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Image from ucreative.com

Previously on CMP784

* more on transfer learning

* visualizing neuron activations
* visualizing class activations

* pre-images

* adversarial examples

» adversarial training




Lecture overview

« Sequence modeling

« Recurrent Neural Networks (RNNs)

* The Vanilla RNN unit

 How to train RNNs

* The Long Short-Term Memory (LSTM) unit and its variants
» Gated Recurrent Unit (GRU)

Disclaimer: Much of the material and slides for this lecture were borrowed from
—Harini Suresh’'s MIT 6.5191 slides

—Arun Mallya's tutorial on Recurrent Neural Networks

—Phil Blunsom’s Oxford Deep NLP class

—Fel-Fei Li, Andrej Karpathy and Justin Johnson's CS231n class



Sequence modeling



Sequential data

» “| took the dog for a walk this morning.”  sentence
medical signals

speech waveform

video frames




Modeling sequential data

« Sample data sequences from a certain distribution P(x1,...,2nN)

» (Generate natural sentences to describe an image P(yr,...,ym|1)

2 5
. gl (17

uage A group of people
i shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

« Activity recognition from a video sequence P(y|lr1,...,zN)
Running
j z Jumping
n Dancing
e Fighting
Eating

Adapted from Xiaogang Wang 6



Modeling sequential data

« Speech recognition | | P(y1,...,yn|z1,...,2N)

W — Hey Siri

« Object tracking

Adapted from Xiaogang Wang 7



Modeling sequential data

« Generate natural sentences to describe a video Py, ..., ymlxe, . ., N)

— A man is riding a bike

P(ys,...,yumles, ... o)

= Google Translate

= Google Translate

German~ English¥ German~ English¥
o) GERMAN X o) GERMAN X

Probleme kann man niemals mit derselben Probleme kann man niemals mit derselben
Denkweise |6sen, durch die sie entstanden

Denkweise |6sen, durch die sie entstanden
sind. sind.

o) ENGLISH o) ENGLISH

No problem can be solved from the same Problems can never be solved with the same
consciousness that they have arisen. ‘ way of thinking that caused them.

Adapted from Xiaogang Wang 8



Represent a sequence as a bag of word's

“I dislike

|

[0170710001]

prediction

* Problem: Bag of words does not preserve order



Bag of words does not preserve order!

“The food was good, not bad at all.”
VS

“The food was bad, not good at all.”



Maintain an ordering within feature vector

[000100010010000 00001]
On Monday it was  snowing
One hot feature
vector indicates
what each word is prediction

 Problem: Hard to deal with different word orders!
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Hard to deal with different word orders!

“On Monday, it was snowing.”
VS

“It was snowing on Monday.”
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Hard to deal with different word orders!

[000100010010000 00001]
On Monday it was snowing
VS
[10000 000010001000100 ]
It was snowing on Monday

* we would have to relearn the rules of language at each point in the
sentence

13



Markov Models

* Problem: we can't model long-term dependencies

14



Markov Models

* Markov assumption: Each state depends only on the last state.

“In , | had a great time and | learnt some of the

n

* \\We need information from the far past and future to accurately guess
the correct word.
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To model sequences, we need

1. to deal with variable length sequences
2. 10 maintain sequence order

3. to keep track of long-term dependencies
4. to share parameters across the sequence

16



Recurrent Neural
Networks



Recurrent Neural Networks

Feed Forward Network Recurrent Network

h S

Notice: the same function and the
same set of parameters are used
at every time step.
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Unrolled RNN

Y3
: S
Y1 / T
h, "
g
1 ‘.
T t=2
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Sample RNN

h,
]

Y3
Y2
: / hs
/ i T
X3
T
X2
t=2



The Vanilla RNN

D

Cell

W

h, = tanhW(

X

t—1

cell state
h

21



The Vanilla RNN Forward

C4 C, Cs

0 ) 0

Y1 Y2 Y3

1 ’ 1 X,
h, = tanh W

[ 1

h1
y, =F(h,)

|
ﬁ C. =Loss(y,,GT)
I

1 ho

22



The Vanilla RNN Forward

X

3
y, =F(h,)
C, = Loss(y,,GT)

h, = tanhW(

...... Indicates shared weights

* Note that the weights are shared over time

» Essentially, copies of the RNN cell are made over time (unrolling/unfolding), with different inputs
at different time steps

23



Sentiment Classification



Sentiment Classification

 Classify a
restaurant review from Yelp! OR
movie review from IMDB OR

as positive or negative

 Inputs: Multiple words, one or more sentences
« Outputs: Positive / Negative classification

* “The food was really good”
 “The chicken crossed the road because it was uncooked”

25



Sentiment Classification

RNN

The



Sentiment Classification

RNN RNN

|

The food



Sentiment Classification

RNN

|

The

RNN

T

food

RNN

good
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Sentiment Classification

RNN

|

The

RNN

T

food

[ S—
| —
—/
\I\_/

Linear
Classifier

h,

RNN

good
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Sentiment Classification

Ignore

RNN

Ignore

|

The

RNN

T

food

= 5

Linear
Classifier

h,

RNN

good

30



Language Modeling



Language Modeling

» Language models aim to represent the history of observed text
(wy,...,w, 1) succinctly in order to predict the next word (w)):

KING LEAR:

O, if you were a feeble sight,
the courtesy of your law,

Your sight and several breath,
will wear the gods

With his heads, and my hands
are wonder'd at the deeds,
So drop upon your lordship's
head, and your opinion

Shall be against your honour.

all the works of language
shakespeare model

\

http://karpathy.qgithub.i0o/2015/05/21/rnn-effectiveness/
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN Language Models

hw = g(V (205 hn—1] + ¢)

a probability distribution over possible
next words, aka a softmax

he
cat
Tock
dog
Yes
we
Ton
sun
of
- (o >
you
There
built

i D1

(M)
P
—

\_/

O

33



RNN Language Models

hw = g(V (205 hn—1] + ¢)

Yn = Whp +0
5o




g(V [xn; hn—l] + C)

RNN Language Models

35



RNN Language Models

(V [xn; hn—l] + C)

mmmmmm

_____
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at fi rst' tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
- plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

i train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

i train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

i train more

"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/ 37



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

http://karpathy.github.i0/2015/05/21/rnn-effectiveness/ ag
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DeepDrumpf

@DeepDrumpf

I'm a Neural Network trained on Trump's
transcripts. Priming text in [ ]Js. Donate
(gofundme.com/deepdrumpf) to interact!
Created by @hayesbh.

& deepdrumpf2016.com
Joined March 2016

&) Photos and videos

https://twitter.com/deepdrumpf

TWEETS

284

FOLLOWING FOLLOWERS LIKES

7 29.4K 19 2+ Follow

Tweets Tweets & replies Media

In reply to Thomas Paine

DeepDrumpf @DeepDrumpf - Mar 20

There will be no amnesty. It is going to pass because the people are
going to be gone. I'm giving a mandate. #ComeyHearing
@Thomas1774Paine

In reply to David Yankovich

DeepDrumpf @DeepDrumpf - Feb 19

Media hurting and left behind, | say: it looked like a million people.lt's
imploding as we sit with my steak.#swedenincident @DavidYankovich

In reply to Glenn Thrush

DeepDrumpf @DeepDrumpf - Feb 13

Mike. Fantastic guy. Today | heard it. Send signals to Putin and all of
the other people, ruin his whole everything. @GlennThrush @POTUS
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https://twitter.com/deepdrumpf

- . More Language Modeling Fun -
Generating Super Mario Levels

A

Original Level

A level generated by a RNN:

https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b638df3 4



https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b68df3

Image Captioning



Image Captioning

“straw” “hat” END

Yt

'V oh

/

hx

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks [Mao et al.]

Deep Visual-Semantic Alignments for Generating Image Descriptions [Karpathy and Fei-Fei]

Show and Tell: A Neural Image Caption Generator [Vinyals et al.]

Long-term Recurrent Convolutional Networks for Visual Recognition and Description [Donahue et al.]
Learning a Recurrent Visual Representation for Image Caption Generation [Chen and Zitnick]
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Recurrent Neural Network
“straw” “hat” END

START “straw” “hat”

Convolutional Neural Network

44



test Image
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image

conv-64

conv-64

maxpool

conv-128 |

conv-128

~ maxpool

conv-256

‘ conv-256 |

~ maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC-1000

softmax

test Image
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image

conv-64

conv-64

maxpool

conv-128 |

conv-128

~ maxpool

conv-256

‘ conv-256 |

~ maxpool

conv-512

conv-512 |

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

FC:1000
SO ax

test Image
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image

conv-64

conv-64

maxpool

conv-128 |

conv-128

~ maxpool

 conv-256

 conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

x0

<START>

<START>

test Image
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image

~ conv-64

- conv-64

- maxpool

- conv-128

~ conv-128 :

| maxpool

conv-256

f conv-256

- maxpool

 conv-512

- conv-512

~ maxpool

; conv-512

 conv-512

- maxpool

 FC-4096

 FC-4096

V

Wih

x0

<START>

<START>

test Image

before:
h = tanh(\Wxh*x+Whh*h)

nNOow.
h = tanh(Wxh*x+Whh*h+Wih*v)
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imaie

conv-64

conv-64

maxpool

conv-128 |

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

hO

T

x0

<START>

<START>

straw

sample!

test Image
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imaie

conv-64

conv-64

maxpool

conv-128 |

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

y0 Y
hO —» hT
x0 straw

<START>

<START>

test Image
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imaie

conv-64

conv-64

maxpool

conv-128 |

conv-128

maxpool

conv-256

conv-256

maxpool

conv-512

conv-512

maxpool

conv-512

conv-512

maxpool

FC-4096

FC-4096

yO yl
hO | h1

T

x0

<START>

<START>

T

straw

hat

test Image

sample!

52



] conv-256

{ conv-256

- maxpool

conv-512

|
1 conv-512
" maxpool

. conv-512

~ conv-512

" maxpool

 FC-4096

 FC-4096

L1

hO —»{ h1 —» h2

L1

x0 straw hat

<START>

<START>

test Image
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image

~ conv-64

~ conv-64

- maxpool

f conv-128

i conv-128

{ maxpool

]" conv-256

{ conv-256

- maxpool

{ conv-512

1 conv-512

j maxpool

. conv-512

~ conv-512

~ maxpool

 FC-4096

 FC-4096

yO yl y2
hO —» h1 h2
x0 straw hat

<START>

<START>

test Image

sample
<END> token
=> finish.

54



Beam Search (K = 3)

d

AY4
J\.

the

~
J\\

red

Fort=1...T:

« For all £ and for all possible output words w:

s(w, ?At) 1) 1ng(ylt 1|z) + logp(w|y1t 1, T)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 55



Beam Search (K = 3)

[ a | { red
Z the { dog )
red \[ blue )
For¢=1...T:
« For all £ and for all possible output words w:
s(w, ?A t) 1) 1ng(ylt 1) + logp(w|y1t 1)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 56



Beam Search (K = 3)

(a2 J red dog )
( the J dog ) i dog )
" red | \[ blue { cat |
Fort=1...T:
« For all £ and for all possible output words w:
s(w, ?A t) 1) 1ng(ylt 1|z) + logp(w|y1t 1, T)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 57



Beam Search (K = 3)

{ ) { N\ N\ 4 N\
a > red dog > smells
\_ Yy, \_ Yy, Yy, \_ Yy,
4 N\ 4 N\ 4 N\ 4 N\
the > dog dog > barks
\_ ) \_ ) \_ ) \_ W,
4 N\ N\ 4 N\ N\
red \{ blue s cat \[ walks
\ y. y. \ J J
Fort=1...T:

« For all £ and for all possible output words w:

s(w, ?At) 1) 1ng(ylt 1|z) + logp(w|y1t 1, T)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 58



Beam Search (K =

3)

( 4 ) ) ( ) )
a > red dog > smells home
> > 3 ; 3 ; 3 — 3
the > dog dog > barks quickly
L \_ J \_ J . J \_ J
4l N\ 4l N R a . N\
red \{ blue > cat \[ walks > straight
For¢=1...T:

« For all £ and for all possible output words w:

s(

« Update beam:

(1:K)
Yi:t

~ (k)

S(W, Y1.4_1

+— K-argmax s(

~ (k)
W, Yy1.t—1

)

) < 1ng(ylt 1|z) + logp(w|y1t 1, T)

Slide credit: Alexander Rush 59



Beam Search (K = 3)

: a j >: red : dog : { smellsj homej >: today:
: the : { dog : : dog : { barks: :quickly: { Friday:
i red \ \[ blue : { cat j \{ walks j {straightj \( now :
For¢=1...T:
« For all £ and for all possible output words w:

s(w, ?A t) 1) 1ng(ylt 1|z) + logp(w|y1t 1> %)

« Update beam:

~(1: K ~(k
y%t ) K-arg max s(w, yg t) 1)

Slide credit: Alexander Rush 60



Image Description Datasets

a man riding a bike on a dirt path through a forest.
bicyclist raises his fist as he rides on desert dirt trail.

this dirt bike rider is smiling and raising his fist in triumph.
a man riding a bicycle while pumping his fist in the air.

a mountain biker pumps his fist in celebration.

b2 SN IR

e

Microsoft COCO

[Tsung-Yi1 Lin et al. 2014]
MSCOCO.0rg

currently:
~120K Images
~b sentences each

61


http://mscoco.org/

§
\ o |
\ 4
L p =
R
‘ .
”~ “
3 L -
y : —

S S ;7 \ . * ' l\f - -
‘man in black shirt is playing ‘construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar.” safety vest is working on road.” lego toy." wakeboard.”
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. ‘ ; ::/."v',"‘ : 3 . - 4 . - ‘ = 4 =z - ‘-" : 'A -
‘man in black shirt is playi "two young girls are playing with boy is doing backflip on
quitar.” lego toy." wakeboard.”

"a young boy is holding a "a cat is sitting on acouch witha  "a woman holding a teddy bearin  "a horse is standing in the middle
baseball bat.” remote control.’ front of a mirror.” of a road.” 63




Class Exercise

» Consider the problem of translation of English to French
* E.g. What is your name — Comment tu t'appelle
* |s the below architecture suitable for this problem?

Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf

64


http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf

Class Exercise

» Consider the problem of translation of English to French

* E.g. What is your name — Comment tu t'appelle
* |s the below architecture suitable for this problem?

T

E, E, E,

* No, sentences might be of different length and words might not
align. Need to see entire sentence before translating

Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf
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Encoder-Decoder Seq2Seq Model

» Consider the problem of translation of English to French
* E.g. What is your name — Comment tu t'appelle

» Sentences might be of different length and words might not align.
Need to see entire sentence before translating

Fi Fy F3 Fy
Pt v 1

r 1T 1
E, E, E,

* Input-Output nature depends on the structure of the problem at hand

Seqg2Seq Learning with Neural Networks. Sutskever et al., NIPS 2014
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https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
i bt i Pt Pt
! i Pt bttt bt

\ Vanilla Neural Networks

67



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
i bt ! Pt Pt
! i Pt bttt bt

\ e.g. Image Captioning
Image -> sequence of words
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
i bt ! Pt Pt
! i Pt bttt bt

\ e.g. Sentiment Classification
seguence of words -> sentiment

69



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
i bt ! Pt Pt
! i Pt bttt bt

\ e.g. Machine Translation
seq of words -> seq of words

70



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
i bt ! Pt Pt
! i Pt bttt bt

/

e.g. Video classification on frame
level

71



Multi-layer RNNs

* \\We can of course design RNNs with multiple hidden layers

Yi Y2 Y3 Ya VY5 Ve
rt 1 1 1

N N A

X1 Xp, X3 X4 Xg Xg

* Think exotic: Skip connections across layers, across time, ...

72



Bi-directional RNNs

 RNNs can process the input sequence in forward and in the reverse

direction
Y1 V2 V3 V4 Ys
1

Y6
|

I

|

f

// /
Kf\( L
/X\/\/\T

X1 X3 X4 Xg

&

Xs

* Popular In speech recognition and machine translation
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How to Train
Recurrent Neural Networks



BackPropagation Refresher

—

f(x; W)

X —>

y=f(x;W)
C =Loss(y,y5r)

SGD Update

WeW—ng—;

J9C _(dC (ﬂj
ow ( ay J\low

75



Multiple Layers

C i = LW SGD Update
Y, = L W,) oC
T 2> — J2 W W W, < W, -1
Y2 C =Loss(y,,Vsr) oW,
T oC
- W, W —n
folys; Wa)
yT I oW
Y1
T
f,(x; W)

76



Chain Rule for Gradient Computation

- y=hEW) L ac A

T Y, = LOpW,) oW, oW,

Yz C =Loss(y,,Ysr) J9C — (B_Cj( 9,

T oW, (dy, )\ dW,
e

| oW, | ay, )\ oW,

T (B_Cj(
f,(x; W) dy,

T Application of the Chain Rule

9,
a)ﬁ

)

J
I

a)ﬁ
oW,

J
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Chain Rule for Gradient Computation

—

f(x; W)

X —>

Given: (B_Cj
dy

We are interested in computing: (g—vi)(aa—c)
X

Intrinsic to the layer are:

( )— How does output change due to params

( ) - How does output change due to inputs

o)) GRS

78



Chain Rule for Gradient Computation

Given: (B_C)
dy

aC We are interested in computing: (a_C)(a_C)
d oW )\ ox
y
l Intrinsic to the layer are:
f(x; W)
l ( )— How does output change due to params
oC .
(a—xj ( ) - How does output change due to inputs

o)) GRS

79



Extension to Computational Graphs

Y1

fily;

W,)

f(x;

W)
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Extension to Computational Graphs

f(x;

81



Extension to Computational Graphs

f(x; W)

(5)
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Sample RNN

* RNNs remember their previous state:

x.,:"it” W

0 \

W, U : weight matrices

xq : vector representing first word
so : cell state at t = 0 (some initialization)
s;:cell stateatt =1

s1 = tanh(Wxo 4+ Usp)

83



Sample RNN

* RNNs remember their previous state:

x,: “‘was” W

1 \

W, U : weight matrices

x1 : vector representing second word
s1:cell stateatt =1
so : cell state at t = 2

so = tanh(Wx1 4+ Usy)

84



Sample RNN

 “unfolding” the RNN across time:

time

o notice that W and U
U U U stay the same!

W W W




Sample RNN

 “unfolding” the RNN across time:

time

S, can contain
E information from all
U U U past timesteps

W W W

\/




We have a loss at each timestep:
(since we're making a prediction at each timestep)

0 1 2

J]
Y
v v‘ v

@U@U@U

S
| |

87



We have a loss at each timestep:
(since we're making a prediction at each timestep)

loss at each
J, / timestep

T
v‘ v‘ v‘
-©-@-

88



We sum the losses across time:

loss at each
J, / timestep

J, J;
| ]
¥, Y1 2 Loss at time t: Jt(@)
v‘ v‘ V‘
U @ : @ — Total loss:
. . . J(©) =) Ji(®)
/



Let's try it our for W with the chain rule:

J) J, J, oJ 0Jy
A w3 ow
Y, Y, Y,
" /| /|

&

W

W W

Lo T Ly



Let's try it our for W with the chain rule:

J, J, J, oJ 0.Jy
} [ [ oW &= OW
Yo Vi Yo so let's take a single timestep t:
/| /| 1
@ U @ y @ -
W W W
X X X

0 1 2



Let's try it our for W with the chain rule:

J, J, J, oJ 0.Jy
o oW " 2w
Yo Y, Yo so let’s take a single timestep t:
0Js
J q J 07
ow
@D
W W W

X X

0 1 x

2



Let's try it our for W with the chain rule:

J J J 0J 0J;

| i ] oW~ 2w
Yo Y, Yo so let’s take a single timestep t:
T o, _ 0
oW  Oy2
DD
W W W

X X

0 1 x

2



Let's try it our for W with the chain rule:

J, J, J, oJ 0.Jy
o oW " 2w
Yo Y, Yo so let’s take a single timestep t:
J 0y _ 003 0
OW  Oy2 Oss
DD
W W W




Let's try it our for W with the chain rule:

. , ; 01 _ N~ 0
} [ [ oW &= OW
Yo Y, Yo so let’s take a single timestep t:
‘ ‘ ‘ 8J2 &]2 8y2 882
V Vv V _—
oW 8y2 882 oW
O@ D




Let's try it our for W with the chain rule:

J, J, J, oJ 0.Jy

| | | oW S oW

Yo Y, Yo so let's take a single timestep t:
/| /| J 0Js  0Js Oya(0s9

ow 0y2 aSQM

' C but walt...




Let's try it our for W with the chain rule:

J, J, J, oJ 0.Jy

| | | oW S oW

Yo Y, Yo so let’s take a single timestep t:
/| /| J 0Js  0Js Oya(0s9

ow 0y2 aSQM

@T@T’@ J but wait. ..
so = tanh(Us; + Wxs)
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Let's try it our for W with the chain rule:

, , , 01 _ =0
| | | oW &= OW
Yo Vi Yo so let's take a single timestep t:
N R 0 _ 0%
ow  0y2 852
@ @ U @ 0 S but wait...
sg = tanh(Ulsi|+ Wz2)
W W W
P T T s, also depends on W so we can't just
’ : ’ treat 22 as a constant!

ow
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Let's try it our for W with the chain rule:

R
| | J

@U

W

1

y
v v
@U@U

W

W

X X

0 1 X

2



Let's try it our for W with the chain rule:

J, J, J, 882
| | | oW
Yo Y1 Yo
J J J

O @

W

W W

Lo T Ly



Let's try it our for W with the chain rule:

/s 882
| oW
0 1 y
|

2 | 882 (981
" Os1 OW

Vv \Y V

b
| |




Let's try it our for W with the chain rule:

/s 882
| oW
0 1 y
|

2 | 882 881
! ! ! - Os1 OW

P& omom

" Osq OW

b
| |




Backpropagation through time:

3(]2 Z (9J2 8?/2 882 aSk
ay2 0so 08 OW
\ )

Y
Contributions of W in previous

timesteps to the error at timestep ¢
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Backpropagation through time:

(9Jt Z aJt ayt 8875 5’sk
(’9yt 0s; 0s OW
\

Y
Contributions of W in previous

timesteps to the error at timestep ¢

)
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Why are RNNs hard to train?



Vanishing Gradient Problem

5’J2

Z

0J2 0y

882

aSk

83/2 052

&Sk

ow



Vanishing Gradient Problem

6’J2 Z 5’J2 8y2 (982 aSk
8y2 0S5 @%(?W

0 1 2

Iod

_ . a =U: e S —
U U \880 681 880/

W

W W

X X

0 1 X

2




Vanishing Gradient Problem

0Jp  ~= 0.J,, Oyy, 05, Os}, Osn Osn1  Os3 052 Os:
— Z 0S8n—1 0852 0s9 0s1 0sg

oW — 0y, 0s,, 0s|OW
Wbetween timesteps

gets bigger, this product gets
longer and longer!
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Vanishing Gradient Problem

P I
C? “@=O=@ --f*({)

0

what are each of these terms? .| _98n Osn o 053 032 081
9 5’sn_1 88n_2 5’82 881 (980
Sn .
5 — Wszag [f’(WSj_1+ij)}
Sn—1 /

W = sampled from standard f=tanh or sigmoid so f' <1
normal distribution = mostly < 1

we're multiplying a lot of small numbers together.
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Vanishing Gradient Problem

we're multiplying a lot of small numbers together.

so what?

errors due to further back timesteps have increasingly
smaller gradients.

so what?

parameters become biased to capture shorter-term
dependencies.
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A Toy Example

» 2 categories of sequences

» Can the single tanh unit learn to store for T time steps 1 bit of

iInformation given by the sign of initial input?

1
z; = f(a:) = tanh(ay)

a; = Wiy + h:

W ;
h 0.8

J

10

15

20

25

Prob(success | seq. length T)

g

ik

10

45

50 55 &0 T

Slide credit: Yoshua Bengio
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Vanishing Gradient Problem

“In , | had a great time and | learnt some
of the

our parameters are not trained to capture long-term
dependencies, so the word we predict will mostly depend on
the previous few words, not much earlier ones

112



Long-Term Dependencies

 The RNN gradient is a product of Jacobian matrices, each associated with a step
In the forward computation. To store information robustly in a finite-dimensional
state, the dynamics must be contractive [Bengio et al 1994].

L =L(sr(s7—1(...st+1(5¢,--.))))
oL 0L &ST 8St+1

Os; B Ost Ost_1 08

* Problems:
* sing. values of Jacobians > 1 - gradients explode
 or sing. values < - gradients shrink & vanish
e or random - variance grows exponentially

Slide credit: Yoshua Bengio 113



RNN Tricks

(Pascanu et al., 2013; Bengio et al., 2013; Gal and Ghahramani, 2016;Morishita et al., 2017)

* Mini-batch creation strategies (efficient computations)

 Clipping gradients (avoid exploding gradients)

_eaky Integration (propagate long-term dependencies)
Viomentum (cheap 2nd order)
Dropout (avoid overfitting)

nitialization (start in right ballpark avoids exploding/vanishing)

« Sparse Gradients (symmetry breaking)
» Gradient propagation regularizer (avoid vanishing gradient)
» Gated self-loops (LSTM & GRU, reduces vanishing gradient)

Slide adapted from Yoshua Bengio 114



Mini-batching in RNNSs

* Mini-batching makes things much faster!

« But mini-batching in RNNs is harder than in feed-forward networks
- Each word depends on the previous word
- Sequences are of various length

» Padding:

this
this

IS an example </s>

IS another </s>

</s>

* |[f we use sentences of different lengths, too much padding and sorting

can result in decreased performance

* To remedy this: sort sentences so similarly-lengthed seqgs are in the same

batch

Slide adapted from Graham Neubig 115



Mini-batching in RNNSs

* I\/Iany alternatives: Algorithm 1 Create mini-batches

1:
1. Shuffle the corpus randomly before creating 2:

mini-batches (with no sorting).
2. Sort based on the source sequence length.
3. Sort based on the target sequence length.

Sort using the source sequence length, break
ties by sorting by target sequence length.

5. Sort using the target sequence length, break
ties by sorting by source sequence length.

® XN Rw

9:
10:
11:
12:
13:

C < Training corpus
C' <+ sort(C) or shuffle(C) © sort or shuffle
the whole corpus
B+ {} > mini-batches
10,70
while : < C'.size() do
Bj] + B[j] + C[i
if B[j].size() > max mini-batch size then
B|j] < padding(B];]) >
Padding tokens to the longest sentence in the
mini-batch
j—j+1
end if
1< 1+1
end while
B < shuffle(B) > shuffle the order of the
mini-batches

M. Morishita, Y. Oda, G. Neubig, K. Yoshino, K. Sudoh, and S. Nakamura. "An Empirical Study of Mini-Batch Creation Strategies for Neural

Machine Translation". 1st Workshop on NMT 2017
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Mini-batching in RNNs

* Many

1.

Sh
mi

So
So
So
tie
So
tie

(a) 64 sentences, Ada‘m (b) 32 sentences, Ada‘m

(c) 16 sentences, Adam

8 8 8

! 7} 7f

6l 6! 6

50 50 5}

4+ 4t 4l

3} 3t 3t

2} 2t 2t

1t 1 1

% M 2M  3M 4 5M % M 2M  3M  4M  5M % IM  2M  3M  4M  5M
8 (d) 8 sentences, Adam 8 (e) 1742 words, Adam 8 (f) 64 sentences, SGD

7t 7 71

6! 6! 6!

50\ 50 5Ny

4+ 4t 4}

3} B 3

2} 2t 2t

1t 1 1

% M  2M  3M  4M  5M %0 M 2M  3M  4M  5M %0 5M 10M 15M 20M

 May affect performance!

shuffle

src

trg

src_trg
=== trg_src

yrt or shuffle

nini-batches

ch size then
>
itence in the

order of the

M. Morishita, Y. Oda, G. Neubig, K. Yoshino, K. Sudoh, and S. Nakamura. "An Empirical Study of Mini-Batch Creation Strategies for Neural
Machine Translation". 1st Workshop on NMT 2017
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Gradient Norm Clipping

A, Oerror
& 5
if ||g|| > threshold then

A,  threshold 4
8 gl 8
end if

-2.0
4 26 -—24, 722
-2.8 26 1 0c0fb

Recurrent neural netw@rk reqularization. Zaremba et al., arXiv 2014.

0.35
(0.30
'0.25 .
L C
0.20 £
(4]
0.15

= [0.10

0.05
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https://arxiv.org/abs/1409.2329

Regularization: Dropout

 Large recurrent networks often overfit their training data by
memorizing the sequences observed. Such models generalize poorly
to novel sequences.

« A common approach in Deep Learning Is to overparametrize a model,
such that it could easily memorize the training data, and then heavily
regularize it to facilitate generalization.

* The regularization method of choice is often Dropout.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Srivastava et al. JMLR 2014.
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http://jmlr.org/papers/v15/srivastava14a.html

Regularization: Dropout

» Dropout is ineffective when applied to recurrent connections, as
repeated random masks zero all hidden units in the limit.

* The most common solution 1s to only apply dropout to non-recurrent
connections

C f; —( h*z — h*s — htt )

Recurrent neural network reqularization. Zaremba et al., arXiv 2014,
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https://arxiv.org/abs/1409.2329

Regularization: Dropout

» A Better Solution: Use the same dropout mask at each time step
for both inputs, outputs, and recurrent layers.

Yt—1 Yt Yt+1 Yt—1 Yy Yt+1
————— > |:|——————_>|:|__—————>|:|—————> él:‘ )I:I )Dé
T T T T T Each square represents an RNN unit,
with horizontal arrows representing
————— -------0------->----- > [] >[] > > recurrent connections. Vertical arrows
represent the input and output to each
RNN unit. Coloured connections rep-
resent dropped-out inputs, with diffe-
rent colours corresponding to different
Ti_1 Ty Ti+41 Ti_1 Ty Ti41 d;?]p:joijt Tas(l;s.dDashed t!ines ciLres—
. .. o standard connections with no
(a) Naive dropout RNN (b) Variational RNN Sropout_

A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. Gal and Ghahramani. NIPS 2016 .




Regularization: Norm-stabilizer

» Stabilize the activations of RNNs by penalizing the squared distance
between successive hidden states’ norms

1 T 6 : :
2 —_— 3=0
B > (Ihelly = lhe-l;) 1| |
t=1

:‘4~ T .3:50

% | 3=100

 Enforce the norms of the hidden = 3} | —  3=200

layer activations approximately 2f
constant across time Lo |
0 1000 2000 3000 0 10 20 30 40 50

timestep (t) timestep (t)

Regularizing RNNs by Stabilizing Activations. Krueger and Memisevic, ICLR 2016

122


https://arxiv.org/abs/1511.08400

Regularization: Layer Normalization

« Similar to batch normalization

 Computes the normalization statistics separately at each time step
» Effective for stabilizing the hidden state dynamics in RNNs

* Reduces training time

Attentive reader

1.Or~wrsrvsmw :
— LSTM
ht = f {E ® ( t_ ILLt) + b} 0.0l — BN-LSTM
O't 9 — BN-everywhere
808 —— LN-LSTM
H o
1 =
o
pt=— E a; 507
H i=1 [
o 0.6f
g
H
1 0.5
t | = E : t )2
O- _ \ H ( 7 ILL ) 0.4 ‘ ‘ ‘ ‘ ‘ ‘ ‘
. "0 100 200 300 400 500 600 700 800
1=1 trainina steps (thousands)

Layer Normalization [Ba, Kiros & Hinton, 2016] 123



Scheduled Sampling

 “change the training
process from a fully guided
scheme using the true

Loss /}\ Loss
\ Softmax over Softmax over

previous token, towards a y(t-1) y(t)
less guided scheme which T T
mostly uses the generated |__" —>--——> htt-1) —> h®) [—
foken instead.” t t t

X true y(t-2) / true y(t-1)

P(y¢|ht) with hy = f(hi—1,Yt—1)

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., NIPS 2015
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https://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf

Scheduled Sampling

 “change the training
process from a fully guided
scheme using the true
previous token, towards a
less guided scheme which

mostly uses the generated |__"1) j—>-

token instead.” t

* During training, randomly
replace a conditioning
ground truth token by the
model's previous prediction

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., NIPS 2015

Sample

¢~ Softmax over )

y(t-1)

i

Sample

y(t)

!

h(t-1)

f

sampled y(t-2)

h(t)

*

P(y¢|he) with hy = f(hi—1,70:t—1)

sampled y(t-1)


https://papers.nips.cc/paper/5956-scheduled-sampling-for-sequence-prediction-with-recurrent-neural-networks.pdf

Scheduled Sampling

 “change the training
process from a fully guided Samm Sample
scheme using the true Loss Loss
previous token, towards a ™~ (ﬂ;&}n\ (ﬂ"ﬁ\ <
less guided scheme which T T
mostly uses the generated |__"1) —>-—>_h(t-1) h()
token instead.” 1 ;‘_J 1

X &

* During training, randomly A Ry ] Q
replace a conditioning |\ - %
ground truth token by the §§ \ sampled y(t-2) true y(t-2) true y(t-1)

model's previous prediction s e o

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Bengio et al., NIPS 2015
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Gated Cells

 rather each node being just a simple RNN cell, make each node
a more complex unit with gates controlling what information is
passed through

VS Long short term memory cells are
able to keep track of information
throughout many timesteps.

RNN LSTM, GRU, etc
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Long Short-Term Memory (LSTM)

Long Short-Term Memory [Hochreiter et al., 1997]
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Long Short-Term Memory (LSTM)

forget
irrelevant parts
of previous
state

Long Short-Term Memory [Hochreiter et al., 1997]
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Long Short-Term Memory (LSTM)

> Cj+1

Long Short-Term Memory [Hochreiter et al., 1997]
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Long Short-Term Memory (LSTM)

C] | C]_|_1

output certain
parts of cell
state

Long Short-Term Memory [Hochreiter et al., 1997]
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Long Short-Term Memory (LSTM)

forget selectively output certain
irrelevant parts update cell parts of cell
of previous state values state
state

Long Short-Term Memory [Hochreiter et al., 1997]
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The LSTM ldea

“Dashed line indicates time-lag

\ht

¢, =c,_, +tanhW (

h, = tanhc,

X

t—1

)
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The Original LSTM Cell

Xt\ /ht-1 Xt\ /ht_1
: X,
WXi Whi WXO Who Cl‘ — Ct—l + lt ® tanhW (h j
Input 8u;cput t—1
G ate B
X, —Wie " Cell h, =0, ®tanhc,
(D=0~ ———rh, !
/th | i, =0 VVI( tj_l_bi
e t—1
Similarly for oy
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The Popular LSTM Cell

xt
l, :G(Wi( j+bij
ht—l

X
C, =f,®ct1+it®tanhW( t j

t—1

xt
> hy f;:GLWf(h j—l_bfj
1

h, = o, ®tanhc,
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The Popular LSTM Cell

xt
, :G(‘Vi( ]_I_bij
h,_,

Xt\ /ht-1
W.. W, . X
X " ct:f,®ct1+zt®tanhW( tj
Input 11
Gate
Xt\WXC X
Biogs b e[ e,
W t—1
ht-’| hc
h, = o, ®tanhc,
fo

forget gate decides what information
IS going to be thrown away from the
cell state
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The Popular LSTM Cell

xl
, :G(vvi( ]_I_bi)
h,_,

Xt\ /ht-1
W.. W, . X
X " ct:f,®ct1+zt®tanhW( tj
Input -1
Gate
Xt\WXC X
JiGE: he e[ e,
W 11
ht_’| hc
h, = o, ®tanhc,
fo

input gate and a tanh layer decides
what information is going to be stored
In the cell state
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The Popular LSTM Cell

xt
l, :G(Wi( j+bij
ht—l

Xt\ /ht-1
W.. W, . X
. " ct:f,®ct1+zt®tanhW( tj
Input -1
Gate
Xt\WXC X
16 o f(w(h jbj
— .
th 1
hy ;

h, = o, ®tanhc,

Update the old cell state with the new
one.
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The Popular LSTM Cell

Xt \ /ht-1
Wxi Whi
Input
Gate
T
J X
_—
ht_’| WhC

c,=f®c,_ +1i ®tanhW(

w.

l

Xy

+ b,
r—1

X

r—1

)

inpu
t forget
gate gate behavior
0 1 remember the
previous value
1 1 add to the previous
value
0 0 erase the value

overwrite the value
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The Popular LSTM Cell

Xt \ /ht-1
Wxi Whi
Input
Gate
T
J X
_—
th
hi
fo

xt
, =0 sz( j_l_bi
h,_,

X
C, :ft®ct1+it®tanhW( t j

-1

xt
> hy f;:GLWf(h j—l_bfj
-1

h, = o, ®tanhc,

L
T — Wo bo

Output gate decides what is going to be
outputted. The final output is based on

cell state and output of sigmoid gate. 140



LSTM - Forward/Backward

lllustrated LSTM Forward and Backward Pass

http://arunmallya.github.io/writeups/nn/lstm/index.html

141
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http://arunmallya.github.io/writeups/nn/lstm/index.html

LSTM variants



The Popular LSTM Cell

Xt N1
\ X
Wi Wi, fi=0| W, h +b,
r—1

I(;]put

. Wy e Similarly for i, o,
/th C, =ft®ct1+it®tanhW(ht j

ht-1 t—1

h. = o, ®tanhc,

“Dashed line indicates time-lag 143



Extension |: Peephole LSTM

X e
\ (x)
W Whi fi=0| W, h_ |+b,
Input
W Gate A\ \ \ / )
X —— 2 X¢ y Similarly for i;, o, (uses c.)
:Q) & > hy ' o X
/th \ ¢, =f®c_+1i ®tanhW(ht j
ht-1 -1
W, h, = o, @tanhc,

 Add peephole connections.
« All gate layers look at the cell state!

“Dashed line indicates time-lag 144



Other minor variants

* Coupled Input and Forget Gate

e Full Gate Recurrence

ftzl_it

+b

146



LSTM: A Search Space Odyssey

» Tested the following variants, using Peephole LSTM as standard:
1.

O NSO WN

No Input Gate (NIG)

No Forget Gate (NFQG)

No Output Gate (NOG)

No Input Activation Function (NIAF)
No Output Activation Function (NOAF)
No Peepholes (NP)

Coupled Input and Forget Gate (CIFQG)
Full Gate Recurrence (FGR)

* On the tasks of:
— Timit Speech Recognition: Audio frame to 1 of 61 phonemes
— |AM Online Handwriting Recognition: Sketch to characters
— JSB Chorales: Next-step music frame prediction

LSTM: A Search Space Odyssey [Greff et al., 2015]
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https://arxiv.org/pdf/1503.04069.pdf

LSTM: A Search Space Odyssey

* The standard LSTM performed reasonably well on multiple datasets
and none of the modifications significantly improved the performance

» Coupling gates and removing peephole connections simplified the
LSTM without hurting performance much

* The forget gate and output activation are crucial

* Found interaction between learning rate and network size to be
minimal — indicates calibration can be done using a small network
first

LSTM: A Search Space Odyssey [Greff et al., 2015]
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Gated Recurrent Unit



Gated Recurrent Unit (GRU)

» A very simplified version of the LSTM
— Merges forget and input gate into a single ‘update’ gate
— Merges cell and hidden state

* Has fewer parameters than an LSTM and has been shown to
outperform LSTM on some tasks

| earning Phrase Representations using BNN Encoder-Decoder for Statistical Machine Translation

[Cho et al.,14]
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https://arxiv.org/abs/1406.1078
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GRU

h=(1-2z)®h_ +z,Qh'
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GRU

computes a reset gate based on
current input and hidden state

W; Reset Gate
Xt hy

152



GRU

X
h' =tanhW t
r®h_,

computes the hidden state based
on current input and hidden state

If reset gate unit is ~0, then this
ignores previous memory and only
stores the new input information
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GRU

X
h' =tanhW t
r®h_,

A
=0 Wz ht—l +bf

computes an update gate again based
on current input and hidden state
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GRU

X
h' =tanhW t
r®h_,

X, b
=c| W +
Zt ) ht—l !

h=(1-2z)®h_ +z,Qh'

Final memory at timestep t combines
both current and previous timesteps
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GRU Intuition

o
((H

h=(01-2z)®h_ +z, ®h'"

* [f reset Is close to O, ignore previous hidden
state

» Allows model to drop information that is
irrelevant in the future

» Update gate z controls how much of past
state should matter now.

—If z close to 1, then we can copy information in
that unit through many time steps! Less
vanishing gradient!

» Units with short-term dependencies often
have reset gates very active

Slide credit: Richard Socher 156



An Empirical Exploration of Recurrent
Network Architectures

* Given the rather ad-hoc design of the LSTM, the authors try to
determine If the architecture of the LSTM Is optimal

* They use an evolutionary search for better architectures

An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]
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http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

Evolutionary Architecture Search

* A list of top-100 architectures so far is maintained, initialized with the
LSTM and the GRU

 The GRU is considered as the baseline to beat

* New architectures are proposed, and retained based on performance ratio
with GRU

» All architectures are evaluated on 3 problems

— Arithmetic: Compute digits of sum or difference of two numbers provided as inputs.
Inputs have distractors to increase difficulty
3e36d9-h1h39f94eeh43keg3c = 3369 — 13994433 = -13991064

— XML Modeling: Predict next character in valid XML modeling
— Penn Tree-Bank Language Modeling: Predict distributions over words

An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]
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Evolutionary Architecture Search

» At each step

— Select 1 architecture at random, evaluate on 20 randomly chosen hyperparam
settings.

— Alternatively, propose a new architecture by mutating an existing one. Choose
prob. p from [0,1] uniformly and apply a transformation to each node with prob.
P

* |f node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x), Linear(O, x), Linear(1, x),
Linear(0.9, x), Linear(1.1, x)}

* |f node is an elementwise op, replace with {multiplication, addition, subtraction}
* |nsert random activation function between node and one of its parents
» Replace node with one of its ancestors (remove node)

 Randomly select a node (node A). Replace the current node with either the sum, product,
or difference of a random ancestor of the current node and a random ancestor of A.

— Add architecture to list based on minimum relative accuracy wrt GRU on 3
different tasks
An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]
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Evolutionary Architecture Search

* 3 novel architectures are presented In the paper
* Very similar to GRU, but slightly outperform it

 LSTM initialized with a large positive forget gate bias
outperformed both the basic LSTM and the GRU!

An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]
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LSTM initialized with large positive forget
gate bias?

* Recall ft:G(Wf(h’ j+bf)
t—1

X
C, =ft®ct1+it®tanhW(ht j
t—1

oc,_, =0c, ® f,
» Gradients will vanish if f is close to 0. Using a large positive bias ensures that f has
values close to 1, especially when training begins

» Helps learn long-range dependencies

* Originally stated in Learning to forget: Continual prediction with LSTM [Gers et al.,
2000], but forgotten over time

An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]

161


https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf

LSTMs and GRUs

Good

« Careful initialization and optimization of vanilla RNNs can enable them to learn
long(ish) dependencies, but gated additive cells, like the LSTM and GRU, often
just work.

Bad

 LSTMs and GRUs have considerably more parameters and computation per
memory cell than a vanilla RNN, as such they have less memory capacity per
parameter®

An LSTM with large positive forget gate bias works best!

*Capacity and Trainability in Recurrent Neural Networks. [Collins et al., arXiv 2016]
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Next lecture:
Attention, Transformers

and Memory



