: 17HWC2

H=W=56, C=64: 218 MFLOP

Bottleneck ResNet block
with Squeeze + Excite
FLOPs: 8CHW + 2C2 + 17C/4
H=W=56, C=64: 1.6 MFLOP

Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018

4CHW

C2

C/4

C2

4C
4CHW

Adds global
context to each
ResNet block

Increases
overall FLOPs
by < 1%!

Bottleneck ResNet block
FLOPs: 17HWC2

H=W=56, C=64: 218 MFLOP

Adds global
context to each
ResNet block

Increases
overall FLOPs
by < 1%!

Bottleneck ResNet block
with Squeeze + Excite
FLOPs: 8CHW + 2C2 + 17C/4
H=W=56, C=64: 1.6 MFLOP

Squeeze-and-Excitation Networks (SENet)

114

Add SE to any architecture, enjoy 1-2% boost in accuracy

Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018
Justin Johnson February 14, 2022

Squeeze-and-Excitation Networks (SENet)

Lecture 11 - 43

72.98

75.2

76.83
77.58 77.89

78.82

74.78

76.71
77.62

78.43 78.9 79.3

70

72

74

76

78

80

VGG-16 ResNet-50 ResNet-101 ResNet-152 ResNeXt-50 ResNeXt-101

ImageNet Top-1 Accuracy

Original SENet

Add SE to any architecture, enjoy 1-2% boost in accuracy
Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018

Recall: Convolution Layer

115

Justin Johnson February 14, 2022

Tiny Neural Networks for Mobile Devices

Lecture 11 - 45

Instead of pushing for the largest
network with biggest accuracy,
consider tiny networks and
accuracy / complexity tradeoff

Model Complexity
(FLOPs, #params, runtime speed)

Accuracy

Compare families of models:

One family is better than another if it
moves the whole curve up and to the left

Model family
e.g. MobileNet

New model family
e.g. MobileNetV2

Instead of pushing for the largest
network with biggest accuracy,
consider tiny networks and
accuracy / complexity tradeoff

Compare families of models:

One family is better than another if it
moves the whole curve up and to the left

New model family
e.g. MobileNetV2

MobileNets: Tiny Networks (For Mobile Devices)

Justin Johnson February 14, 2022

MobileNets: Tiny Networks (For Mobile Devices)

Lecture 11 - 46

Batch Norm

ReLU

Conv(3x3, C->C)

Conv(3x3, C->C,
groups=C)

Batch Norm

ReLU

Conv(1x1, C->C)

Batch Norm

ReLU

9C2HW

9CHW

C2HW

Standard Convolution Block
Total cost: 9C2HW

Depthwise Separable Convolution
Total cost: (9C + C2)HW

“Depthwise Convolution”

“Pointwise Convolution”

Howard et al, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017
Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions”, CVPR 2017

Speedup = 9C2/(9C+C2)
= 9C/(9+C)
=> 9 (as C->inf)

116

Howard et al, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017
Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions”, CVPR 2017

Standard Convolution Block Depthwise Separable Convolution
Total cost: 9C2HW Total cost: (9C + C2)HW

Speedup = 9C2/(9C+C2)
= 9C/(9+C)
=> 9 (as C->inf)

MobileNetV2: Inverted Bottleneck, Linear Residual

Justin Johnson February 14, 2022

MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 51

Conv(3x3, tC->tC,
groups=tC)

Batch Norm

ReLU6

Conv(1x1, tC->C)

Batch Norm

ReLU6

Conv(1x1, C->tC)

Batch Norm

Conv(3x3, C->C)

Batch Norm

ReLU

Conv(1x1, C->4C)

Batch Norm

ReLU

Conv(1x1, 4C->C)

Batch Norm

ReLU

Re
sN

et
Bo

ttl
en

ec
k

Bl
oc

k

1x1 conv reduces
channels before 3x3
conv (4HWC2 FLOP)

3x3 conv uses fewer
channels than input
(9HWC2 FLOP)

1x1 conv expands
channels output
(4HWC2 FLOP)

Nonlinearity
outside residual

1x1 conv increases
channels before 3x3 conv

(inverted bottleneck)
(tHWC2 FLOP)

3x3 Depthwise conv with
more channels than input

(9tHWC FLOP)

1x1 conv reduces
channels before output

(tHWC2 FLOP)

No nonlinearity after last
conv! (linear residual)

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

M
obileNetV2 Block

Total FLOP: 17HWC2 Total FLOP: 2tHWC2 + 9tHWC

117Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

MobileNetV2: Inverted Bottleneck, Linear Residual

Justin Johnson February 14, 2022

MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 51

Conv(3x3, tC->tC,
groups=tC)

Batch Norm

ReLU6

Conv(1x1, tC->C)

Batch Norm

ReLU6

Conv(1x1, C->tC)

Batch Norm

Conv(3x3, C->C)

Batch Norm

ReLU

Conv(1x1, C->4C)

Batch Norm

ReLU

Conv(1x1, 4C->C)

Batch Norm

ReLU

Re
sN

et
Bo

ttl
en

ec
k

Bl
oc

k

1x1 conv reduces
channels before 3x3
conv (4HWC2 FLOP)

3x3 conv uses fewer
channels than input
(9HWC2 FLOP)

1x1 conv expands
channels output
(4HWC2 FLOP)

Nonlinearity
outside residual

1x1 conv increases
channels before 3x3 conv

(inverted bottleneck)
(tHWC2 FLOP)

3x3 Depthwise conv with
more channels than input

(9tHWC FLOP)

1x1 conv reduces
channels before output

(tHWC2 FLOP)

No nonlinearity after last
conv! (linear residual)

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

M
obileNetV2 Block

Total FLOP: 17HWC2 Total FLOP: 2tHWC2 + 9tHWC

118Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018 Justin Johnson February 14, 2022

MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 52

Conv(3x3, tC->tC,
groups=tC)

Batch Norm

ReLU6

Conv(1x1, tC->C)

Batch Norm

ReLU6

Conv(1x1, C->tC)

Batch Norm1x1 conv increases
channels before 3x3 conv

(inverted bottleneck)
(tHWC2 FLOP)

3x3 Depthwise conv with
more channels than input

(9tHWC FLOP)

1x1 conv reduces
channels before output

(tHWC2 FLOP)

No nonlinearity after last
conv! (linear residual)

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

M
obileNetV2 Block

Total FLOP: 2tHWC2 + 9tHWC

!"#$6 & = (
0 *+ & ≤ 0
& *+ 0 < & < 6
6 *+ & ≥ 6

Keeps activations in reasonable range
when running inference in low precision

Keeps activations in reasonable range when
running inference in low precision

ShuffleNet

119Zhang et al, "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices", CVPR 2018 Justin Johnson February 14, 2022

ShuffleNet

Lecture 11 - 59

Channel Shuffle

Conv(3x3, C->C, groups=C)

Batch Norm

Conv(1x1, C->C, groups=G)

Batch Norm

ReLU

Conv(1x1, C->C, groups=G)

Batch Norm

1x1 grouped conv

ReLU

Zhang et al, "ShuffleNet: An Extremely Efficient Convolutional
Neural Network for Mobile Devices", CVPR 2018

3x3 depthwise conv,
No nonlinearity here!

1x1 grouped conv

30
35
40
45
50
55
60
65
70
75

0 100 200 300 400 500 600
GFLOPs

ImageNet Top1 Accuracy
ResNet ResNeXt MobileNet ShuffleNet

CNN Architectures Summary
• Early work (AlexNet->VGG->ResNet):bigger networks work better

• New focus on efficiency: Improve accuracy, control for network complexity

• Grouped and Depthwise Convolution appear in many modern architectures

• Squeeze-and-Excite adds accuracy boost to just about any architecture while
only adding a tiny amount of FLOPs and runtime

• Tiny networks for mobile devices (MobileNet, ShuffleNet)

• Neural Architecture Search(NAS) promised to automate architecture design

• More recent work has moved towards careful improvements to ResNet-like
architectures

• ResNet and ResNeXt are still surprisingly strong and popular architectures!

120

121

Transfer Learning with
Convolutional Neural Networks

Beyond CNNs
• Do features extracted from the CNN generalize other tasks and

datasets?
• Donahue et al. (2013), Chatfield et al. (2014), Razavian et al. (2014),

Yosinski et al. (2014), etc.

• CNN activations as deep features

• Finetuning CNNs

122

CNN activations as deep features
• CNNs discover effective representations. Why not to use them?

123Slide credit: Jason Yosinski

CNN activations as deep features
• CNNs discover effective representations. Why not to use them?

124

Layer 1 Filters (Gabor
and color blobs)

Slide credit: Jason Yosinski

CNN activations as deep features
• CNNs discover effective representations. Why not to use them?

125

Layer 1 Filters (Gabor
and color blobs)

Zeiler et al., 2014

Layer 2 Layer 5

Slide credit: Jason Yosinski

CNN activations as deep features
• CNNs discover effective representations. Why not to use them?

126

Zeiler et al., 2014

Layer 2 Layer 5Layer 1 Filters (Gabor
and color blobs) Last Layer

Nguyen et al., 2014

Slide credit: Jason Yosinski

CNNs as deep features
• CNNs discover effective representations. Why not to use them?

127

t-SNE feature visualizations on the ILSVRC-2012 DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012 validation set. (a) LLC , (b) GIST, and features
derived from our CNN: (c) DeCAF1, the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed in color).

layer types and to execute pre-trained networks efficiently
without being restricted to a GPU (which in many cases
may hinder the deployment of trained models). Specif-
ically, we adopted open-source Python packages such as
numpy/scipy for efficient numerical computation, with
parts of the computation-heavy code implemented in C and
linked to Python. In terms of computation speed, our model
is able to process about 40 images per second with an 8-
core commodity machine when the CNN model is executed
in a minibatch mode.

Our implementation, decaf, will be publicly available1.
In addition, we will release the network parameters used in
our experiments to allow for out-of-the-box feature extrac-
tion without the need to re-train the large network2. This
also aligns with the philosophy of supervised transfer: one
may view the trained model as an analog to the prior knowl-
edge a human obtains from previous visual experiences,
which helps in learning new tasks more efficiently.

As the underlying architecture for our feature we adopt the
deep convolutional neural network architecture proposed
by Krizhevsky et al. (2012), which won the ImageNet
Large Scale Visual Recognition Challenge 2012 (Berg
et al., 2012) with a top-1 validation error rate of 40.7%.
3 We chose this model due to its performance on a difficult
1000-way classification task, hypothesizing that the activa-
tions of the neurons in its late hidden layers might serve
as very strong features for a variety of object recognition
tasks. Its inputs are the mean-centered raw RGB pixel in-

1http://decaf.berkeleyvision.org/
2We note that although our CPU implementation allows one

to also train networks, that training of large networks such as the
ones for ImageNet may still be time-consuming on CPUs, and we
rely on our own implementation of the network by extending the
cuda-convnet GPU framework provided by Alex Krizhevsky
to train such models.

3The model entered into the competition actually achieved a
top-1 validation error rate of 36.7% by averaging the predictions
of 7 structurally identical models that were initialized and trained
independently. We trained only a single instance of the model;
hence we refer to the single model error rate of 40.7%.

tensity values of a 224⇥ 224 image. These values are for-
ward propagated through 5 convolutional layers (with pool-
ing and ReLU non-linearities applied along the way) and 3
fully-connected layers to determine its final neuron activ-
ities: a distribution over the task’s 1000 object categories.
Our instance of the model attains an error rate of 42.9% on
the ILSVRC-2012 validation set – 2.2% shy of the 40.7%
achieved by (Krizhevsky et al., 2012).

We refer to Krizhevsky et al. (2012) for a detailed discus-
sion of the architecture and training protocol, which we
closely followed with the exception of two small differ-
ences in the input data. First, we ignore the image’s orig-
inal aspect ratio and warp it to 256 ⇥ 256, rather than re-
sizing and cropping to preserve the proportions. Secondly,
we did not perform the data augmentation trick of adding
random multiples of the principle components of the RGB
pixel values throughout the dataset, proposed as a way of
capturing invariance to changes in illumination and color4.

3.2. Feature Generalization and Visualization

We visualized the model features to gain insight into the
semantic capacity of DeCAF and other features that have
been typically employed in computer vision. In particular,
we compare the features described in Section 3 with GIST
features (Oliva & Torralba, 2001) and LLC features (Wang
et al., 2010).

We visualize features in the following way: we run the t-
SNE algorithm (van der Maaten & Hinton, 2008) to find a
2-dimensional embedding of the high-dimensional feature
space, and plot them as points colored depending on their
semantic category in a particular hierarchy. We did this on
the validation set of ILSVRC-2012 to avoid overfitting ef-
fects (as the deep CNN used in this paper was trained only
on the training set), and also use an independent dataset,
SUN-397 (Xiao et al., 2010), to evaluate how dataset bias

4According to the authors, this scheme reduced their models’
test set error by over 1%, likely explaining much of our network’s
performance discrepancy.

LLC GIST Conv-1 activations Conv-6 activations

Donahue et al. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, 2014

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition

(a) LLC (b) GIST (c) DeCAF1 (d) DeCAF6

Figure 1. This figure shows several t-SNE feature visualizations on the ILSVRC-2012 validation set. (a) LLC , (b) GIST, and features
derived from our CNN: (c) DeCAF1, the first pooling layer, and (d) DeCAF6, the second to last hidden layer (best viewed in color).

layer types and to execute pre-trained networks efficiently
without being restricted to a GPU (which in many cases
may hinder the deployment of trained models). Specif-
ically, we adopted open-source Python packages such as
numpy/scipy for efficient numerical computation, with
parts of the computation-heavy code implemented in C and
linked to Python. In terms of computation speed, our model
is able to process about 40 images per second with an 8-
core commodity machine when the CNN model is executed
in a minibatch mode.

Our implementation, decaf, will be publicly available1.
In addition, we will release the network parameters used in
our experiments to allow for out-of-the-box feature extrac-
tion without the need to re-train the large network2. This
also aligns with the philosophy of supervised transfer: one
may view the trained model as an analog to the prior knowl-
edge a human obtains from previous visual experiences,
which helps in learning new tasks more efficiently.

As the underlying architecture for our feature we adopt the
deep convolutional neural network architecture proposed
by Krizhevsky et al. (2012), which won the ImageNet
Large Scale Visual Recognition Challenge 2012 (Berg
et al., 2012) with a top-1 validation error rate of 40.7%.
3 We chose this model due to its performance on a difficult
1000-way classification task, hypothesizing that the activa-
tions of the neurons in its late hidden layers might serve
as very strong features for a variety of object recognition
tasks. Its inputs are the mean-centered raw RGB pixel in-

1http://decaf.berkeleyvision.org/
2We note that although our CPU implementation allows one

to also train networks, that training of large networks such as the
ones for ImageNet may still be time-consuming on CPUs, and we
rely on our own implementation of the network by extending the
cuda-convnet GPU framework provided by Alex Krizhevsky
to train such models.

3The model entered into the competition actually achieved a
top-1 validation error rate of 36.7% by averaging the predictions
of 7 structurally identical models that were initialized and trained
independently. We trained only a single instance of the model;
hence we refer to the single model error rate of 40.7%.

tensity values of a 224⇥ 224 image. These values are for-
ward propagated through 5 convolutional layers (with pool-
ing and ReLU non-linearities applied along the way) and 3
fully-connected layers to determine its final neuron activ-
ities: a distribution over the task’s 1000 object categories.
Our instance of the model attains an error rate of 42.9% on
the ILSVRC-2012 validation set – 2.2% shy of the 40.7%
achieved by (Krizhevsky et al., 2012).

We refer to Krizhevsky et al. (2012) for a detailed discus-
sion of the architecture and training protocol, which we
closely followed with the exception of two small differ-
ences in the input data. First, we ignore the image’s orig-
inal aspect ratio and warp it to 256 ⇥ 256, rather than re-
sizing and cropping to preserve the proportions. Secondly,
we did not perform the data augmentation trick of adding
random multiples of the principle components of the RGB
pixel values throughout the dataset, proposed as a way of
capturing invariance to changes in illumination and color4.

3.2. Feature Generalization and Visualization

We visualized the model features to gain insight into the
semantic capacity of DeCAF and other features that have
been typically employed in computer vision. In particular,
we compare the features described in Section 3 with GIST
features (Oliva & Torralba, 2001) and LLC features (Wang
et al., 2010).

We visualize features in the following way: we run the t-
SNE algorithm (van der Maaten & Hinton, 2008) to find a
2-dimensional embedding of the high-dimensional feature
space, and plot them as points colored depending on their
semantic category in a particular hierarchy. We did this on
the validation set of ILSVRC-2012 to avoid overfitting ef-
fects (as the deep CNN used in this paper was trained only
on the training set), and also use an independent dataset,
SUN-397 (Xiao et al., 2010), to evaluate how dataset bias

4According to the authors, this scheme reduced their models’
test set error by over 1%, likely explaining much of our network’s
performance discrepancy.

Transfer Learning with CNNs
• A CNN trained on a (large enough) dataset generalizes to other visual

tasks

128

Stability: Transfer learning
• a CNN trained on a (large enough) dataset generalizes

to other visual tasks:

Figure 4. t-SNE map of 20, 000 Flickr test images based on features extracted from the last layer of an AlexNet trained with K=1, 000.
A full-resolution map is presented in the supplemental material. The inset shows a cluster of sports.

ing one-versus-all logistic loss: using a dictionary of K =
1, 000 words, such a model achieves a precision@10 of
16.43 (compared to 17.98 for multiclass logistic loss). We
surmise this is due to the problems one-versus-all logistic
loss has in dealing with class imbalance: because the num-
ber of negative examples is much higher than the number
of positive examples (for the most frequent class, more than
95.0% of the data is still negative), the rebalancing weight
in front of the positive term is very high, which leads to
spikes in the gradient magnitude that hamper SGD training.
We tried various reweighting schemes to counter this effect,
but nevertheless, multiclass logistic loss consistently out-
performed one-versus-all logistic loss in our experiments.

To investigate the performance of our models as a func-
tion of the amount of training data, we also performed ex-
periments in which we varied the Flickr training set size.
The lefthand side of Figure 2 presents the resulting learn-
ing curves for the AlexNet architecture with K = 1, 000.
The figure shows that there is a clear benefit of training on
larger datasets: the word prediction performance of the net-
works increases substantially when the training set is in-
creased beyond 1 million images (which is roughly the size
of Imagenet); for our networks, it only levels out after ⇠50
million images.

To illustrate the kinds of words for which our models
learn good representations, we show a high-scoring test im-
age for six different words in Figure 3. To obtain more in-
sight into the features learned by the models, we applied
t-SNE [51, 52] to features extracted from the penultimate
layer of an AlexNet trained on 1, 000 words. This produces
maps in which images with similar visual features are close
together; Figure 4 shows such a map of 20, 000 Flickr test
images. The inset shows a “sports” cluster that was formed
by the visual features; interestingly, it contains visually very
dissimilar sports ranging from baseball to field hockey, ice
hockey and rollerskating. Whilst all sports are grouped to-
gether, the individual sports are still clearly separable: the
model can capture this multi-level structure because the im-
ages sometimes occur with the word “sports” and some-

times with the name of the individual sport itself. A model
trained on classification datasets such as Pascal VOC is un-
likely to learn similar structure unless an explicit target tax-
onomy is defined (as in the Imagenet dataset). Our results
suggest that such taxonomies can be learned from weakly
labeled data instead.

4.2. Experiment 2: Transfer Learning
Experimental setup. To assess the quality of the visual fea-
tures learned by our models, we performed transfer-learning
experiments on seven test datasets comprising a range of
computer-vision tasks: (1) the MIT Indoor dataset [38],
(2) the MIT SUN dataset [55], (3) the Stanford 40 Actions
dataset [57], (4) the Oxford Flowers dataset [33], (5) the
Sports dataset [17], (6) the ImageNet ILSVRC 2014 dataset
[42], and (7) the Pascal VOC 2007 dataset [11]. We applied
the same preprocessing as before on all datasets: we resized
the images to 224⇥224 pixels, subtracted their mean pixel
value, and divided by their standard deviation.

Following [40], we compute the output of the penulti-
mate layer for an input image and use this output as a fea-
ture representation for the corresponding image. We eval-
uate features obtained from Flickr-trained networks as well
as Imagenet-trained networks, and we also perform exper-
iments where we combine both features by concatenating
them. We train L2-regularized logistic regressors on the
features to predict the classes corresponding to each of the
datasets. For all datasets except the Imagenet and Pascal
VOC datasets, we report classification accuracies on a sep-
arate, held-out test set. For Imagenet, we report classifica-
tion errors on the validation set. For Pascal VOC, we report
average precisions on the test set as is customary for that
dataset. As before, we use convolutional networks trained
on the Imagenet dataset as baseline. Additional details on
the setup of the transfer-learning experiments are presented
in the supplemental material.
Results. Table 3 presents the classification accuracies—
averaged over 10 runs—of logistic regressors on six datasets
for both fully supervised and weakly supervised feature-

Figure 6. t-SNE map of 10, 000 words based on their embeddings as learned by a weakly supervised convolutional network trained on the
Flickr dataset. Note that all the semantic information represented in the word embeddings is the result of observing that these words are
assigned to images with similar visual content (the model did not observe word co-occurrences during training). A full-resolution version
of the map is provided in the supplemental material.

K Query ! Response k = 1 k = 5 k = 10

English ! French 33.01 50.16 55.34
10, 000 French ! English 23.95 50.16 56.63

English ! French 12.30 22.24 26.50
100, 000 French ! English 10.11 18.78 23.44

Table 6. Precision@k of identifying the French counterpart of an
English word (and vice-versa) for two dictionary sizes, at three
different levels of k. Chance level (with k = 1) is 0.0032 for
K=10, 000 words and 0.00033 for K=100, 000 words. Higher
values are better.

English French English French
oas oea uzbekistan ouzbekistan

infrared infrarouge mushroom champignons
tomatoes tomates filmed serveur
bookshop librairie mauritania mauritanie

server apocalyptique pencils crayons

Table 7. Ten highest-scoring pairs of words, as measured by the
cosine similarity between the corresponding word embeddings.
Correct pairs of words are colored green, and incorrect pairs are
colored red according to the dictionary. The word “oas” is an ab-
breviation for the Organization of American States.

most similar word pairs, measured by the cosine similar-
ity between their word embeddings. These word pairs sug-
gest that models trained on Flickr data find correspondences
between words that have clear visual representations, such
as “tomatoes” or “bookshop”. Interestingly, the identified
English-French matches appear to span a broad set of do-
mains, including objects such as “pencils”, locations such
as “mauritania”, and concepts such as “infrared”.

5. Discussion and Future Work
This study demonstrates that convolutional networks can

be trained from scratch without any manual annotation and
shows that good features can be learned from weakly super-
vised data. Indeed, our models learn features that are nearly
on par with those learned from an image collection with
over a million manually defined labels, and achieve good
results on a variety of datasets. (Obtaining state-of-the-art
results requires averaging predictions over many crops and
models, which is outside the scope of this paper.) More-
over, our results show that weakly supervised models can
learn semantic structure from image-word co-occurrences.

In addition, our results lead to three main recommen-
dations for future work in learning models from weakly
supervised data. First, our results suggest that the best-
performing models on the Imagenet dataset are not opti-
mal for weakly supervised learning. We surmise that cur-
rent models have insufficient capacity for learning from the
complex Flickr dataset. Second, multi-class logistic loss
performs remarkably well in our experiments even though
it is not tailored to multi-label settings. Presumably, our
approximate multiclass loss works very well on large dic-
tionaries because it shares properties with losses known to
work well in that setting [31, 50, 53]. Third, it is essential
to sample data uniformly per class to learn good visual fea-
tures [2]. Uniform sampling per class ensures that frequent
classes in the training data do not dominate the learned fea-
tures, which makes them better suited for transfer learning.

In future work, we aim to combine our weakly su-
pervised vision models with a language model such as
word2vec [31] to perform, for instance, visual question an-
swering [3, 58]. We also intend to further investigate the
ability of our models to learn visual hierarchies, such as the
“sports” example in Section 4.2.

“Learning visual features from Large Weakly supervised Data”, [Joulin et al, ’15]17

A. Joulin, L.J.P. van der Maaten, A. Jabri, and N. Vasilache Learning visual features from Large Weakly supervised Data.
ECCV 2016 Slide credit: Joan Bruna

Transfer Learning with CNNs
• Keep layers 1-7 of our ImageNet-trained model fixed

• Train a new softmax classifier on top using the training images of the new dataset.

129

1. Train on
Imagenet

2. Small dataset:
feature extractor

Freeze
these

Train
this

3. Medium dataset:
finetuning

more data = retrain more of the
network (or all of it)

Freeze these

Train this

tip: use only ~1/10th of the original
learning rate in finetuning top layer,
and ~1/100th on intermediate layers

How transferable are features in CNN
networks?
• Divide ImageNet into man-made objects A (449 classes) and natural objects B

(551 classes)
• The transferability of features decreases as the distance between the base task

and target task increases

130

cuhk

Dissimilar datasets

Divide ImageNet into man-made objects A (449 classes) and natural objects B
(551 classes)

The transferability of features decreases as the distance between the base task
and target task increases

Xiaogang Wang (linux) Network Structures February 22, 2017 9 / 51

Slide credit: Xiaogan Wang

131

How transferable are features in CNN
networks?
• An open research problem

A. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, S. Savarese. Taskonomy: Disentangling Task Transfer Learning. CVPR
2018.

Slide credit: Amir Zamir

Semantic Segmentation

132

Label individual pixels

Semantic image segmentation 36

c1 c2 c3 c4 c5 f6 f7 f8

input = image output = image
convolutional fully-connected

Semantic Image Segmentation
• Label

individual
pixels

133

Convolutional Layers
• Local receptive field

134

Local receptive field

Convolutional layers 37

input  
image

features

receptive field

feature component

Fully Connected Layers
• Global receptive field

135

Global receptive field

Fully connected layers 38

fully-connected

class predictions

fully-connected

fully-connected

Convolutional vs. Fully Connected
• Comparing

the receptive
fields

136

Comparing the receptive fields

Convolutional vs Fully Connected 39

Responses are spatially selective,
can be used to localize things.

Responses are global, do not
characterize well position

Which one is  
more useful for  

pixel level labelling?

Downsampling filters Upsampling filters

Fully-connected layer = large filter 40

F(k)

W ⨉ H ⨉ C

K

w(k)
W ⨉ H ⨉ C ⨉ K

1 ⨉ 1 ⨉ K

✱
=

Fully-Connected Layer = Large Filter

137

Fully-Convolutional Neural Networks

138

Fully-Convolutional Neural Networks

• Dense evaluation
− Apply the whole network convolutional
− Estimates a vector of class probabilities at

each pixel

• Downsampling
− In practice most network downsample the

data fast
− The output is very low resolution

(e.g. 1/32 of original)
139

Fully-convolutional neural networks

 Dense evaluation

▶ Apply the whole network
convolutional

▶ Estimates a vector of class
probabilities at each pixel

 Downsampling

▶ In practice most network
downsample the data fast

▶ The output is very low resolution
(e.g. 1/32 of original)

42

Upsampling The Resolution
• Interpolating filter

140

Interpolating filter

Upsampling the resolution

 Upsampling filters allow to increase the resolution of the output

 Very useful to get full-resolution segmentation results

43

Σ Σ

Downsampling filters Upsampling filters

Upsampling filters allow to increase the resolution of the output

Very useful to get full-resolution segmentation results

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Deconvolution Layer
• Or convolution

transpose

141

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Deconvolution Layer
• Or convolution

transpose

142

Or convolution transpose

Deconvolution layer 44

Convolution

✱

F

As matrix multiplication

Banded matrix equivalent to F

Transposed

Transposed matrix

Convolution transpose

✱T

F

Deconvolution Layer
• Or convolution

transpose

143

From image to image

U-architectures 45

input image
segmentation mask

(output image)

net

net

net

net

net

skip  
layers

U-Architectures
• Image to image

144

From image to image

U-architectures 45

input image
segmentation mask

(output image)

net

net

net

net

net

skip  
layers

U-Architectures
• Image to image

145

From image to image

U-architectures 45

input image
segmentation mask

(output image)

net

net

net

net

net

skip  
layers

U-Architectures
• Image to image

146

U-Architectures
• Several variants: FCN, U-arch, deconvolution, ...

147

Several variants: FCN, U-arch, deconvolution, …

U-architectures 46

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015  
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015  

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

image pool4 pool5pool1 pool2 pool3

32x upsampled

prediction (FCN-32s)
2x upsampled

prediction

16x upsampled

prediction (FCN-16s)

8x upsampled

prediction (FCN-8s)

pool4

prediction

2x upsampled

prediction

pool3

prediction

P P

Several variants: FCN, U-arch, deconvolution, …

U-architectures 46

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015  
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015  

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

image pool4 pool5pool1 pool2 pool3

32x upsampled
prediction (FCN-32s)

2x upsampled
prediction

16x upsampled
prediction (FCN-16s)

8x upsampled
prediction (FCN-8s)

pool4
prediction

2x upsampled
prediction

pool3
prediction

P P

Several variants: FCN, U-arch, deconvolution, …

U-architectures 46

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In Proc. CVPR, 2015  
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015  

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1

image pool4 pool5pool1 pool2 pool3

32x upsampled
prediction (FCN-32s)

2x upsampled
prediction

16x upsampled
prediction (FCN-16s)

8x upsampled
prediction (FCN-8s)

pool4
prediction

2x upsampled
prediction

pool3
prediction

P P

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In CVPR 2015
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In ICCV 2015
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI 2015

Object Detection

148

ResNet’s object	detection	result	on	COCO
*the	original	image	is	from	the	COCO	dataset

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	arXiv	2015.
Shaoqing	Ren,	Kaiming	He,	Ross	Girshick,	&	Jian	Sun.	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	Region	Proposal	Networks”.	NIPS	2015.

MS COCO
Dataset
Images

149

tv
tv

vase

chair chair
chair

person

person

vase
vase

vase
chair

table

plant

clock

refridgerator

microwave

MS COCO
Annotations

• 80 different
categories

150

MS COCO
Dataset Images

+
Annotations

bed

teddy bear

teddy bear

teddy bear

151

COCO Object Detection Average Precision (%)

• Area under a detector’s precision-recall curve, averaged over…
−Object categories
−True positive overlap requirement (IoU from 0.5 to 0.95; see below)

Ground truth IoU = 0.55 IoU = 0.70 IoU = 0.91

Figure credits: Dollár and Zitnick (top), Krähenbühl and Kulton (bottom)

boxes

masks

IoU = 0.5 IoU = 0.7 IoU = 0.9

152

One	stage

“You	only	 look	once”
“Single	shot”

Cascade-like
reduction	 in	
output	 space

Direct	classification
of	all output	 space	elements

Classification	of
reduced output
space	elements

Redmond	et	al.	You	Only	 Look	Once:	
Unified	Real-time	Object	Detection.	In	CVPR	2016

More	than	one	“stage”	(≈ proposal	based;	but	doesn’t	require	proposals)

153

More than one "stage" (≈proposal based; but doesn’t require proposals) classification of
reduced output
space elements

One stage Direct classification
Of all output space elements

Cascade-like
reduction in
output space

Input image Object / region
proposals

Deep Learning region
classifier

Region classification,
box regression

Redmond et al. You Only Look Once:
Unified Real-time Object Detection. In CVPR 2016

"You only look once»
"Single shot"

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Today
2017

Past
(best circa

2012)

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-101-FPN)

Late
2016

Felzenszwalb, Girshick, McAllester, Ramanan. Object Detection with Discriminatively Trained Part Based Models. PAMI 2010.

COCO Object Detection Average Precision (%)

154

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Today
2017

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-101-FPN)

Late
2016

Movement to
DL methods

Past
(best circa

2012)

Girshick. Fast R-CNN. ICCV 2015.

COCO Object Detection Average Precision (%)

155

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Today
2017

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-101-FPN)

Late
2016

Past
(best circa

2012)

Girshick. Fast R-CNN. ICCV 2015.

COCO Object Detection Average Precision (%)

156

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Today
2017

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-101-FPN)

Late
2016

Past
(best circa

2012)

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

COCO Object Detection Average Precision (%)

157

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Today
2017

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-101-FPN)

Late
2016

Past
(best circa

2012)

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

COCO Object Detection Average Precision (%)

158

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

Today
2017

Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-101-FPN)

Past
(best circa

2012)

Lin et al. Feature Pyramid Networks. CVPR 2017.

COCO Object Detection Average Precision (%)

159

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

2017Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-152-FPN)

Past
(best circa

2012)

He, Gkioxari, Dollár, Girshick. Mask R-CNN. ICCV 2017.

COCO Object Detection Average Precision (%)

160

5

15
19

29
36 39

46

Faster R-CNN
(VGG-16)

2017
Early
2015

DPM
(Pre DL)

Fast R-CNN
(AlexNet)

Fast R-CNN
(VGG-16)

Faster R-CNN
(ResNet-50)

Faster R-CNN
(R-101-FPN)

Mask R-CNN
(X-152-FPN)

Past
(best circa

2012)

Progress within
DL methods

2.5 years

COCO Object Detection Average Precision (%)

161

“Slow” R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

ConvNet("!)

1-vs-rest SVMs

Box regressor

Selective search,
Edge Boxes,
MCG, …

!:

Per-image computation Per-region computation for each "! ∈ "(%)

Crop &
warp

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

1

2 3

4

5

Girshick, Donahue, Darrell, Malik. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. CVPR 2014.

162

“Slow” R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

ConvNet("!)

1-vs-rest SVMs

Box regressor

Selective search,
Edge Boxes,
MCG, …

!:

Per-image computation Per-region computation for each "! ∈ "(%)

Crop &
warp

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

1

2 3

4

5

Very heavy per-region computation
E.g., 2000 full network evaluations

163

“Slow” R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

1-vs-rest SVMs

Box regressor

Identity

Selective search,
Edge Boxes,
MCG, …

!:

Per-image computation Per-region computation for each "! ∈ "(%)
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

Crop &
warp ConvNet("!)

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

164

Generalized R-CNN Approach to Detection

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

ℎ(%!)

Classification

Box regressor

'" = '(!)

)(!)

%('",)!)
...!:

Per-image computation Per-region computation for each "! ∈ "(%)

165

Fast R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

RoIPool!:

Per-image computation Per-region computation for each "! ∈ "(%)

Selective search,
Edge Boxes,
MCG, …

FCN(%)

Lightweight per-region computation

Girshick. Fast R-CNN. ICCV 2015.

166

Fast R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

RoIPool!:

Per-image computation Per-region computation for each "! ∈ "(%)

Selective search,
Edge Boxes,
MCG, …

FCN(%)

167

Whole-image FCN
• Use any standard ConvNet as the “backbone architecture”

−AlexNet, VGG, ResNet, Inception, Inception-ResNet, ResNeXt,
DenseNet, …

−Use the first N layers with spatial extent (e.g., up to “conv5”)

168

Example:
ResNet-34

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!: FCN(%)

Example feature map
dimensions:
(512, H/16, W/16)

Fast R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

RoIPool!:

Per-image computation Per-region computation for each "! ∈ "(%)

Selective search,
Edge Boxes,
MCG, …

FCN(%)

169

RoIPool (on each Proposal)

Proposal
Region of
Interest
(RoI)

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

'" = FCN(!)

(Variable size RoI)

Transform arbitrary size proposal into a
fixed-dimensional representation (e.g., 2x2)

170

RoIPool (on each Proposal)

Proposal
Region of
Interest
(RoI)

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

'" = FCN(!)

Snapped RoI

(Variable size RoI)

Transform arbitrary size proposal into a
fixed-dimensional representation (e.g., 2x2)

171

RoIPool (on each Proposal)

RoIPool
transform

Feature value
is max over input
cells

(Fixed dimensional
representation)

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

'" = FCN(!)

Snapped RoI

(Variable size RoI)

Transform arbitrary size proposal into a
fixed-dimensional representation (e.g., 2x2)

Proposal
Region of
Interest
(RoI)

172

Fast R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

RoIPool!:

Per-image computation Per-region computation for each "! ∈ "(%)

Selective search,
Edge Boxes,
MCG, …

FCN(%)

Region proposals have very poor recall
(ok for PASCAL VOC, major bottleneck for COCO)

Also, they can be slow
173

Faster R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

'" = FCN(%)

...!:

Per-image computation Per-region computation for each "! ∈ "(%)

RPN('")

RoIPool

Learned proposals
Sharing computation with whole-image network

Ren, He, Girshick, Sun. Faster R-CNN:
Towards Real-Time Object Detection. NIPS 2015.

174

Region Proposal Network (RPN)

(Shared over
FPN levels)

Anchors are
prototypical object
boxes

Proposals = sliding window object/not-object classifier + box regression
inside the same network

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

'" = FCN(%)

175

Mask R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

'" = FCN(%)

!:

Per-image computation Per-region computation for each "! ∈ "(%)

RPN('")

RoIAlign

Mask
FCN

He, Gkioxari, Dollár, Girshick.
Mask R-CNN. ICCV 2017.

176

Mask R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

'" = FCN(%)

!:

Per-image computation Per-region computation for each "! ∈ "(%)

RPN('")

RoIAlign

Mask
FCN

177

RoIAlign (on each Proposal)

Grid of bilinear
interpolation points

Smoothly transform RoI features into
a fixed-dimensional representation (e.g., 2x2)

(Variable size RoI)

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

'" = FCN(%)
Proposal
RoI from
RPN

178

RoIAlign (on each Proposal)

Grid of bilinear
interpolation points

RoIAlign
transform

Feature value is average of
interpolated values on grid(Variable size RoI)

(Fixed dimensional
representation)

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

'" = FCN(%)

Smoothly transform RoI features into
a fixed-dimensional representation (e.g., 2x2)

Proposal
RoI from
RPN

179

Compare to RoIPool

Preserve alignment or not?

+20% relative
at high IoU

180

Compare to RoIPool

Quantization breaks pixel-to-pixel alignment

Original RoI
Snapped RoI

RoIPool coordinate
quantization

!

!

!

181

Instance Segmentation

182

Mask R-CNN

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

'" = FCN(%)

!:

Per-image computation Per-region computation for each "! ∈ "(%)

RPN('")

RoIAlign

Mask
FCN

183

Mask Head (on each Proposal)
• Task specific heads for …

−Object classification
−Bounding box detection
− Instance mask prediction

184

RoIAlign
transformed
features

RoIAlign

Standard Fast/er R-CNN head

Mask Head (on each Proposal)
• Task specific heads for …

−Object classification
−Bounding box detection
− Instance mask prediction

RoIAlign
transformed
features

Per-proposal FCN
predicts instance masks

ConvTransposeConv3x3 * 4 Conv1x1

RoIAlign
mask

185

Mask R-CNN: Extension to 2D Human Pose

!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455
!?#$%C!'?('$)

))
%?#*$'(+,?*)

-./$'0-$#(+'$)

N!#%?2 #?30$'
))

455

MLP

Softmax clf.

Box regressor

'" = FCN(%)

!:

Per-image computation Per-region computation for each "! ∈ "(%)

RPN('")

RoIAlign

Mask
FCN

Pose
FCN

186

Pose Head

• Add keypoint head (28x28x17)
• Predict one “mask” for each keypoint
• Softmax over spatial locations (encodes one keypoint per mask “prior”)

keypoints

x17

(Not shown: Head architecture is slightly different for keypoints) 17 keypoint “mask”
predictions shown as
heatmaps with OKS
scores from argmax
positions

187

Mask R-CNN: Training
• Same as “image centric” Fast/er R-CNN training

• But with training targets for masks

188

Example Mask Training Targets
Image with training proposal 28x28 mask target Image with training proposal 28x28 mask target

189

Mask R-CNN: Inference
1. Perform Faster R-CNN inference

−Run backbone FCN
−Generate proposals with RPN
−Score the proposals with clf. head
−Refine proposals with box regressor
−Apply NMS and take the top K (= 100, e.g.)

2. Run RoIAlign and mask head on top-K refined, post-NMS boxes
−Fast (only compute masks for top-K detections)
− Improves accuracy (uses refined detection boxes, not proposals)

190

Mask Prediction
28x28 soft prediction from Mask R-CNN
(enlarged)

Soft prediction resampled to image coordinates
(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red
191

Mask Prediction

Validation image with box detection shown in red
192

28x28 soft prediction from Mask R-CNN
(enlarged)

Soft prediction resampled to image coordinates
(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Quantization breaks
pixel-to-pixel alignment

Original RoI
Snapped RoI

RoIPool coordinate
quantization

!

!

!

193

Mask Prediction 28x28 soft prediction

Resized soft prediction Final mask

Validation image with box detection shown in red
194

Mask Prediction

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red
195

196

197

198

Is Object Detection Solved?
• Obviously no; there are frequently silly errors

• But it is getting frustratingly good

• The errors are often reasonable

• The bottlenecks are raw recognition and “reasoning”

200

201

202

203

204

205

206

Addressing other tasks...

207

image CNN features

224x224x3

A block of compute with a
few million parameters.

7x7x512

Addressing other tasks...

208

image CNN features

224x224x3

A block of compute with a
few million parameters.

7x7x512

predicted thing

desired thing

Addressing other tasks...

209

image CNN features

224x224x3

A block of compute with a
few million parameters.

7x7x512

predicted thing

desired thing

this part
changes from
task to task

Addressing other tasks...

210

thing = a vector of probabilities for different classes

image CNN features

224x224x3
7x7x512

e.g. vector of 1000 numbers giving
probabilities for different classes.

fully connected layer

Image Classification

211

image CNN features

224x224x3
7x7x512

deconv layers

224x224x20
array of class
probabilities
at each pixel.

image class “map”

Segmentation

212

Localization

image CNN features

224x224x3
7x7x512

fully connected layer

Class
probabilities
(as before)

4 numbers:
- X coord
- Y coord
- Width
- Height

213

Image Captioning

image CNN features

224x224x3
7x7x512

A sequence of 10,000-dimensional
vectors giving probabilities of
different words in the caption.

RNN

214

Reinforcement
Learning

image CNN features

160x210x3

fully connected

e.g. vector of 8 numbers giving
probability of wanting to take
any of the 8 possible ATARI
actions.

Mnih et al. 2015

215

image CNN features

224x224x3
7x7x512

deconv layers

224x224x3
original image

Autoencoders

216

image CNN features

224x224x3
7x7x512

deconv layers

224x224x3
original image

reparameterization
layer

[Kingma et al.], [Rezende et al.], [Salimans et al.]

Variational Autoencoders

217

Addressing other tasks...

218Slide adapted from Graham Neubig

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z+ b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

• 1D convolution ≈ Time Delay Neural Networks (Waibel et al. 1989, Collobert and Weston 2011)

• Two main paradigms:
• Context window modeling: For tagging, etc. get the surrounding context before tagging
• Sentence modeling: Do convolution to extract n-grams, pooling to combine over

whole sentence
Figure credit: Yoon Kim

Time-Delay Neural Network

• This structure is called the Time-Delay Neural
Network

182

Addressing other tasks...

219

• CNNs for audio processing: MFCC features + Time Delay Neural Networks
Figure credit: Bhiksha Raj

220

Next lecture:
Understanding and Visualizing

ConvNets

