etail from the visualiz ResNet-18 // Graphcore

DEPLEARNING

ecture #05 - Convolutional Neural Networks (CNNs)

kut Erdem // Hacettepe University // Fall 2024

Previously on CMP784

- data preprocessing and normalization
- weight initializations
- ways to improve generalization
- babysitting the learning process
- hyperparameter selection
- optimization

Lecture Overview

- convolution layer
- design guidelines for CNNs
- CNN architectures
- transfer learning
- semantic segmentation networks
- object detection networks

Disclaimer: Much of the material and slides for this lecture were borrowed from

- Andrea Vedaldi's tutorial on Convolutional Networks for Computer Vision Applications
- Kaiming He's ICML 2016 tutorial on Deep Residual Networks: Deep Learning Gets Way Deeper
- Ross Girshick's talk on The Past, Present, and Future of Object Detection
- Fei-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class
- Justin Johnson's EECS 498/598 class

Perceptron

[Rosenblatt 57]

• The goal is estimating the posterior probability of the binary label y of a vector **x**:

Discovery of oriented cells in the visual cortex

[Hubel and Wiesel 59]

Convolutional Neural Networks in a Nutshell

- A neural network model that consists of a sequence of local & translation invariant layers
 - Many identical copies of the same neuron: Weight/parameter sharing
 - Hierarchical feature learning

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS

12

A bit of history

- Neocognitron model by Fukushima (1980)
- The first convolutional neural network (CNN) model
- so-called "sandwich" architecture
 - simple cells act like filters
 - complex cells perform pooling
- Difficult to train
 - No backpropagation yet

A bit of history

• LeNet-5 model

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. **Gradient-based learning applied to document recognition**. Proceedings of the IEEE. **86** (11): 2278–2324, 1998.

A bit of history

• AlexNet model

dead-man's-fingers

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS

currant

Convolutional Neural Network

A. Krizhevsky, I. Sutskever, and G. E. Hinton. **Imagenet classification with deep convolutional neural networks**. In NIPS 2012.

- Learn a filter bank (a set of filters) once
- Use them over the input data to extract features

$$\mathbf{y} = F * \mathbf{x} + b$$

Data = 3D Tensors

• There is a vector of feature channels (e.g. RGB) at each spatial location (pixel).

Convolutions with 3D Filters

32x32x3 input

32

3

5x5x3 filter

Convolve the filter with the input i.e. "slide over the image spatially, computing dot products"

the result of taking a dot product between the filter and a small 5x5x3 chunk of the input (i.e. 5*5*3 = 75-dimensional dot product + bias)

consider a second, green filter

- Multiple filters produce multiple output channels
- For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get an output of size 28x28x6.

Spatial Arrangement of Output Volume

- **Depth:** number of filters
- **Stride:** filter step size (when we "slide" it)
- Padding: zero-pad the input

Output Volume (3x3x2) -2 -7 -4 -11 -1

Output Volume (3x3x2) o [:,:,0] -3 -1 4 -2 -7 -4 1 -1 1 o [:,:,1] -7 3 1 -7 -11 -1

- Local receptive field
- Each column of hidden units looks at a different input patch

Receptive Fields

• For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input

Receptive Fields

 Each successive convolution adds K – 1 to the receptive field size With L layers the receptive field size is 1 + L * (K – 1)

Problem: For large images we need many layers for each output to "see" the whole image image
1x1 Convolution

38

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W

W

3D Convolution

Input: $C_{in} x H x W x D$ Weights: C_{out} x C_{in} x K x K x K

C_{in}-dim vector at each point in the volume

Convolutional layers

Repeat linear / non-linear operators

Linear/Non-linear Chains

- The basic blueprint of most architectures
- Stack multiple layers of convolutions

filteringReLUfilteringReLU& downsampling

. . .

Feature Learning

• Hierarchical layer structure allows to learn hierarchical filters (features).

Feature Learning

• Hierarchical layer structure allows to learn hierarchical filters (features).

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Slide credit: Yann LeCun

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:
- Max pooling, average pooling, etc.

Single depth slice

I		
	6	8
	3	4

Fully connected layer

 contains neurons that connect to the entire input volume, as in ordinary Neural Networks

image

Guideline 1: Avoid tight bottlenecks

From bottom to top

- The spatial resolution H×W decreases
- The number of channels C increases
- Guideline
 - Avoid tight information bottleneck
 - Decrease the data volume ${\rm H} \times {\rm W} \times {\rm C}$ slowly

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR 2015.

C. Szegedy, V. Vanhoucke, S. loffe, and J. Shlens. **Rethinking the inception architecture for computer vision**. In CVPR 2016.

Receptive Field

neuron's receptive field

Must be large enough

- Receptive field of a neuron
 - The image region influencing a neuron
 - Anything happening outside is invisible to the neuron

Importance

- Large image structures cannot be detected by neurons with small receptive fields
- Enlarging the receptive field
 - Large filters
 - Chains of small filters

Guideline 2: Prefer small filter chains

- Remark: 101 ResNet layers same size/speed as 16 VGG-VD layers
- Reason: Far fewer feature channels (quadratic speed/space gain)
- Moral: Optimize your architecture

Did we see this before?

complexity $\propto (C \times K) / G$

AlexNet

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS

complexity: $C \times K$

complexity: $C \times K / G$

Groups = filters, seen as a matrix, have a "block" structure

Make sure to mix the information

Guideline 6:

Dilated Convolutions

=

5x5

а	0	b	0	С
0	0	0	0	0
d	0	е	0	f
0	0	0	0	0
g	0	h	0	i

25 coefficients9 degrees of freedom

49 coefficients18 degrees of freedom

Exponential expansion of the receptive field without loss of resolution

Convolutional Neural Network Demo

- ConvNetJS demo: training on CIFAR-10
- <u>http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html</u>

CNN Architectures

ImageNet Classification Challenge

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

AlexNet

Nearly all **parameters** are in the fullyconnected layers

Params (K)

Most **floating-point ops** occur in the convolution layers

MFLOP

Most of the **memory usage** is in the early convolution layers

Memory (KB)

ImageNet Classification Challenge

ZFNet: A Bigger AlexNet

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512 More trial and error

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014 63

ImageNet Classification Challenge

INPLIT: [22/1x22/1x3] memory: 22/1*22/1*3-150K params: 0 (not counting biases)		
CONV(2 C4, [224x224x6]) = memory, 224 224 6 = 1000 parametry (24242) * 64 = 1.720	ConvNet Co	onfiguration	
$CONV3-04$: [224x224x04] memory: 224 224 04=3.21VI params: $(3^{\circ}3^{\circ}3)^{\circ}04 = 1,728$	В	C	D
CONV3-64: $[224x224x64]$ memory: $224*224*64=3.2M$ params: $(3*3*64)*64 = 36,864$	13 weight	16 weight	16 weight
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728	put (224×22	24 RGB image)
$CONV/3-128 \cdot [112 \times 112 \times 128]$ memory: 112*112*128-1.6M parames: (3*3*128)*128 - 147.45	conv3-64	conv3-64	conv3-64
POO(2) [FeyEey120] memory: Fe*Ee*120 400K parama: 0	conv3-64	conv3-64	conv3-64
	max	pool	2 129
CONV3-256: $[56x56x256]$ memory: $56*56*256=800K$ params: $(3*3*128)*256=294,912$	conv3-128	conv3-128	conv3-128
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv5-128	conv3-120	conv3-128
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256
POOL 2: [28x28x256] memory: 28*28*256=200K params: 0	conv3-256	conv3-256	conv3-256
CONV/3-512; [28x28x512] memory: 28*28*512-400K paramet (3*3*256)*512 - 1 179 648		conv1-256	conv3-256
CONV3-512. [20x20x512] memory. 20 20 512=400K parameter (2*2*512) *512 = 1,175,040			
CONV3-512: [28x28x512] memory: 28*28*512=400K params: $(3*3*512)*512 = 2,359,296$	max	pool	
CONV3-512: $[28x28x512]$ memory: $28*28*512=400K$ params: $(3*3*512)*512 = 2,359,296$	conv3-512	conv3-512	conv3-512
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512	conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv1-512	conv3-512
CONV3-512 [14x14x512] memory: 14*14*512=100K parameters: (3*3*512)*512 = 2,359,296			
CONV/2 [14x14x512] memory: 14*14*512-100K paramet (2*2*512)*512 = 2,000,200	conv3-512	conv3-512	conv3-512
CONV3-512. [14x14x512] Methody. 14 14 512=100K params. (5 5 512) 512 = 2,559,290	conv3-512	conv3-512	conv3-512
POOL2: [/x/x512] memory: /*/*512=25K params: 0	001115 512	conv1-512	conv3-512
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448			
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	max	pool	
FC: $[1x1x1000]$ memory: 1000 params: 4096*1000 = 4.096.000	FC-4	4096	
	FC-4	4096	
TOTAL memory: $2/1M \times 1$ bytes $\sim - 92MR$ / image	FC-	1000	

(only forward! ~*2 for bwd) TOTAL params: 138M parameters

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

cc

CO

CO

CO

CO

COI

CO

CO

COI COI

CO

CO

col

soft-max

VGG-16 Net

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolutional stages: Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

VGG16

AlexNet

Input

Softmax FC 1000

FC 4096

Pool

Pool

Pool

VGG19

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolutional stages: Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolutional stages: Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Conv layers at each spatial resolution take the same amount of computation!

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	Pool
Pool	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
x3 conv, 512	3x3 conv, 512
Pool	Pool
x3 conv, 256	3x3 conv, 256
x3 conv, 256	3x3 conv, 256
Pool	Pool
x3 conv, 128	3x3 conv, 128
x3 conv, 128	3x3 conv, 128
Pool	Pool
8x3 conv, 64	3x3 conv, 64
Bx3 conv, 64	3x3 conv, 64
Input	Input

AlexNet

VGG19

VGG16

ImageNet Classification Challenge

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

Inception module

Local unit with parallel branches Local structure repeated many times throughout the network Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv

Szegedy et al, "Going deeper with convolutions", CVPR 2015 72

Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick

Szegedy et al, "Going deeper with convolutions", CVPR 2015 73
ImageNet Classification Challenge

Residual Net (ResNet)

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Residual Net (ResNet)

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 76

Residual Learning $\phi_{\text{ReLU}} \circ \phi_* \circ \phi_{\text{ReLU}} \circ \phi_*)(\mathbf{x}_n)$

Residual Learning

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets
- This is optimization issue, deeper models are harder to optimize

Residual Learning

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a
 - learned shallower model
 - extra layers: set as identity
 - at least the same training error

Residual Learning

• The loss surface of a 56-layer net using the CIFAR-10 dataset, both without (left) and with (right) residual connections.

Hao Li et al., "Visualizing the Loss Landscape of Neural Nets". ICLR 2018

ImageNet Classification Challenge

Inception-v4: Resnet + Inception!

VGG: Highest memory, most operations

ImageNet Classification Challenge

Post-ResNet Architectures

ResNet made it possible to increase accuracy with larger, deeper models

Many followup architectures emphasize **efficiency**: can we improve accuracy while controlling for model "complexity"?

Measures of Model Complexity

Parameters: How many learnable parameters does the model have?

Floating Point Operations (FLOPs): How many arithmetic operations does it take to compute the forward pass of the model?

Watch out, lots of subtlety here:

- Many papers only count operations in conv layers (ignore ReLU, pooling, BatchNorm).
 Most papers use "1 FLOP" = "1 multiply and 1 addition" so dot product of two N-dim vectors takes N FLOPs; some papers say MADD or MACC instead of FLOP
- Other sources (e.g. NVIDIA marketing material) count "1 multiply and one addition" = 2 FLOPs, so dot product of two N-dim vectors takes 2N FLOPs

Network Runtime: How long does a forward pass of the model take on real hardware?

Key ingredient: Grouped / Separable convolution

Each filter has the same number of channels as the input

Input:C_{in} x H x W

Weights: $C_{out} \times C_{in} \times K \times K$ Output: C_{out}

Output: $C_{out} \times H' \times W'$

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter

H'

W'

Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K Outpu

Κ

Output: C_{out} x H' x W'

Cout

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter

H'

W'

Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K Output

Κ

Output: $C_{out} \times H' \times W'$

Cout

Each filter has the same number of channels as the input

Η $\mathsf{C}_{\mathsf{out}}$ W Cin

Input: $C_{in} \times H \times W$

Weights: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$

Κ

Each plane of the output depends on the full input and one filter

96

Each filter has the same number of channels as the input

Each plane of the output depends on the full input and one filter

Input: $C_{in} \times H \times W$

Weights: C_{out} x C_{in} x K x K Out

Κ

Κ

Output: $C_{out} \times H' \times W'$

Input:C_{in} x H x W

Weights: C_{out} x C_{in} x K x K Output: C_{out} x H' x W

Divide channels of input into G groups with (C_{in}/G) channels each

Input:C_{in} x H x W

Weights: C_{out} x C_{in} x K x K Output: C_{out} x H' x `

Input:C_{in} x H x W

Input:C_{in} x H x W

Divide channels of input into G groups with (C_{in}/G) channels each

Divide filters into G groups; each group looks at a **subset** of input channels Each plane of the output depends on one filter and a **subset** of the input channels

H'

Input:C_{in} x H x W

Divide channels of input into G groups with (C_{in}/G) channels each

Divide filters into G groups; each group looks at a **subset** of input channels Each plane of the output depends on one filter and a **subset** of the input channels

H'

Input:C_{in} x H x W

Divide channels of input into G groups with (C_{in}/G) channels each

Divide filters into G groups; each group looks at a **subset** of input channels Each plane of the output depends on one filter and a **subset** of the input channels

H'

Input:C_{in} x H x W

Divide channels of input into G groups with (C_{in}/G) channels each

Divide filters into G groups; each group looks at a **subset** of input channels Each plane of the output depends on one filter and a **subset** of the input channels

Input:C_{in} x H x W

Divide channels of input into G groups with (C_{in}/G) channels each

Divide filters into G groups; each group looks at a **subset** of input channels Each plane of the output depends on one filter and a **subset** of the input channels

H'

Input: $C_{in} \times H \times W$

Divide channels of input into G **groups** with (C_{in}/G) channels each

Divide filters into G groups; each group looks at a **subset** of input channels Each plane of the output depends on one filter and a **subset** of the input channels

Input: $C_{in} \times H \times W$

Special Case: Depthwise Convolution

Number of groups equals number of input channels

Common to also set $C_{out} = G$

Output only mixes **spatial** information from input; **channel** information not

Input: $C_{in} \times H \times W$

Weights: C_{out} x 1 x K x K

Output: C_{out} x H' x W'

Special Case: Depthwise Convolution

Number of groups equals number of input channels

Input:C_{in} x H x W

Weights: C_{out} x 1 x K x K

Can still have multiple filters

Output: C_{out} x H' x W'

Output only mixes **spatial**

H'

W'

information from input;
Grouped Convolution vs Standard Convolution

<u>Grouped Convolution (G groups):</u>

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: $C_{in} \times H \times W$

Split to G x [(C_{in} / G) x H x W] Weight:G x (C_{out} / G) x (C_{in} / G) x K x K G parallel convolutions

Output: G x [(C_{out} / G) x H' x W'] Concat to C_{out} x H' x W' FLOPs: C_{out}C_{in}K²HW/G

Standard Convolution (groups=1)

Input: $C_{in} \times H \times W$ Weight: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW$

All convolutional kernels touch all C_{in} channels of the input

Using G groups reduces FLOPs by a factor of G!

Improving ResNets

Residual block

Total FLOPs: 17HWC²

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017 111

Improving ResNets: ResNeXt

Example: C=64, G=4, c=24; C=64, G=32, c=4

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017 112

Squeeze-and-Excitation Networks (SENet)

Hu et al, "Squeeze-and-Excitation networks", CVPR 2018 113

Squeeze-and-Excitation Networks (SENet)

ImageNet Top-1 Accuracy

Add SE to any architecture, enjoy 1-2% boost in accuracy

Hu et al, "Squeeze-and-Excitation networks", CVPR 2018 114

Recall: Convolution Layer

New model family e.g. MobileNetV2

Instead of pushing for the largest network with biggest accuracy, consider tiny networks and accuracy / complexity tradeoff

Compare families of models:

One family is better than another if it moves the whole curve up and to the left

Model Complexity (FLOPs, #params, runtime speed)

MobileNets: Tiny Networks (For Mobile Devices)

Howard et al, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv 2017 Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions", CVPR 2017

MobileNetV2: Inverted Bottleneck, Linear Residual

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018 117

MobileNetV2: Inverted Bottleneck, Linear Residual

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018 118

ShuffleNet

Zhang et al, "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices", CVPR 2018 119

CNN Architectures Summary

- Early work (AlexNet->VGG->ResNet):bigger networks work better
- New focus on efficiency: Improve accuracy, control for network complexity
- Grouped and Depthwise Convolution appear in many modern architectures
- Squeeze-and-Excite adds accuracy boost to just about any architecture while only adding a tiny amount of FLOPs and runtime
- Tiny networks for **mobile devices** (MobileNet, ShuffleNet)
- Neural Architecture Search(NAS) promised to automate architecture design
- More recent work has moved towards careful improvements to ResNet-like architectures
- ResNet and ResNeXt are still surprisingly strong and popular architectures!

Transfer Learning with Convolutional Neural Networks

Beyond CNNs

- Do features extracted from the CNN generalize other tasks and datasets?
 - Donahue et al. (2013), Chatfield et al. (2014), Razavian et al. (2014), Yosinski et al. (2014), etc.
- CNN activations as deep features
- Finetuning CNNs

• CNNs discover effective representations. Why not

CNNs as deep features

Transfer Learning with CNNs

 A CNN trained on a (large enough) dataset generalizes to other visual tasks

A. Joulin, L.J.P. van der Maaten, A. Jabri, and N. Vasilache Learning visual features from Large Weakly supervised Data. ECCV 2016 Slide credit: Joan Bruna 128

Transfer Learning with CNNs

- Keep layers 1-7 of our ImageNet-trained model fixed
- Train a new softmax classifier on top using the training images of the new dataset.

How transferable are features in CNN networks?

- Divide ImageNet into man-made objects A (449 classes) and natural objects B (551 classes)
- The transferability of features decreases as the distance between the base task and target task increases

Slide credit: Xiaogan Wang 130

How transferable are features in CNN networks?

• An open research problem

A. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, S. Savarese. **Taskonomy: Disentangling Task Transfer Learning**. CVPR

Semantic Segmentation

Semantic Image Segmentation

 Label individual pixels

Convolutional Layers

Local receptive field

Fully Connected Layers

• Global receptive field

class predictions fully-connected ***** fully-connected ***** fully-connected

Convolutional vs. Fully Connected

 Comparing the receptive fields

Downsampling filters

Responses are spatially selective, can be used to localize things.

Upsampling filters

Responses are global, do not characterize well position

Fully-Connected Layer = Large Filter

Fully-Convolutional Neural Networks

Fully-Convolutional Neural Networks

Dense evaluation

- Apply the whole network convolutional
- Estimates a vector of class probabilities at each pixel

Downsampling

- In practice most network downsample the data fast
- The output is very low resolution (e.g. 1/32 of original)

Upsampling The Resolution

Interpolating filter

Upsampling filters allow to increase the resolution of the output Very useful to get full-resolution segmentation results

Deconvolution Layer

141

Deconvolution Layer

142

Deconvolution Layer

U-Architectures

Image to image

U-Architectures

input image

segmentation mask (output image)
U-Architectures

• Image to image net net net net net skip layers segmentation mask input image (output image)

Object Detection

MS COCO Dataset Images + Annotations

- Area under a detector's precision-recall curve, averaged over...
 - Object categories
 - -True positive overlap requirement (IoU from 0.5 to 0.95; see below)

Figure credits: Dollár and Zitnick (top), Krähenbühl and Kulton (bottom)

One stage

Direct classification Of all output space elements

Redmond et al. You Only Look Once: Unified Real-time Object Detection. In CVPR 2016

"You only look once» "Single shot"

Past (best circa 2012)

> 5 DPM (Pre DL)

Felzenszwalb, Girshick, McAllester, Ramanan. Object Detection with Discriminatively Trained Part Based Models. PAMI 2010. 154

Early 2015

Girshick. Fast R-CNN. ICCV 2015.

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

Lin et al. Feature Pyramid Networks. CVPR 2017.

He, Gkioxari, Dollár, Girshick. Mask R-CNN. ICCV 2017.

"Slow" R-CNN

Girshick, Donahue, Darrell, Malik. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014.

Per-image computation

Per-region computation for each $r_i \in r(I)$

"Slow" R-CNN

Per-image computation

Per-region computation for each $r_i \in r(I)$

"Slow" R-CNN

Generalized R-CNN Approach to Detection

Girshick. Fast R-CNN. ICCV 2015.

Fast R-CNN

Fast R-CNN

Whole-image FCN

• Use any standard ConvNet as the "backbone architecture"

- AlexNet, VGG, ResNet, Inception, Inception-ResNet, ResNeXt, DenseNet, …
- Use the first N layers with spatial extent (e.g., up to "conv5")

Fast R-CNN

RolPool (on each Proposal)

RolPool (on each Proposal)

RolPool (on each Proposal)

Fast R-CNN

Faster R-CNN

Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.

Region Proposal Network (RPN)

Proposals = sliding window object/not-object classifier + box regression inside the same network

He, Gkioxari, Dollár, Girshick. Mask R-CNN. ICCV 2017.

Mask R-CNN

Mask R-CNN

RolAlign (on each Proposal)

RolAlign (on each Proposal)

Compare to RolPool

Preserve alignment or not?							
	align?	bilinear?	agg.	AP	AP_{50}	AP ₇₅	
RoIPool [12]			max	26.9	48.8	26.4	+20% relative at high loU
RoIWarp [10]		\checkmark	max	27.2	49.2	27.1	
		\checkmark	ave	27.1	48.9	27.1	
RoIAlign	\checkmark	\checkmark	max	30.2	51.0	31.8	
	\checkmark	\checkmark	ave	30.3	51.2	31.5	

(c) **RoIAlign** (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by \sim 3 points and AP₇₅ by \sim 5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

Compare to RolPool

Quantization breaks pixel-to-pixel alignment

Instance Segmentation

Mask R-CNN

Mask Head (on each Proposal)

- Task specific heads for ...
 - Object classification
 - Bounding box detection
 - -Instance mask prediction

Mask Head (on each Proposal)

- Task specific heads for ...
 - Object classification
 - Bounding box detection
 - Instance mask prediction

Mask R-CNN: Extension to 2D Human Pose

Pose Head

(Not shown: Head architecture is slightly different for keypoints) keypoints

- Add keypoint head (28x28x17)
- Predict one "mask" for each keypoint
- Softmax over spatial locations (encodes one keypoint per mask "prior")

Mask R-CNN: Training

- Same as "image centric" Fast/er R-CNN training
- But with training targets for masks

Example Mask Training Targets

Mask R-CNN: Inference

1. Perform Faster R-CNN inference

- Run backbone FCN
- Generate proposals with RPN
- Score the proposals with clf. head
- Refine proposals with box regressor
- Apply NMS and take the top K (= 100, e.g.)

2. Run RolAlign and mask head on top-*K* refined, post-NMS boxes

- Fast (only compute masks for top-K detections)
- Improves accuracy (uses refined detection boxes, not proposals)

Validation image with box detection shown in red

28x28 soft prediction from Mask R-CNN (enlarged)

Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

28x28 soft prediction from Mask R-CNN (enlarged)

Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red

Validation image with box detection shown in red

28x28 soft prediction

Resized soft prediction

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

Is Object Detection Solved?

- Obviously no; there are **frequently silly errors**
- But it is getting frustratingly good
- The errors are often reasonable
- The bottlenecks are raw recognition and "reasoning"

Addressing other tasks...

Addressing other tasks...

A block of compute with a few million parameters.

Addressing other tasks...

A block of compute with a few million parameters.

A block of compute with a few million parameters.

Image Classification

thing = a vector of probabilities for different classes

e.g. vector of 1000 numbers giving probabilities for different classes.

213

Y coord

Width

Height

-

-

-

A sequence of 10,000-dimensional vectors giving probabilities of different words in the caption.

Reinforcement Learning

Mnih et al. 2015

160x210x3

e.g. vector of 8 numbers giving probability of wanting to take any of the 8 possible ATARI actions.

Autoencoders

Variational Autoencoders

[Kingma et al.], [Rezende et al.], [Salimans et al.]
Addressing other tasks...

- 1D convolution ≈ Time Delay Neural Networks (Waibel et al. 1989, Collobert and Weston 2011)
- Two main paradigms:
 - Context window modeling: For tagging, etc. get the surrounding context before tagging
 - Sentence modeling: Do convolution to extract n-grams, pooling to combine over whole sentence

Figure credit: Yoon Kim

• CNNs for audio processing: MFCC features + Time Delay Neural Networks

Figure credit: Bhiksha Raj 219

Next lecture: Understanding and Visualizing ConvNets