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Using RNNs to generate Super Mario Maker levels, Adam Geitgey



Previously on CMP784
• more on transfer learning

• visualizing neuron activations

• visualizing class activations

• pre-images

• adversarial examples

• adversarial training
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Lecture overview
• Sequence modeling
• Recurrent Neural Networks (RNNs)
• The Vanilla RNN unit
• How to train RNNs
• The Long Short-Term Memory (LSTM) unit and its variants
• Gated Recurrent Unit (GRU)

Disclaimer: Much of the material and slides for this lecture were borrowed from 
—Harini Suresh’s MIT 6.S191 slides

—Arun Mallya’s tutorial on Recurrent Neural Networks

—Phil Blunsom’s Oxford Deep NLP class

—Fei-Fei Li, Andrej Karpathy and Justin Johnson’s CS231n class
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Sequence modeling
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Sequential data
• “I took the dog for a walk this morning.”

•

•

•
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sentence

medical signals

speech waveform

video frames

What is a sequence? 

● “I took the dog for a walk this morning.”

●

●

MIT 6.S191 | Intro to Deep Learning | IAP 2017

sentence

function

speech waveform

Sequences	in	Vision

Sequences	in	the	input…

Jumping

Dancing

Fighting

Eating

Running

What is a sequence? 

● “This morning I took the dog for a walk.”

●

●

MIT 6.S191 | Intro to Deep Learning | IAP 2018

sentence

medical signals

speech waveform



Modeling sequential data
• Sample data sequences from a certain distribution 

• Generate natural sentences to describe an image 

• Activity recognition from a video sequence

6Adapted from Xiaogang Wang 

P (x1, . . . , xN )

P (y1, . . . , yM |I)

P (y|x1, . . . , xN )

cuhk

Modeling sequential data

Sample data sequences from a certain distribution

P(x1, . . . , xT )

Generate natural sentences to describe an image

P(y1, . . . , yT |I)

Activity recognition from a video sequence

P(y|x1, . . . , xT )

Xiaogang Wang (linux) Recurrent Neural Network March 2, 2017 4 / 48

Sequences	in	Vision

Sequences	in	the	input…

Jumping

Dancing

Fighting

Eating

Running



Modeling sequential data
• Speech recognition

• Object tracking 
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P (y1, . . . , yN |x1, . . . , xN )

P (y1, . . . , yN |x1, . . . , xN )

What is a sequence? 

● “I took the dog for a walk this morning.”

●

●

MIT 6.S191 | Intro to Deep Learning | IAP 2017

sentence

function

speech waveform→ Hey Siri

cuhk

Modeling sequential data

Speech recognition
P(y1, . . . , yT |x1, . . . , xT )

Object tracking
P(y1, . . . , yT |x1, . . . , xT )

Xiaogang Wang (linux) Recurrent Neural Network March 2, 2017 5 / 48

Adapted from Xiaogang Wang 



Modeling sequential data
• Generate natural sentences to describe a video 

• Machine translation
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P (y1, . . . , yM |x1, . . . , xN )

P (y1, . . . , yM |x1, . . . , xN )

Video description:
Sequence-to-sequence problem

A man is riding a bike.Deep Neural Network

Input Output

… → A man is riding a bike

Adapted from Xiaogang Wang 



Represent a sequence as a bag of words

• Problem: Bag of words does not preserve order 
9

idea: represent a sequence as a bag of words

MIT 6.S191 | Intro to Deep Learning | IAP 2017

“I dislike rain.” 

[ 0 1 0 1 0 0 0 1 ]

prediction



Bag of words does not preserve order!
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problem: bag of words does not preserve order

“The food was good, not bad at all.” 
vs

“The food was bad, not good at all.” 

MIT 6.S191 | Intro to Deep Learning | IAP 2017



Maintain an ordering within feature vector
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idea: maintain an ordering within feature vector

[ 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

    On         Monday        it           was       snowing

MIT 6.S191 | Intro to Deep Learning | IAP 2017

prediction

One hot feature 
vector indicates 
what each word is

• Problem: Hard to deal with different word orders!



Hard to deal with different word orders!
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problem: hard to deal with different word orders

“On Monday, it was snowing.” 
vs

“It was snowing on Monday.” 

MIT 6.S191 | Intro to Deep Learning | IAP 2017



Hard to deal with different word orders!
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problem: hard to deal with different word orders

[ 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

    On         Monday        it           was      snowing

[ 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0  ]

        It         was      snowing      on        Monday

MIT 6.S191 | Intro to Deep Learning | IAP 2017

vs

• we would have to relearn the rules of language at each point in the 
sentence



idea: markov models

MIT 6.S191 | Intro to Deep Learning | IAP 2017

Markov Models

• Problem: we can’t model long-term dependencies 
14



Markov Models
• Markov assumption: Each state depends only on the last state. 

• We need information from the far past and future to accurately guess 
the correct word. 

15

problem: we can’t model long-term dependencies

MIT 6.S191 | Intro to Deep Learning | IAP 2017

“In France, I had a great time and I learnt some of the  _____ 
language.”

We need information from the far past and future to 
accurately guess the correct word.



To model sequences, we need

1. to deal with variable length sequences
2. to maintain sequence order
3. to keep track of long-term dependencies 
4. to share parameters across the sequence 

16



Recurrent Neural 
Networks
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Recurrent Neural Networks
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h

y

x

Feed Forward Network

hn

yn

xn

t = n

Recurrent Network

Notice: the same function and the 
same set of parameters are used 
at every time step.



Unrolled RNN
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h1
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x1

t = 1

h2
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h3

y3

x3

t = 2

t = 3



Sample RNN
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h1

y1

x1

t = 1

h2

y2

x2

h3

y3

x3

t = 2

t = 3

h0



The Vanilla RNN Cell
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ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ht

xt

ht-1

W

cell state



The Vanilla RNN Forward
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h1

x1  h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht )
Ct = Loss(yt ,GTt )



The Vanilla RNN Forward
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h1

x1  h0

C1

y1

h2

x2 h1

C2

y2

h3

x3 h2

C3

y3

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht )
Ct = Loss(yt ,GTt )

indicates shared weights

• Note that the weights are shared over time
• Essentially, copies of the RNN cell are made over time (unrolling/unfolding), with different inputs 

at different time steps



Sentiment Classification
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Sentiment Classification
• Classify a 

restaurant review from Yelp! OR
movie review from IMDB OR
…
as positive or negative

• Inputs: Multiple words, one or more sentences
• Outputs: Positive / Negative classification

• “The food was really good”
• “The chicken crossed the road because it was uncooked”
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Sentiment Classification

RNN

The

h1
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Sentiment Classification

RNN

The

RNN

food

h1 h2
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Sentiment Classification

RNN

The

RNN

food

h1 h2

RNN

good

hn-1

hn
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Sentiment Classification

RNN

The

RNN

food

h1 h2

RNN

good

hn-1

hn

Linear 
Classifier
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Sentiment Classification

RNN

The

RNN

food

h1 h2

RNN

good

hn-1

hn

Linear 
Classifier

IgnoreIgnore

h1 h2
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Language Modeling
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Language Modeling

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

KING LEAR:
O, if you were a feeble sight, 
the courtesy of your law,
Your sight and several breath, 
will wear the gods
With his heads, and my hands 
are wonder'd at the deeds,
So drop upon your lordship's 
head, and your opinion
Shall be against your honour.

32

• Language models aim to represent the history of observed text 
(w1,...,wt-1) succinctly in order to predict the next word (wt): 

possible task: language model 

MIT 6.S191 | Intro to Deep Learning | IAP 2017

all the works of 
shakespeare

KING LEAR:
O, if you were a feeble sight, the 
courtesy of your law,
Your sight and several breath, will 
wear the gods
With his heads, and my hands are 
wonder'd at the deeds,
So drop upon your lordship's head, 
and your opinion
Shall be against your honour.

language 
model

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNN Language Models
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hn = g(V [xn;hn�1] + c)

ŷn = Whn + b

a probability distribution over possible 
next words, aka a softmax



RNN Language Models
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hn = g(V [xn;hn�1] + c)

ŷn = Whn + b



RNN Language Models
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hn = g(V [xn;hn�1] + c)

ŷn = Whn + b



RNN Language Models
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hn = g(V [xn;hn�1] + c)

ŷn = Whn + b

Recurrent Neural Network Language Models

hn = g(V [xn; hn�1] + c)
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train more

train more

train more

at first:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


38http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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https://twitter.com/deepdrumpf

https://twitter.com/deepdrumpf


More Language Modeling Fun –
Generating Super Mario Levels 

41https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b68df3

Original Level:

Textual Representation:

A level generated by a RNN:

https://medium.com/@ageitgey/machine-learning-is-fun-part-2-a26a10b68df3


Image Captioning
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Image Captioning

43

Explain Images with Multimodal Recurrent Neural Networks [Mao et al.]
Deep Visual-Semantic Alignments for Generating Image Descriptions [Karpathy and Fei-Fei]
Show and Tell: A Neural Image Caption Generator [Vinyals et al.]
Long-term Recurrent Convolutional Networks for Visual Recognition and Description [Donahue et al.]
Learning a Recurrent Visual Representation for Image Caption Generation [Chen and Zitnick]
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Convolutional Neural Network

Recurrent Neural Network



test image
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test image
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X
47

test image



x0
<START>
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test image

<START>



h0

y0

before:

h = tanh(Wxh*x+Whh*h)

now:

h = tanh(Wxh*x+Whh*h+Wih*v)

v

Wih
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test image

<START>

x0
<START>



h0

y0

sample!
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test image

<START>

x0
<START>

straw



h0

y0

h1

y1
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test image

<START>

x0
<START>

straw



h0

y0

h1

y1

sample!
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test image

<START>

x0
<START>

straw hat



h0

y0

h1

y1

h2

y2
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test image

<START>

x0
<START>

straw hat



h0

x0
<START>

y0

<START>

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.
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test image



Beam Search (K = 3)

For t =1...T :
• For all k and for all possible output words w:

• Update beam: 
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Beam Search (K = 3)

a

the

red

For t=1 . . . T :

For all k and for all possible output words w:

s(w, ŷ(k)1:t�1) log p(ŷ(k)1:t�1|x) + log p(w|ŷ(k)1:t�1, x)

Update beam:

ŷ(1:K)
1:t  K-argmax s(w, ŷ(k)1:t�1)

Beam Search (K = 3)

a

the

red

For t=1 . . . T :

For all k and for all possible output words w:

s(w, ŷ(k)1:t�1) log p(ŷ(k)1:t�1|x) + log p(w|ŷ(k)1:t�1, x)

Update beam:

ŷ(1:K)
1:t  K-argmax s(w, ŷ(k)1:t�1)

Slide credit: Alexander Rush



Beam Search (K = 3)

For t =1...T :
• For all k and for all possible output words w:

• Update beam: 
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Beam Search (K = 3)

For t =1...T :
• For all k and for all possible output words w:

• Update beam: 
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Beam Search (K = 3)

For t =1...T :
• For all k and for all possible output words w:

• Update beam: 
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Beam Search (K = 3)

For t =1...T :
• For all k and for all possible output words w:

• Update beam: 
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Beam Search (K = 3)

For t =1...T :
• For all k and for all possible output words w:

• Update beam: 
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Beam Search (K = 3)
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ŷ(1:K)
1:t  K-argmax s(w, ŷ(k)1:t�1)
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Microsoft COCO
[Tsung-Yi Lin et al. 2014]
mscoco.org

currently:
~120K images
~5 sentences each

Image Description Datasets

61

http://mscoco.org/
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Class Exercise
• Consider the problem of translation of English to French

• E.g. What is your name      Comment tu t'appelle
• Is the below architecture suitable for this problem?

64Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf

E1 E2 E3

F1 F2 F3

http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf


• Consider the problem of translation of English to French

• E.g. What is your name      Comment tu t'appelle
• Is the below architecture suitable for this problem?

• No, sentences might be of different length and words might not 
align. Need to see entire sentence before translating

Class Exercise

65

E1 E2 E3

F1 F2 F3

Adapted from http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf

http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf


Encoder-Decoder Seq2Seq Model
• Consider the problem of translation of English to French

• E.g. What is your name      Comment tu t'appelle
• Sentences might be of different length and words might not align. 

Need to see entire sentence before translating

• Input-Output nature depends on the structure of the problem at hand

66
Seq2Seq Learning with Neural Networks. Sutskever et al., NIPS 2014

F1 F2 F3

E1 E2 E3

F4

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf


Recurrent Networks offer a lot of flexibility:

67

Vanilla Neural Networks



Recurrent Networks offer a lot of flexibility:

68

e.g. Image Captioning
image -> sequence of words



Recurrent Networks offer a lot of flexibility:

69

e.g. Sentiment Classification
sequence of words -> sentiment



Recurrent Networks offer a lot of flexibility:

70

e.g. Machine Translation
seq of words -> seq of words



Recurrent Networks offer a lot of flexibility:

71

e.g. Video classification on frame 
level



Multi-layer RNNs
• We can of course design RNNs with multiple hidden layers

• Think exotic: Skip connections across layers, across time, …
72

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6



Bi-directional RNNs
• RNNs can process the input sequence in forward and in the reverse 

direction

• Popular in speech recognition and machine translation
73

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6



How to Train 
Recurrent Neural Networks

74



BackPropagation Refresher

SGD Update

W ←W −η ∂C
∂W

∂C
∂W

= ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

y = f (x;W )
C = Loss(y, yGT )

75

x

C

f (x; W)

y



Multiple Layers

SGD Update

W2 ←W2 −η
∂C
∂W2

W1 ←W1 −η
∂C
∂W1

76

f1(x; W1)

x

y1

C

f2(y1; W2)

y2

y1 = f1(x;W1)
y2 = f2 (y1;W2 )
C = Loss(y2 , yGT )



Chain Rule for Gradient Computation

Application of the Chain Rule

y1 = f1(x;W1)
y2 = f2 (y1;W2 )
C = Loss(y2 , yGT )

∂C
∂W1

= ∂C
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂y1
∂W1

⎛
⎝⎜

⎞
⎠⎟

Find ∂C
∂W1

, ∂C
∂W2

∂C
∂W2

= ∂C
∂y2

⎛
⎝⎜

⎞
⎠⎟

∂y2
∂W2

⎛
⎝⎜

⎞
⎠⎟

= ∂C
∂y2

⎛
⎝⎜

⎞
⎠⎟

∂y2
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂y1
∂W1

⎛
⎝⎜

⎞
⎠⎟

77

f1(x; W1)

x

y1

C

f2(y1; W2)

y2



Chain Rule for Gradient Computation

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟ − How does output change due to params

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟  − How does output change due to inputs

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟  = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟

∂C
∂W

⎛
⎝⎜

⎞
⎠⎟  = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

We are interested in computing:
∂C
∂W

⎛
⎝⎜

⎞
⎠⎟ ,

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Intrinsic to the layer are:

Given: ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

78

x

f (x; W)

y

How does output change due to params

How does output change due to inputs



Chain Rule for Gradient Computation

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟ − How does output change due to params

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟  − How does output change due to inputs

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟  = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟

∂C
∂W

⎛
⎝⎜

⎞
⎠⎟  = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

We are interested in computing:
∂C
∂W

⎛
⎝⎜

⎞
⎠⎟ ,

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Intrinsic to the layer are:

Given: ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟
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f (x; W)
How does output change due to params

How does output change due to inputs

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟



Extension to Computational Graphs

f(x; W)

f1(y; W1) f2(y; W2)

f(x; W)

x

y

x

y y

y2y1
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Extension to Computational Graphs

f(x; W)

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

f1(y; W1)

∂C1
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂C1
∂y

⎛
⎝⎜

⎞
⎠⎟

f2(y; W2)

∂C2

∂y2

⎛
⎝⎜

⎞
⎠⎟

∂C2

∂y
⎛
⎝⎜

⎞
⎠⎟

f(x; W)

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Σ
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Extension to Computational Graphs

f(x; W)

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

f1(y; W1)

∂C1
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂C1
∂y

⎛
⎝⎜

⎞
⎠⎟

f2(y; W2)

∂C2

∂y2

⎛
⎝⎜

⎞
⎠⎟

∂C2

∂y
⎛
⎝⎜

⎞
⎠⎟

f(x; W)

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Gradient AccumulationΣ
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Sample RNN
• RNNs remember their previous state:

83

RNNS remember their previous state: 

MIT 6.S191 | Intro to Deep Learning | IAP 2017

t = 0

x0 : “it” W

U

s0

s1

t = 0



Sample RNN
• RNNs remember their previous state:

84

t = 1



Sample RNN
• “unfolding” the RNN across time:

85

notice that W and U 
stay the same! 

“unfolding” the RNN across time: 
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Sample RNN
• “unfolding” the RNN across time:

86

sn can contain 
information from all 
past timesteps

“unfolding” the RNN across time: 
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we have a loss at each timestep:
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We have a loss at each timestep:
(since we’re making a prediction at each timestep)
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we have a loss at each timestep:
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We sum the losses across time:

Loss at time t:

Total loss:

we have a loss at each timestep:
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x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2

Jt(⇥)

J(⇥) =
X

t

Jt(⇥)
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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x0
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s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2 @J

@W
=

X

t

@Jt
@W
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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x0
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s0
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s1
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W

x2

W

s2

U
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V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2

so let’s take a single timestep t:

@J

@W
=

X

t

@Jt
@W
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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X
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@Jt
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@s2
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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Let’s try it our for W with the chain rule:we have a loss at each timestep:

MIT 6.S191 | Intro to Deep Learning | IAP 2017

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2
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Let’s try it our for W with the chain rule:we have a loss at each timestep:

MIT 6.S191 | Intro to Deep Learning | IAP 2017

x0

W

s0

U

s1

U

x1

W

x2

W

s2

U
. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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but wait…
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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s1
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x1
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. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2

so let’s take a single timestep t:

@J

@W
=

X

t

@Jt
@W

@J2
@W

=
@J2
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@y2
@s2

@s2
@W

but wait…

s2 = tanh(Us1 +Wx2)
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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x0
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s0

U

s1
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x1

W

x2

W

s2

U
. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2

so let’s take a single timestep t:

@J

@W
=

X

t

@Jt
@W

@J2
@W

=
@J2
@y2

@y2
@s2

@s2
@W

s2 = tanh(Us1 +Wx2)
but wait…

s1 also depends on W so we can’t just 
treat          as a constant! @s2

@W
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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Let’s try it our for W with the chain rule:we have a loss at each timestep:

MIT 6.S191 | Intro to Deep Learning | IAP 2017
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Let’s try it our for W with the chain rule:we have a loss at each timestep:

MIT 6.S191 | Intro to Deep Learning | IAP 2017

x0
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s0
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s1
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x1

W

x2

W

s2

U
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Let’s try it our for W with the chain rule:we have a loss at each timestep:
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Backpropagation through time:
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@J2
@W

=
2X

k=0

@J2
@y2

@y2
@s2

@s2
@sk

@sk
@W

Contributions of W in previous 
timesteps to the error at timestep t



Backpropagation through time:
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@Jt
@W

=
tX

k=0

@Jt
@yt

@yt
@st

@st
@sk

@sk
@W

Contributions of W in previous 
timesteps to the error at timestep t



Why are RNNs hard to train?

105



Vanishing Gradient Problem
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@J2
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=
2X

k=0
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Vanishing Gradient Problem
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@J2
@W

=
2X

k=0

@J2
@y2

@y2
@s2

@s2
@sk

@sk
@W

we have a loss at each timestep:
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W
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U
. . . 

V V V

y0 y1 y2

(since we’re making a prediction at each timestep)

J0 J1 J2
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=
@s2
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@s1
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at k=0:



Vanishing Gradient Problem
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problem: vanishing gradient
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x0

s0 s1

x1 x2

s2

y0 y1 y2

x3

s3

y3

xn

sn

yn

.  .  . 

@Jn
@W

=
nX

k=0

@Jn
@yn

@yn
@sn

@sn
@sk

@sk
@W

@sn
@sn�1

@sn�1

@sn�2
. . .

@s3
@s2

@s2
@s1

@s1
@s0

as the gap between timesteps
gets bigger, this product gets 
longer and longer! 



Vanishing Gradient Problem
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problem: vanishing gradient
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x0

s0 s1

x1 x2

s2

y0 y1 y2

x3

s3

y3

xn

sn

yn

.  .  . 

@sn
@sn�1

@sn�1

@sn�2
. . .

@s3
@s2

@s2
@s1

@s1
@s0

what are each of these terms?

@sn
@sn�1

= WT diag
⇥
f 0(Wsj�1+Uxj )

⇤

W = sampled from standard 
normal distribution = mostly < 1 

f = tanh or sigmoid so  f ’ < 1 

we’re multiplying a lot of small numbers together. 
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we’re multiplying a lot of small numbers together. 

so what? 
errors due to further back timesteps have increasingly 
smaller gradients. 

so what?
parameters become biased to capture shorter-term
dependencies. 

Vanishing Gradient Problem



A Toy Example
• 2 categories of sequences

• Can the single tanh unit learn to store for T time steps 1 bit of 
information given by the sign of initial input? 

111Slide credit: Yoshua Bengio

Simple Experiments from 1991 while I 
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•  2	categories	of	sequences	
•  Can	the	single	tanh	unit	learn	to	store		for	T	1me	steps	1	bit	of	

informa1on	given	by	the	sign	of	ini1al	input?	
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Prob(success	|	seq.	length	T)	
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•  2	categories	of	sequences	
•  Can	the	single	tanh	unit	learn	to	store		for	T	1me	steps	1	bit	of	

informa1on	given	by	the	sign	of	ini1al	input?	

12	

Prob(success	|	seq.	length	T)	Prob(success | seq. length T)
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“In France, I had a great time and I learnt some 
of the  _____ language.”

our parameters are not trained to capture long-term 
dependencies, so the word we predict will mostly depend on 
the previous few words, not much earlier ones

Vanishing Gradient Problem

our parameters are not trained to capture long-term 
dependencies, so the word we predict will mostly depend on 
the previous few words, not much earlier ones 



Long-Term Dependencies
• The RNN gradient is a product of Jacobian matrices, each associated with a step 

in the forward computation. To store information robustly in a finite-dimensional 
state, the dynamics must be contractive [Bengio et al 1994]. 

• Problems:
• sing. values of Jacobians > 1 → gradients explode
• or sing. values < →  gradients shrink & vanish
• or random → variance grows exponentially 

113Slide credit: Yoshua Bengio

Long-Term Dependencies    
•  The	RNN	gradient	is	a	product	of	Jacobian	matrices,	each	

associated	with	a	step	in	the	forward	computa%on.	To	store	
informa%on	robustly	in	a	finite-dimensional	state,	the	dynamics	
must	be	contrac%ve	[Bengio	et	al	1994].		

	
•  Problems:		

•  sing.	values	of	Jacobians	>	1	à	gradients	explode		
•  or	sing.	values	<	1	à	gradients	shrink	&	vanish	
•  or	random	à	variance	grows	exponen%ally	
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robustly	requires	
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RNN Tricks

• Mini-batch creation strategies (efficient computations)

• Clipping gradients (avoid exploding gradients) 

• Leaky integration (propagate long-term dependencies) 

• Momentum (cheap 2nd order) 

• Dropout (avoid overfitting)

• Initialization (start in right ballpark avoids exploding/vanishing) 

• Sparse Gradients (symmetry breaking) 

• Gradient propagation regularizer (avoid vanishing gradient) 

• Gated self-loops (LSTM & GRU, reduces vanishing gradient) 
114Slide adapted from Yoshua Bengio

(Pascanu et al., 2013; Bengio et al., 2013; Gal and Ghahramani, 2016;Morishita et al., 2017)



Mini-batching in RNNs
• Mini-batching makes things much faster! 
• But mini-batching in RNNs is harder than in feed-forward networks

− Each word depends on the previous word
− Sequences are of various length

• Padding: 

• If we use sentences of different lengths, too much padding and sorting
can result in decreased performance
• To remedy this: sort sentences so similarly-lengthed seqs are in the same

batch
115Slide adapted from Graham Neubig



Mini-batching in RNNs
• Many alternatives:

1. Shuffle the corpus randomly before creating
mini-batches (with no sorting). 

2. Sort based on the source sequence length. 

3. Sort based on the target sequence length. 

4. Sort using the source sequence length, break 
ties by sorting by target sequence length.

5. Sort using the target sequence length, break 
ties by sorting by source sequence length.

116
M. Morishita, Y. Oda, G. Neubig, K. Yoshino, K. Sudoh, and S. Nakamura. "An Empirical Study of Mini-Batch Creation Strategies for Neural
Machine Translation". 1st Workshop on NMT 2017

Figure 1: An example of mini-batching in an encoder-decoder translation model.

ample of mini-batching two sentences of different
lengths in an encoder-decoder model.

The first thing that we can notice from the fig-
ure is that multiple operations at a particular time
step t can be combined into a single operation. For
example, both “John” and ”I” are embedded in a
single step into a matrix that is passed into the en-
coder LSTM in a single step. On the target side
as well, we calcualate the loss for the target words
at time step t for every sentence in the mini-batch
simultaneously.

However, there are problems when sentences
are of different length, as only some sentences will
have any content at a particular time step. To re-
solve this problem, we pad short sentences with
end-of-sentence tokens to adjust their length to the
length of the longest sentence. In the Figure 1,
purple colored “h/si” indicates the padded end-of-
sentence token.

Padding with these tokens makes it possible to
handle variably-lengthed sentences as if they were
of the same length. On the other hand, the com-
putational cost for a mini-batch increases in pro-
portion to the longest sentence therein, and ex-
cess padding can result in a significant amount of
wasted computation. One way to fix this prob-
lem is by creating mini-batches that include sen-
tences of similar length (Sutskever et al., 2014)

Algorithm 1 Create mini-batches
1: C  Training corpus
2: C  sort(C) or shuffle(C) . sort or shuffle

the whole corpus
3: B  {} . mini-batches
4: i 0, j  0
5: while i < C.size() do
6: B[j] B[j] +C[i]
7: if B[j].size() � max mini-batch size then
8: B[j] padding(B[j]) .

Padding tokens to the longest sentence in the
mini-batch

9: j  j + 1
10: end if
11: i i+ 1
12: end while
13: B  shuffle(B) . shuffle the order of the

mini-batches

to reduce the amount of padding required. Many
NMT toolkits implement length-based sorting of
the training corpus for this purpose. In the fol-
lowing section, we discuss several different mini-
batch creation strategies used in existing neural
MT toolkits.



Mini-batching in RNNs
• Many alternatives:

1. Shuffle the corpus randomly before creating
mini-batches (with no sorting). 

2. Sort based on the source sequence length. 

3. Sort based on the target sequence length. 

4. Sort using the source sequence length, break 
ties by sorting by target sequence length.

5. Sort using the target sequence length, break 
ties by sorting by source sequence length.
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Figure 1: An example of mini-batching in an encoder-decoder translation model.

ample of mini-batching two sentences of different
lengths in an encoder-decoder model.

The first thing that we can notice from the fig-
ure is that multiple operations at a particular time
step t can be combined into a single operation. For
example, both “John” and ”I” are embedded in a
single step into a matrix that is passed into the en-
coder LSTM in a single step. On the target side
as well, we calcualate the loss for the target words
at time step t for every sentence in the mini-batch
simultaneously.

However, there are problems when sentences
are of different length, as only some sentences will
have any content at a particular time step. To re-
solve this problem, we pad short sentences with
end-of-sentence tokens to adjust their length to the
length of the longest sentence. In the Figure 1,
purple colored “h/si” indicates the padded end-of-
sentence token.

Padding with these tokens makes it possible to
handle variably-lengthed sentences as if they were
of the same length. On the other hand, the com-
putational cost for a mini-batch increases in pro-
portion to the longest sentence therein, and ex-
cess padding can result in a significant amount of
wasted computation. One way to fix this prob-
lem is by creating mini-batches that include sen-
tences of similar length (Sutskever et al., 2014)

Algorithm 1 Create mini-batches
1: C  Training corpus
2: C  sort(C) or shuffle(C) . sort or shuffle

the whole corpus
3: B  {} . mini-batches
4: i 0, j  0
5: while i < C.size() do
6: B[j] B[j] +C[i]
7: if B[j].size() � max mini-batch size then
8: B[j] padding(B[j]) .

Padding tokens to the longest sentence in the
mini-batch

9: j  j + 1
10: end if
11: i i+ 1
12: end while
13: B  shuffle(B) . shuffle the order of the

mini-batches

to reduce the amount of padding required. Many
NMT toolkits implement length-based sorting of
the training corpus for this purpose. In the fol-
lowing section, we discuss several different mini-
batch creation strategies used in existing neural
MT toolkits.

• May affect performance!

Figure 2: Training curves on the ASPEC-JE test set. The y- and x-axes shows the negative log likelihoods
and number of processed sentences. The scale of the x-axis in the method (f) is different from others.

Figure 3: Training curves on the WMT2016 test set. Axes are the same as Figure 2.

accuracy of the model. We hypothesize that the
large variance of the loss affects the final model
accuracy, especially when using the learning algo-
rithm that uses momentum such as Adam. How-
ever, these results indicate that these differences
do not significantly affect the training results. We
leave a comparison of memory consumption for
future research.

4.2.3 Effect of Corpus Sorting Method using
Adam

From all experimental results of the method (a),
(b), (c), (d) and (e), in the case of using SHUF-

FLE or SRC, perplexities drop faster and tend to
converge to lower perplexities than the other meth-
ods for all mini-batch sizes. We believe the main
reason for this is due to the similarity of the sen-
tences contained in each mini-batch. If the sen-
tence length is similar, the features of the sentence
may also be similar. We carefully examined the
corpus and found that at least this is true for the
corpus we used (e.g. shorter sentences tend to con-
tain the similar words). In this case, if we sort sen-
tences by their length, sentences that have similar
features will be gathered into the same mini-batch,
making training less stable than if all sentences
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Recurrent neural network regularization. Zaremba et al., arXiv 2014. 

https://arxiv.org/abs/1409.2329


Regularization: Dropout
• Large recurrent networks often overfit their training data by 

memorizing the sequences observed. Such models generalize poorly 
to novel sequences. 

• A common approach in Deep Learning is to overparametrize a model, 
such that it could easily memorize the training data, and then heavily 
regularize it to facilitate generalization. 

• The regularization method of choice is often Dropout.
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Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Srivastava et al. JMLR 2014. 

http://jmlr.org/papers/v15/srivastava14a.html


Regularization: Dropout
• Dropout is ineffective when applied to recurrent connections, as 

repeated random masks zero all hidden units in the limit. 

• The most common solution is to only apply dropout to non-recurrent 
connections 
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Recurrent neural network regularization. Zaremba et al., arXiv 2014. 

Regularisation: Dropout

Dropout is ine↵ective when applied to recurrent connections, as
repeated random masks zero all hidden units in the limit. The
most common solution is to only apply dropout to non-recurrent
connections.10

w1 w2 w3 w4

cost1 cost2 cost3 cost4

w0

h0

h1 h2 h3 h4

w1 w2 w3

p̂1 p̂2 p̂3 p̂4

F

dropout dropout dropout dropout

dropout dropout dropout dropout

10Recurrent neural network regularization. Zaremba et al., arXiv 2014.

https://arxiv.org/abs/1409.2329


Regularization: Dropout
• A Better Solution: Use the same dropout mask at each time step

for both inputs, outputs, and recurrent layers. 
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A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. Gal and Ghahramani. NIPS 2016
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(b) Variational RNN
Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
results in improved performance, and provide (as yet unbeaten) state-of-the-art results in language
modelling on the Penn Treebank. They reason that without dropout only small models were used
in the past in order to avoid overfitting, whereas with the application of dropout larger models can
be used, leading to improved results. This work is considered a reference implementation by many
(and we compare to this as a baseline below). Bluche et al. [10] extend on the previous body of work
and perform exploratory analysis of the performance of dropout before, inside, and after the RNN’s
unit. They provide mixed results, not showing significant improvement on existing techniques. More
recently, and done in parallel to this work, Moon et al. [20] suggested a new variant of dropout in
RNNs in the speech recognition community. They randomly drop elements in the LSTM’s internal
cell ct and use the same mask at every time step. This is the closest to our proposed approach
(although fundamentally different to the approach we suggest, explained in §4.1), and we compare to
this variant below as well.

2

Each square represents an RNN unit,
with horizontal arrows representing
recurrent connections. Vertical arrows
represent the input and output to each
RNN unit. Coloured connections rep-
resent dropped-out inputs, with diffe-
rent colours corresponding to different
dropout masks. Dashed lines corres-
pond to standard connections with no
dropout.



Regularization: Norm-stabilizer
• Stabilize the activations of RNNs by penalizing the squared distance 

between successive hidden states’ norms

• Enforce the norms of the hidden
layer activations approximately 
constant across time

122
Regularizing RNNs by Stabilizing Activations. Krueger and Memisevic, ICLR 2016

https://arxiv.org/abs/1511.08400


Regularization: Layer Normalization
• Similar to batch normalization

• Computes the normalization statistics separately at each time step 

• Effective for stabilizing the hidden state dynamics in RNNs

• Reduces training time 
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Layer Normalization [Ba, Kiros & Hinton, 2016]Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans

et al., 2016].

We trained two models: the baseline order-embedding model as well as the same model with layer
normalization applied to the GRU. After every 300 iterations, we compute Recall@K (R@K) values
on a held out validation set and save the model whenever R@K improves. The best performing
models are then evaluated on 5 separate test sets, each containing 1000 images and 5000 captions,
for which the mean results are reported. Both models use Adam [Kingma and Ba, 2014] with the
same initial hyperparameters and both models are trained using the same architectural choices as
used in Vendrov et al. [2016]. We refer the reader to the appendix for a description of how layer
normalization is applied to GRU.

Figure 1 illustrates the validation curves of the models, with and without layer normalization. We
plot R@1, R@5 and R@10 for the image retrieval task. We observe that layer normalization offers
a per-iteration speedup across all metrics and converges to its best validation model in 60% of the
time it takes the baseline model to do so. In Table 2, the test set results are reported from which we
observe that layer normalization also results in improved generalization over the original model. The
results we report are state-of-the-art for RNN embedding models, with only the structure-preserving
model of Wang et al. [2016] reporting better results on this task. However, they evaluate under
different conditions (1 test set instead of the mean over 5) and are thus not directly comparable.

6.2 Teaching machines to read and comprehend

In order to compare layer normalization to the recently proposed recurrent batch normalization
[Cooijmans et al., 2016], we train an unidirectional attentive reader model on the CNN corpus both
introduced by Hermann et al. [2015]. This is a question-answering task where a query description
about a passage must be answered by filling in a blank. The data is anonymized such that entities
are given randomized tokens to prevent degenerate solutions, which are consistently permuted dur-
ing training and evaluation. We follow the same experimental protocol as Cooijmans et al. [2016]
and modify their public code to incorporate layer normalization 2 which uses Theano [Team et al.,
2016]. We obtained the pre-processed dataset used by Cooijmans et al. [2016] which differs from
the original experiments of Hermann et al. [2015] in that each passage is limited to 4 sentences.
In Cooijmans et al. [2016], two variants of recurrent batch normalization are used: one where BN
is only applied to the LSTM while the other applies BN everywhere throughout the model. In our
experiment, we only apply layer normalization within the LSTM.

The results of this experiment are shown in Figure 2. We observe that layer normalization not only
trains faster but converges to a better validation result over both the baseline and BN variants. In
Cooijmans et al. [2016], it is argued that the scale parameter in BN must be carefully chosen and is
set to 0.1 in their experiments. We experimented with layer normalization for both 1.0 and 0.1 scale
initialization and found that the former model performed significantly better. This demonstrates that
layer normalization is not sensitive to the initial scale in the same way that recurrent BN is. 3

6.3 Skip-thought vectors

Skip-thoughts [Kiros et al., 2015] is a generalization of the skip-gram model [Mikolov et al., 2013]
for learning unsupervised distributed sentence representations. Given contiguous text, a sentence is

2https://github.com/cooijmanstim/Attentive_reader/tree/bn
3We only produce results on the validation set, as in the case of Cooijmans et al. [2016]
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3.1 Layer normalized recurrent neural networks

The recent sequence to sequence models [Sutskever et al., 2014] utilize compact recurrent neural
networks to solve sequential prediction problems in natural language processing. It is common
among the NLP tasks to have different sentence lengths for different training cases. This is easy to
deal with in an RNN because the same weights are used at every time-step. But when we apply batch
normalization to an RNN in the obvious way, we need to to compute and store separate statistics for
each time step in a sequence. This is problematic if a test sequence is longer than any of the training
sequences. Layer normalization does not have such problem because its normalization terms depend
only on the summed inputs to a layer at the current time-step. It also has only one set of gain and
bias parameters shared over all time-steps.

In a standard RNN, the summed inputs in the recurrent layer are computed from the current input
xt and previous vector of hidden states ht�1 which are computed as at = Whhh

t�1 +Wxhxt. The
layer normalized recurrent layer re-centers and re-scales its activations using the extra normalization
terms similar to Eq. (3):
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where Whh is the recurrent hidden to hidden weights and Wxh are the bottom up input to hidden
weights. � is the element-wise multiplication between two vectors. b and g are defined as the bias
and gain parameters of the same dimension as ht.

In a standard RNN, there is a tendency for the average magnitude of the summed inputs to the recur-
rent units to either grow or shrink at every time-step, leading to exploding or vanishing gradients. In
a layer normalized RNN, the normalization terms make it invariant to re-scaling all of the summed
inputs to a layer, which results in much more stable hidden-to-hidden dynamics.

4 Related work

Batch normalization has been previously extended to recurrent neural networks [Laurent et al., 2015,
Amodei et al., 2015, Cooijmans et al., 2016]. The previous work [Cooijmans et al., 2016] suggests
the best performance of recurrent batch normalization is obtained by keeping independent normal-
ization statistics for each time-step. The authors show that initializing the gain parameter in the
recurrent batch normalization layer to 0.1 makes significant difference in the final performance of
the model. Our work is also related to weight normalization [Salimans and Kingma, 2016]. In
weight normalization, instead of the variance, the L2 norm of the incoming weights is used to
normalize the summed inputs to a neuron. Applying either weight normalization or batch normal-
ization using expected statistics is equivalent to have a different parameterization of the original
feed-forward neural network. Re-parameterization in the ReLU network was studied in the Path-
normalized SGD [Neyshabur et al., 2015]. Our proposed layer normalization method, however, is
not a re-parameterization of the original neural network. The layer normalized model, thus, has
different invariance properties than the other methods, that we will study in the following section.

5 Analysis

In this section, we investigate the invariance properties of different normalization schemes.

5.1 Invariance under weights and data transformations

The proposed layer normalization is related to batch normalization and weight normalization. Al-
though, their normalization scalars are computed differently, these methods can be summarized as
normalizing the summed inputs ai to a neuron through the two scalars µ and �. They also learn an
adaptive bias b and gain g for each neuron after the normalization.

hi = f(
gi

�i

(ai � µi) + bi) (5)

Note that for layer normalization and batch normalization, µ and � is computed according to Eq. 2
and 3. In weight normalization, µ is 0, and � = kwk2.
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Scheduled Sampling
• “change the training 

process from a fully guided 
scheme using the true 
previous token, towards a 
less guided scheme which 
mostly uses the generated 
token instead.” 
• During training, randomly 

replace a conditioning
ground truth token by the 
model's previous prediction
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Gated Cells
• rather each node being just a simple RNN cell, make each node 

a more complex unit with gates controlling what information is 
passed through
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solution #3: gated cells 

MIT 6.S191 | Intro to Deep Learning | IAP 2017

rather each node being just a simple RNN cell, make each node 
a more complex unit with gates controlling what information is 
passed through.

RNN LSTM, GRU, etc

vs Long short term memory cells are 
able to keep track of information 
throughout many timesteps.



Long Short-Term Memory (LSTM)
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Long Short-Term Memory [Hochreiter et al., 1997]

solution #3: more on LSTMs

MIT 6.S191 | Intro to Deep Learning | IAP 2017

sj sj+1cj cj+1

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


Long Short-Term Memory (LSTM)
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Long Short-Term Memory (LSTM)
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Long Short-Term Memory (LSTM)
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Long Short-Term Memory (LSTM)
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The LSTM Idea
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The Original LSTM Cell
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The Popular LSTM Cell
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The Popular LSTM Cell
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is going to be thrown away from the 
cell state

it =σ Wi

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bi

⎛
⎝⎜

⎞
⎠⎟
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ft
Forget 
Gate

xt ht-1

Cell

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1
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Wxf

ft =σ Wf
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⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

it

ct

ht = ot ⊗ tanhct

ht

Output 
Gate

ht

xt ht-1

Wxo ot
Who

Whf

Input 
Gate

WhiWxi

Wxc

Whc

input gate and a tanh layer decides 
what information is going to be stored 
in the cell state

it =σ Wi

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bi

⎛
⎝⎜

⎞
⎠⎟
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ft
Forget 
Gate

xt ht-1

Cell

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
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⎝⎜

⎞
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xt ht-1
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⎝⎜

⎞
⎠⎟
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⎛
⎝⎜

⎞
⎠⎟

it

ct

ht = ot ⊗ tanhct

ht

Output 
Gate

ht

xt ht-1

Wxo ot
Who

Whf

Input 
Gate

WhiWxi

Wxc

Whc

Update the old cell state with the new 
one.

it =σ Wi

xt
ht−1
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⎝⎜

⎞
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⎞
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ft
Forget 
Gate

xt ht-1

Cell

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1

xt

ht-1

Wxf

it

ct ht

Output 
Gate

ht

xt ht-1

Wxo ot
Who

Whf

Input 
Gate

WhiWxi

Wxc

Whc

it =σ Wi

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bi

⎛
⎝⎜

⎞
⎠⎟

inpu
t

gate
forget
gate behavior

0 1 remember the
previous value

1 1 add to the previous
value

0 0 erase the value
1 0 overwrite the value
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ft
Forget 
Gate

xt ht-1

Cell

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1

xt

ht-1

Wxf

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

it

ct

ht = ot ⊗ tanhct

ht

Output 
Gate

ht

xt ht-1

Wxo ot
Who

Whf

Input 
Gate

WhiWxi

Wxc

Whc

Output gate decides what is going to be 
outputted. The final output is based on 
cell state and output of sigmoid gate.

it =σ Wi

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bi

⎛
⎝⎜

⎞
⎠⎟

oi = �

✓
Wo

✓
xt

ht�1

◆
+ bo

◆
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Illustrated LSTM Forward and Backward Pass
http://arunmallya.github.io/writeups/nn/lstm/index.html

http://arunmallya.github.io/writeups/nn/lstm/index.html
http://arunmallya.github.io/writeups/nn/lstm/index.html
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ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

* Dashed line indicates time-lag

ht = ot ⊗ tanhct

Similarly for it, ot

ft
Forget 
Gate

xt ht-1

Cell

xt ht-1

xt

ht-1

Wxf

it

ct ht

Output 
Gate

ht

xt ht-1

Wxo ot
Who

Whf

Input 
Gate

WhiWxi

Wxc

Whc



ft
Forget 
Gate

xt ht-1

Cell

xt ht-1

xt

ht-1

Wxf

it

ct ht

Output 
Gate

ht

xt ht-1

Wxo ot
Who

Whf

Extension I: Peephole LSTM
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ft =σ Wf

xt
ht−1
ct−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ bf

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Similarly for it, ot (uses ct)

* Dashed line indicates time-lag

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ht = ot ⊗ tanhct

Input 
Gate

WhiWxi

Wxc

Whc

• Add peephole connections. 
• All gate layers look at the cell state!



Other minor variants
• Coupled Input and Forget Gate

• Full Gate Recurrence ft =σ Wf

xt
ht−1
ct−1
it−1
ft−1
ot−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

+ bf

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

ft = 1− it

146



LSTM: A Search Space Odyssey
• Tested the following variants, using Peephole LSTM as standard:

1. No Input Gate (NIG) 
2. No Forget Gate (NFG) 
3. No Output Gate (NOG) 
4. No Input Activation Function (NIAF) 
5. No Output Activation Function (NOAF) 
6. No Peepholes (NP) 
7. Coupled Input and Forget Gate (CIFG) 
8. Full Gate Recurrence (FGR)

• On the tasks of:
− Timit Speech Recognition: Audio frame to 1 of 61 phonemes
− IAM Online Handwriting Recognition: Sketch to characters
− JSB Chorales: Next-step music frame prediction
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LSTM: A Search Space Odyssey [Greff et al., 2015]

https://arxiv.org/pdf/1503.04069.pdf


LSTM: A Search Space Odyssey
• The standard LSTM performed reasonably well on multiple datasets 

and none of the modifications significantly improved the performance

• Coupling gates and removing peephole connections simplified the 
LSTM without hurting performance much

• The forget gate and output activation are crucial

• Found interaction between learning rate and network size to be 
minimal – indicates calibration can be done using a small network 
first
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LSTM: A Search Space Odyssey [Greff et al., 2015]

https://arxiv.org/pdf/1503.04069.pdf


Gated Recurrent Unit
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Gated Recurrent Unit (GRU)
• A very simplified version of the LSTM

−Merges forget and input gate into a single ‘update’ gate
−Merges cell and hidden state

• Has fewer parameters than an LSTM and has been shown to 
outperform LSTM on some tasks

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation 
[Cho et al.,14]
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https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078
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Reset Gate

ht

xt ht-1

xt ht-1
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⎠⎟
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⎠⎟
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rt =σ Wr

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

Reset Gate

xt ht-1

Wf
rt

computes a reset gate based on 
current input and hidden state 
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Reset Gate

xt ht-1

ht-1

W

Wf

xt h’t

rt

rt =σ Wr
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⎛
⎝⎜

⎞
⎠⎟
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⎛
⎝⎜

⎞
⎠⎟

h 't = tanhW
xt

rt ⊗ ht−1

⎛
⎝⎜

⎞
⎠⎟

computes the hidden state based 
on current input and hidden state 

if reset gate unit is ~0, then this 
ignores previous memory and only 
stores the new input information 
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Update Gate
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rt

computes an update gate again based 
on current input and hidden state 
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Final memory at timestep t combines 
both current and previous timesteps



GRU Intuition
• If reset is close to 0, ignore previous hidden 

state
Ø Allows model to drop information that is  

irrelevant in the future 

• Update gate z controls how much of past 
state should matter now. 
− If z close to 1, then we can copy information in 

that unit through many time steps! Less 
vanishing gradient!

• Units with short-term dependencies often 
have reset gates very active 
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⎠⎟

ht = (1− zt )⊗ ht−1 + zt ⊗ h 't
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Slide credit: Richard Socher



An Empirical Exploration of Recurrent 
Network Architectures
• Given the rather ad-hoc design of the LSTM, the authors try to 

determine if the architecture of the LSTM is optimal

• They use an evolutionary search for better architectures

An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]
157

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


Evolutionary Architecture Search
• A list of top-100 architectures so far is maintained, initialized with the 

LSTM and the GRU
• The GRU is considered as the baseline to beat
• New architectures are proposed, and retained based on performance ratio 

with GRU

• All architectures are evaluated on 3 problems
− Arithmetic: Compute digits of sum or difference of two numbers provided as inputs. 

Inputs have distractors to increase difficulty
3e36d9-h1h39f94eeh43keg3c = 3369 – 13994433 = -13991064

− XML Modeling: Predict next character in valid XML modeling
− Penn Tree-Bank Language Modeling: Predict distributions over words 
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An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


Evolutionary Architecture Search
• At each step

−Select 1 architecture at random, evaluate on 20 randomly chosen hyperparam
settings. 

−Alternatively, propose a new architecture by mutating an existing one. Choose 
prob. p from [0,1] uniformly and apply a transformation to each node with prob. 
p
• If node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x), Linear(0, x), Linear(1, x), 

Linear(0.9, x), Linear(1.1, x)}
• If node is an elementwise op, replace with {multiplication, addition, subtraction}
• Insert random activation function between node and one of its parents
• Replace node with one of its ancestors (remove node)
• Randomly select a node (node A). Replace the current node with either the sum, product, 

or difference of a random ancestor of the current node and a random ancestor of A.
−Add architecture to list based on minimum relative accuracy wrt GRU on 3 

different tasks
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An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


Evolutionary Architecture Search
• 3 novel architectures are presented in the paper

• Very similar to GRU, but slightly outperform it

• LSTM initialized with a large positive forget gate bias 
outperformed both the basic LSTM and the GRU!
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An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]

http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


LSTM initialized with large positive forget 
gate bias?
• Recall

• Gradients will vanish if f is close to 0. Using a large positive bias ensures that f has 
values close to 1, especially when training begins

• Helps learn long-range dependencies

• Originally stated in Learning to forget: Continual prediction with LSTM [Gers et al., 
2000], but forgotten over time

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

δct−1 = δct ⊗ ft
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An Empirical Exploration of Recurrent Network Architectures [Jozefowicz et al., 2015]

https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf


LSTMs and GRUs 
Good
• Careful initialization and optimization of vanilla RNNs can enable them to learn 

long(ish) dependencies, but gated additive cells, like the LSTM and GRU, often 
just work. 

Bad
• LSTMs and GRUs have considerably more parameters and computation per 

memory cell than a vanilla RNN, as such they have less memory capacity per 
parameter*

An LSTM with large positive forget gate bias works best!
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*Capacity and Trainability in Recurrent Neural Networks. [Collins et al., arXiv 2016]
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Next lecture: 
Attention, Transformers

and Memory


