
Lecture #08 – Attention and Transformer
Erkut Erdem // Hacettepe University // Fall 2024

CMP784
DEEP LEARNING

Illustration: DeepMind

Previously on CMP784
• Sequence modeling

• Recurrent Neural Networks
(RNNs)

• The Vanilla RNN unit

• How to train RNNs

• The Long Short-Term Memory
(LSTM) unit and its variants

• Gated Recurrent Unit (GRU)

image: Oleg Soroko2

Using RNNs to generate Super Mario Maker levels, Adam Geitgey

Lecture overview
• Content-based attention

• Location-based attention

• Soft vs. hard attention

• Show, Attend and Tell

• Self-attention and
Transformer networks

• Vision Transformers

• Pretraining during transformers

Disclaimer: Much of the material and slides for this
lecture were borrowed from

—Dzmitry Bahdanau’s IFT 6266 slides

—Graham Neubig’s CMU CS11-747 Neural Networks for NLP
class

—Mateusz Malinowski’s lecture on Attention-based Networks

— Yoshua Bengio’s talk on From Attention to Memory and
towards Longer-Term Dependencies

— Kyunghyun Cho’s slides on neural sequence modeling

—Arian Hosseini’s IFT 6135 slides

—Hongsheng Li’s ELEG5491 class

— Justin Johnson’s EECS 498/598 class

— Jacob Devlin’s slides on transformers

— Lucas Beyer’s slides on transformers

— Philip Isola and Stefanie Jegelka's MIT 6.S898 Deep Learning
class

3

Deep Learning for Vision

4Figure credit: Xiaogang Wang

Deep Learning for Vision

What if we treat an existing deep model as
a black box in pedestrian detection?

ConvNet−U−MS

– Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.

Figure Credit: Xiaogang Wang

Deep Learning for Vision

What if we treat an existing deep model as
a black box in pedestrian detection?

ConvNet−U−MS

– Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.

Figure Credit: Xiaogang Wang

Deep Learning for Speech

5Figure credit: NVidia

Deep Learning for Speech

Figure Credit: Nvidia

Deep Learning for Speech

Figure Credit: Nvidia

Deep Learning for Text

6

Deep Learning for Text

x1 x2 x3 x4 x5

z11 z12 z13 z14 z15 z16

z21 z22 z23 z24 z25

Ŷ

W1

W2

W3

“The movie was not bad at all. I had fun.”

positivepositive

“The movie was not bad at all. I had fun.”

Deep Models

7

Deep Models

Input Representation

“The movie was not bad at all. I had fun.”

Feature Extractor
(encoder)

Classifier/Regressor
(decoder)

GW2

FW1

Loss Function

Fully Connected Network

Convolution Network

Recurrent Network

Typically a Linear Projection
with some non-linearity

(log-soft-max)

can be seen as
a prior on the type of

transformation you want

“The movie was not bad at all. I had fun.”

can be seen as
a prior on the type of

transformation you want

Fully Connected Network

Convolution Network

Recurrent Network

Typically a Linear Projection
with some non-linearity

(log-soft-max)

Deep Models

8

Deep Models

Input Representation

“The movie was not bad at all. I had fun.”

Feature Extractor
(encoder)

Classifier/Regressor
(decoder)

GW2

FW1

Loss Function

Fully Connected Network

Convolution Network

Recurrent Network

Typically a Linear Projection
with some non-linearity

(log-soft-max)

can be seen as
a prior on the type of

transformation you want

“The movie was not bad at all. I had fun.”

can be seen as
a prior on the type of

transformation you want

Fully Connected Network

Convolution Network

Recurrent Network

Typically a Linear Projection
with some non-linearity

(log-soft-max)
Learnable parametric function

Inputs: generally considered I.I.D.

Outputs: classification or regression

Encoder-Decoder Framework
• Intermediate representation of meaning

= ‘universal representation’

• Encoder: from word sequence to sentence representation

• Decoder: from representation to word sequence distribution

9

x1 x2 xT

yT' y2 y1

c

Decoder

Encoder

French
encoder

English
decoder

French sentence

English sentence

English
encoder

English
decoder

English sentence

English sentence

Fo
r

bi
te

xt
da

ta

Fo
r

un
ili

ng
ua

ld
at

a

Sequence Representations
• But what if we could use multiple vectors, based on the length of

the sequence

10

Sentence Representations

• But what if we could use multiple vectors, based on
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”

— Ray Mooney

Problem!

Attention Models
in Deep Learning

11

A lot of things are called “attention”
these days...
1. Attention (alignment) models used in applications of deep supervised learning

with variable-length inputs and outputs (typical sequential).

2. Models of visual attention that process a region of an image at high resolution
or the whole image at low resolution.

3. Internal self-attention mechanisms can be used to replace recurrent and
convolutional networks for sequential data.

4. Addressing schemes of memory-augmented neural networks

The shared idea: focus on the relevant parts of the input (output).

12

Attention in Deep Learning Applications
[to Language Processing]

machine translation speech recognition

speech synthesis, summarization, … any sequence-to-sequence
(seq2seq) task

13

Traditional deep learning approach

input → d-dimensional feature vector → layer1 → → layerk → output

Good for: image classification, phoneme recognition, decision-making
in reflex agents (ATARI)

Less good for: text classification

Not really good for: … everything else?!

14

Example: Machine Translation

[“An”, “RNN”, “example”, “.”] → [“Un”, “example”, “de”, “RNN”, “.”]

Machine translation presented a challenge to vanilla deep learning

● input and output are sequences

● the lengths vary

● input and output may have different lengths

● no obvious correspondence between positions in the input and
in the output

15

Vanilla seq2seq learning for machine
translation

Recurrent Continuous Translation Models, Kalchbrenner et al, EMNLP 2013
Sequence to Sequence Learning with Recurrent Neural Networks, Sutskever et al., NIPS 2014
Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation, Cho et al., EMNLP 2014

input sequence output sequence

fixed size representation

16

Problems with vanilla seq2seq

● training the network to encode 50 words in a vector is hard ⇒ very big
models are needed

● gradients has to flow for 50 steps back without vanishing ⇒ training can
be slow and require lots of data

bottleneck

looong term dependencies

17

Soft attention

lets decoder focus on the relevant hidden states
of the encoder, avoids squeezing everything
into the last hidden state ⇒ no bottleneck!

dynamically creates shortcuts in the computation
graph that allow the gradient to flow freely
⇒ shorter dependencies!

best with a bidirectional encoder

18Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et al, ICLR 2015

Soft attention - math 1
At each step the decoder consumes a different weighted combination
of the encoder states, called context vector or glimpse.

19

Soft attention - math 2
But where do the weights come from?
They are computed by another network!

The choice from the original paper is
1-layer MLP:

20

Soft attention - computational aspects
The computational complexity of using soft attention is quadratic. But it’s not slow:

● for each pair of i and j
○ sum two vectors
○ apply tanh
○ compute dot product

● can be done in parallel for all j, i.e.
○ add a vector to a matrix
○ apply tanh
○ compute vector-matrix product

● softmax is cheap

● weighted combination is another vector-matrix product

● in summary: just vector-matrix products = fast!

21

Soft attention - visualization

[penalty???]Great visualizations at http://distill.pub/2016/augmented-rnns/#attentional-interfaces

22

Great visualizations at https://distill.pub/2016/augmented-rnns/#attentional-interfaces

https://distill.pub/2016/augmented-rnns/

Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Soft attention - visualization

23

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Diagonal attention means
words correspond in order

Diagonal attention means
words correspond in order

Soft attention - visualization

24Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures out
different word orders

Diagonal attention means
words correspond in order

Diagonal attention means
words correspond in order

Soft attention - visualization

25Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures out
different word orders

Diagonal attention means
words correspond in order

Diagonal attention means
words correspond in order

Verb conjugation

Soft attention - visualization

26Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Soft attention - improvements
no performance drop on long sentences

much better than RNN
Encoder-Decoder

without unknown words
comparable with the
SMT system

27

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

End-to-End Machine Translation with Recurrent Nets
and Attention Mechanism

28

(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)

Figure credit: Rico Sennrich

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

0

5

10

15

20

25

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT Neural MT

From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf]

Soft content-based attention pros and cons

Pros
● faster training, better performance
● good inductive bias for many tasks => lowers sample complexity

Cons
● not good enough inductive bias for tasks with monotonic

alignment (handwriting recognition, speech recognition)
● chokes on sequences of length >1000

29

Location-based attention

● in content-based attention the attention weights depend
on the content at different positions of the input (hence
BiRNN)

● in location-based attention the current attention weights
are computed relative to the previous attention weights

30

Gaussian mixture location-based attention
Originally proposed for handwriting synthesis.

The (unnormalized) weight of the input
position u at the time step t is parametrized
as a mixture of K Gaussians

31Section 5, Generating Sequence with Recurrent Neural Networks, A. Graves 2014

Gaussian mixture location-based attention
The new locations of Gaussians are computed as a sum of the
previous ones and the predicted offsets

32

Gaussian mixture location-based attention

The first soft attention mechanism ever!

Pros:
● good for problems with monotonic alignment

Cons:
● predicting the offset can be challenging
● only monotonic alignment (although exp in theory could be removed)

33

Various Soft-Attentions

● use dot-product or non-linearity of choice instead of tanh in content-based
attention

● use unidirectional RNN insteaf of Bi- (but not pure word embeddings!)

● explicitly remember past alignments with an RNN

● use a separate embedding for each of the positions of the input (heavily
used in Memory Networks)

● mix content-based and location-based attentions

See “Attention-Based Models for Speech Recognition” by Chorowski et al
(2015) for a scalability analysis of various attention mechanisms on speech
recognition.

34

Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 
 

• No parameters! But requires sizes to be the same.

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015) 
 

• Flexible, often very good with large data

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015) 
 

• Flexible, often very good with large data

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk

Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 
 

• No parameters! But requires sizes to be the same.

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Various Attention Score Functions
• q is the query and k is the key

• Multi-layer Perceptron
(Bahdanau et al. 2015)

− Flexible, often very good with large
data

• Bilinear (Luong et al. 2015)

• Dot Product (Luong et al. 2015)

− No parameters! But requires sizes to
be the same.

• Scaled Dot Product (Vaswani et al.
2017)

− Problem: scale of dot product
increases as dimensions get • larger

− Fix: scale by size of the vector

35

Going back in time: Connection Temporal
Classification (CTC)
● CTC is a predecessor of soft attention

that is still widely used

● has very successful inductive
bias for monotonous seq2seq
transduction

● core idea: sum over all possible
ways of inserting blank tokens
in the output so that it aligns
with the input

36Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, Graves et al, ICML 2006

CTC
labeling

input
sum over all labelling
with blanks

conditional
probability of a
labeling with blanks

probability of
outputting \pi_t
at the step t

37

CTC
● can be viewed as modelling p(y|x) as sum of all p(y|a,x), where a is

a monotonic alignment

● thanks to the monotonicity assumption the marginalization of a
can be carried out with forward-backward algorithm
(a.k.a. dynamic programming)

● hard stochastic monotonic attention

● popular in speech and handwriting
recognition

● y_i are conditionally independent given a
and x but this can be fixed

38

Soft Attention and CTC for seq2seq: summary

● the most flexible and general is content-based soft
attention and it is very widely used, especially in natural
language processing

● location-based soft attention is appropriate for when the
input and the output can be monotonously aligned;
location-based and content-based approaches can be
mixed

● CTC is less generic but can be hard to beat on tasks with
monotonous alignments

39

Visual and Hard Attention

40

Models of Visual Attention

● Convnets are great! But they process the whole image at a high
resolution.

● “Instead humans focus attention selectively on parts of the visual
space to acquire information when and where it is needed, and
combine information from different fixations over time to build up an
internal representation of the scene” (Mnih et al, 2014)

● hence the idea: build a recurrent network that focus on a patch of
an input image at each step and combines information from
multiple steps

41Recurrent Models of Visual Attention, V. Mnih et al, NIPS 2014

Soft and Hard Attention

RAM attention mechanism is hard - it outputs a precise location where
to look.

Content-based attention from neural MT is soft - it assigns weights to
all input locations.

CTC can be interpreted as a hard attention mechanism with tractable
gradient.

42

Soft and Hard Attention

Soft

● deterministic

● exact gradient

● O(input size)

● typically easy to train

Hard

● stochastic*

● gradient approximation**

● O(1)

● harder to train

* deterministic hard attention would not have gradients
** exact gradient can be computed for models with tractable marginalization
(e.g. CTC)

43

Soft and Hard Attention

Can soft content-based attention be used for vision? Yes.

Show Attend and Tell, Xu et al, ICML 2015

Can hard attention be used for seq2seq? Yes.

Learning Online Alignments with
Continuous Rewards Policy Gradient,
Luo et al, NIPS 2016

(but the learning curves are a nightmare…)

44

Why attention?
• Long term memories - attending to memories

− Dealing with gradient vanishing problem

• Exceeding limitations of a global representation
− Attending/focusing to smaller parts of data

§ patches in images
§ words or phrases in sentences

• Decoupling representation from a problem
− Different problems required different sizes of representations

§ LSTM with longer sentences requires larger vectors

• Overcoming computational limits for visual data
− Focusing only on the parts of images
− Scalability independent of the size of images

• Adds some interpretability to the models (error inspection)
45

Recurrent net memory

Attention
mechanism

Attention on Memory Elements
• Recurrent networks cannot remember things for very long

• The cortex only remember things for 20 seconds

• We need a “hippocampus” (a separate memory module)
• LSTM [Hochreiter 1997], registers
• Memory networks [Weston et 2014] (FAIR), associative memory
• NTM [Graves et al. 2014], “tape”.

Recall: Long-Term Dependencies
• The RNN gradient is a product of Jacobian matrices, each associated

with a step in the forward computation. To store information robustly
in a finite-dimensional state, the dynamics must be contractive
[Bengio et al 1994].

• Problems:
• sing. values of Jacobians > 1 à gradients explode
• or sing. values < 1 à gradients shrink & vanish
• or random à variance grows exponentially

47

Storing bits
robustly requires
sing. values<1

(Hochreiter 1991)

Gradien
t
clipping

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Gated Recurrent Units & LSTM
• Create a path where gradients

can flow for longer with self-
loop

• Corresponds to an eigenvalue of
Jacobian slightly less than 1

• LSTM is heavily used
(Hochreiter & Schmidhuber 1997)

• GRU light-weight version
(Cho et al 2014)

48

xtxt�1 xt+1x

unfold

s

o

st�1

ot�1 ot

st st+1

ot+1

W1

W3

W1 W1 W1 W1

W3

st�2

W3 W3 W3

Delays & Hierarchies to Reach Farther
• Delays and multiple time

scales, Elhihi & Bengio NIPS
1995, Koutnik et al ICML 2014

49

Hierarchical RNNs
(words / sentences):
Sordoni et al CIKM 2015,
Serban et al AAAI 2016

Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies
• A mental state stored in an external memory can stay for arbitrarily

long durations, until evoked for read or write

• Forgetting = vanishing gradient.

• Memory = larger state, avoiding the need for forgetting/vanishing

50

passive copy

access

Memory Networks
• Class of models that combine large memory with learning component

that can read and write to it.

• Incorporates reasoning with attention over memory (RAM).

• Most ML has limited memory which is more-or-less all that’s needed for
“low level” tasks e.g. object detection.

51

Jason Weston, Sumit Chopra, Antoine Bordes. Memory Networks. ICLR 2016
S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. End-to-end Memory Networks. NIPS 2015
Ankit Kumar et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. ICML 2016
Alex Graves et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626): 471–476,
2016.

Paying Attention
to Selected Parts
of the Image
While Uttering
Words

52Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio. ICML 2015

53

softmax

p̂1

h1

x1

<s>

⇠

Akiko

h2

softmax

x2

⇠

likes

x3

h3

softmax

⇠

Pimm’s

x4

h4

softmax

⇠

</s>

กৼ΅ ϡϭφ͢ অͣͽͯ

Sutskever et al. (2014)Sutskever et al. (2014)

54

softmax

p̂1

h1

x1

<s>

⇠

a

h2

softmax

x2

⇠

man

x3

h3

softmax

⇠

is

x4

h4

softmax

⇠

rowing

Vinyals et al. (2014) Show and Tell: A Neural Image Caption GeneratorVinyals et al. (2014) Show and Tell: A Neural Image Caption Generator

Regions in ConvNets

• Each point in a “higher” level of a convnet defines spatially localized
feature vectors(/matrices).

• Xu et al. calls these “annotation vectors”,
55

Regions in ConvNets

Each point in a “higher” level of a convnet  
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, ai, i 2 {1, . . . , L}

Regions in ConvNets

Each point in a “higher” level of a convnet  
defines spatially localised feature vectors(/matrices).

Xu et al. calls these “annotation vectors”, ai, i 2 {1, . . . , L}

Regions in ConvNets

56

a1

a1

h i
F =

Regions in ConvNets

57

Regions in ConvNets

58

Extension of LSTM via the context vector
• Extract L D-dimensional annotations

− Lower convolutional layer to have the correspondence between the feature vectors and
portions of the 2-D image

59

M. Malinowski

Extension of LSTM via the context vector
• Extract L D-dimensional annotations

‣ Lower convolutional layer to have the correspondence between the
feature vectors and portions of the 2-D image

20

Neural Image Caption Generation with Visual Attention

with images, Donahue et al. (2014) also apply LSTMs to
videos, allowing their model to generate video descriptions.

All of these works represent images as a single feature vec-
tor from the top layer of a pre-trained convolutional net-
work. Karpathy & Li (2014) instead proposed to learn a
joint embedding space for ranking and generation whose
model learns to score sentence and image similarity as a
function of R-CNN object detections with outputs of a bidi-
rectional RNN. Fang et al. (2014) proposed a three-step
pipeline for generation by incorporating object detections.
Their model first learn detectors for several visual concepts
based on a multi-instance learning framework. A language
model trained on captions was then applied to the detector
outputs, followed by rescoring from a joint image-text em-
bedding space. Unlike these models, our proposed atten-
tion framework does not explicitly use object detectors but
instead learns latent alignments from scratch. This allows
our model to go beyond “objectness” and learn to attend to
abstract concepts.

Prior to the use of neural networks for generating captions,
two main approaches were dominant. The first involved
generating caption templates which were filled in based
on the results of object detections and attribute discovery
(Kulkarni et al. (2013), Li et al. (2011), Yang et al. (2011),
Mitchell et al. (2012), Elliott & Keller (2013)). The second
approach was based on first retrieving similar captioned im-
ages from a large database then modifying these retrieved
captions to fit the query (Kuznetsova et al., 2012; 2014).
These approaches typically involved an intermediate “gen-
eralization” step to remove the specifics of a caption that
are only relevant to the retrieved image, such as the name
of a city. Both of these approaches have since fallen out of
favour to the now dominant neural network methods.

There has been a long line of previous work incorpo-
rating attention into neural networks for vision related
tasks. Some that share the same spirit as our work include
Larochelle & Hinton (2010); Denil et al. (2012); Tang et al.
(2014). In particular however, our work directly extends
the work of Bahdanau et al. (2014); Mnih et al. (2014); Ba
et al. (2014).

3. Image Caption Generation with Attention

Mechanism

3.1. Model Details

In this section, we describe the two variants of our
attention-based model by first describing their common
framework. The main difference is the definition of the
� function which we describe in detail in Section 4. We
denote vectors with bolded font and matrices with capital
letters. In our description below, we suppress bias terms for
readability.

Figure 4. A LSTM cell, lines with bolded squares imply projec-
tions with a learnt weight vector. Each cell learns how to weigh
its input components (input gate), while learning how to modulate
that contribution to the memory (input modulator). It also learns
weights which erase the memory cell (forget gate), and weights
which control how this memory should be emitted (output gate).

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

Our model takes a single raw image and generates a caption
y encoded as a sequence of 1-of-K encoded words.

y = {y1, . . . ,yC} , yi 2 RK

where K is the size of the vocabulary and C is the length
of the caption.

We use a convolutional neural network in order to extract a
set of feature vectors which we refer to as annotation vec-
tors. The extractor produces L vectors, each of which is
a D-dimensional representation corresponding to a part of
the image.

a = {a1, . . . ,aL} , ai 2 RD

In order to obtain a correspondence between the feature
vectors and portions of the 2-D image, we extract features
from a lower convolutional layer unlike previous work
which instead used a fully connected layer. This allows the
decoder to selectively focus on certain parts of an image by
selecting a subset of all the feature vectors.

3.1.2. DECODER: LONG SHORT-TERM MEMORY
NETWORK

We use a long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) that produces a
caption by generating one word at every time step condi-
tioned on a context vector, the previous hidden state and the
previously generated words. Our implementation of LSTM

E - embedding matrix 
y - captions
h - previous hidden state
z - context vector, a dynamic
representation of the relevant
part of the image input at time t

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

is the ‘attention’ (‘focus’) function - ‘soft’ / ‘hard’

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

is MLP conditioned on the
previous hidden state

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

E: embedding matrix
y: captions
h: previous hidden state
z: context vector, a dynamic representation
of the relevant part of the image input at time t

is the ‘attention’ (‘focus’) function – ‘soft’ / ’hard’

A MLP conditioned on
the previous hidden state

Hard attention

60

We have two sequences
‘I’ that runs over localizations
‘t’ that runs over words

Stochastic decisions are discrete
here, so derivatives are zero

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

Loss is a variational lower bound on
the marginal log-likelihood

Due to Jensen’s inequality

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

[1] J. Ba et al. “Multiple object recognition with visual attention”
[2] A. Mnih et al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention” 
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

To reduce the estimator variance, entropy term H[s] and bias are added [1,2]

Hard attention

61

We have two sequences
‘I’ that runs over localizations
‘t’ that runs over words

Stochastic decisions are discrete
here, so derivatives are zero

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

Loss is a variational lower bound on
the marginal log-likelihood

Due to Jensen’s inequality

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

[1] J. Ba et al. “Multiple object recognition with visual attention”
[2] A. Mnih et al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are
discrete here, so derivatives
are zero.

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s]
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention” 
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

To reduce the estimator variance, entropy term H[s] and bias are added [1,2]

• Instead of a soft interpolation, make a
zero-one decision about where to attend

• Harder to train, requires methods such as
reinforcement learning

Soft attention

62

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

Instead of making hard decisions,
we take the expected context vector

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop

Theoretical arguments
• equals to computing ht using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”[1] P. Baldi et al. “The dropout learning algorithm”

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”
M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

Soft attention

63

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

Instead of making hard decisions,
we take the expected context vector

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop

Theoretical arguments
• equals to computing ht using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”[1] P. Baldi et al. “The dropout learning algorithm”

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”
M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we
take the expected context vector

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

• equals to computing using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”

How soft/hard
attention works

64

How soft/hard attention works

65

Sample regions of attention

A variational lower bound of
maximum likelihood Computes the expexted attention

66

Hard
Attention

67
Soft Attention

The Good

68

And the Bad

69

Quantitative results

70

M. Malinowski

Quantitative results

29

7

Instead, here we describe a more recently proposed approach
based on the attention-based encoder–decoder framework in
[22].

Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based
image caption generation models use the activation of the
last fully-connected hidden layer as the continuous-space
representation, or the context vector, of the input image (see
Sec. II-D.) The authors of [22] however proposed to use the
activation from the last convolutional layer of the pre-trained
convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set
consists of multiple vectors that correspond to different spatial
regions of the input image on which the attention mechanism
can be applied. Furthermore, due to convolution and pooling,
the spatial locations in pixel space represented by each con-
text vector overlaps substantially with those represented by
the neighbouring context vectors, which helps the attention
mechanism distinguish similar objects in an image using its
context information with respect to the whole image, or the
neighbouring pixels.

Similarly to the attention-based neural machine translation
in Sec. IV-A, the decoder is implemented as a conditional
RNN-LM. In [22], the content-based attention mechanism (see
Eq. (16)) with either the weighted sum (see Eq. (13)) or
hard decision (see Eq. (14) was tested by training a model
with the maximum likelihood estimator from Sec. III-C1 and
the variational learning from Sec. III-C2, respectively. The
authors of [22] reported the similar performances with these
two approaches on a number of benchmark datasets.

2) Experimental Result: In [22], the attention-based image
caption generator was evaluated on three datasets; Flickr
8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to
the self-evaluation, an ensemble of multiple attention-based
models was submitted to Microsoft COCO Image Captioning
Challenge6 and evaluated with multiple automatic evaluation
metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN
THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (?) [20], (•)

[18], (�) [45], (⇧) [46] AND (⇤) [22]. THE ROWS ARE SORTED
ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0.471 0.91

Google? 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based⇤ 0.262 0.272 0.523 0.878
Captivator� 0.250 0.301 0.601 0.937

Berkeley LRCN⇧ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third
based on the percentage of captions that are evaluated as better
or equal to human caption (M1) and the percentage of captions
that pass the Turing Test (M2). Interestingly, the same model
was ranked eighth according to the most recently proposed
metric of CIDEr and ninth according to the most widely used
metric of BLEU.8 It means that this model has better relative
performance in terms of human evaluation than in terms of the
automatic metrics, which only look at matching subsequences
of words, not directly at the meaning of the generated sentence.
The performance of the top-ranked systems, including the
attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly
interpretable, especially, compared to the simple encoder–
decoder models. See Fig. 5 for some examples.

C. Video Description Generation
Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],
[3], it was further applied to video description generation,
which amounts to translating a (short) video clip to its natural
language description [28]. The authors of [28] used a pre-
trained convolutional network (see Sec. II-D) to extract a
feature vector from each frame of the video clip and average all
the frame-specific vectors to obtain a single fixed-dimensional
context vector of the whole video. A conditional RNN-LM
from Sec. II-B was used to generate a description based on
this context vector.

Since any video clip clearly has both temporal and spatial
structures, it is possible to exploit them by using the attention
mechanism described throughout this paper. In [23], the au-
thors proposed an approach based on the attention mechanism
to exploit the global and local temporal structures of the video
clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of
encoders are tested. The first one is a simple frame-wise
application of the pre-trained convolutional network. However,
they did not pool those per-frame context vectors as was done
in [28], but simply form a context set consisting of all the per-
frame feature vectors. The attention mechanism will work to
select one of those per-frame vectors for each output symbol
being decoded. In this way, the authors claimed that the overall
model captures the global temporal structure (the structure
across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap

M1 - humans preferred (or equal) the method over human annotation
M2 - turing test

M1: human preferred (or equal) the method over human annotation
M2: turing test

• Add soft attention to image captioning: +2 BLEU
• Add hard attention to image captioning: +4 BLEU

Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The encoder turns a sequence of tokens into a sequence of
contextualized vectors.

• The underlying principle behind recently successful contextualized
embeddings
• ELMo [Peters et al., 2018],

BERT [Devlin et al., 2019] and
all the other muppets

71

x1, x2, . . . , xTx
<latexit sha1_base64="Z9/H7I5ZYgNdnrx+gRsrtE3C0ro=">AAACq3icfZHbbhMxEIad5VSWUwpXiBuXCAmhEu2WonJZCS64QRTRtBVxtPJ6J6lVH1b2bElYrXgabuF5eBu8yUaiLWIky5//+Ue2Z/JSSY9J8rsXXbt+4+atjdvxnbv37j/obz488rZyAkbCKutOcu5BSQMjlKjgpHTAda7gOD972+aPz8F5ac0hLkqYaD4zcioFxyBl/cfzLN2m82xnmzJVWPTtoT7M5k3WHyTDZBn0KqQdDEgXB9lm7xsrrKg0GBSKez9OkxInNXcohYImZpWHkoszPoNxQMM1+Em9/ENDnwWloFPrwjJIl+rfFTXX3i90Hpya46m/nGvFf+XGFU7fTGppygrBiNVF00pRtLRtCC2kA4FqEYALJ8NbqTjljgsMbYtjZuCrsFpzU9TMSFNA2QSwyLZYCa4M21aHzUXz2tum6MpG1753EDrk4EN47ccgcbTuRc24m2lpmiWwlv5n5PO1MVAcppVens1VONoZpq+Grz/tDvZ3u7ltkCfkKXlOUrJH9sl7ckBGRJDv5Af5SX5FL6PP0ZeIraxRr6t5RC5EBH8AAQLULQ==</latexit>

Encoder Decoder

p(yl|y<l, X)
<latexit sha1_base64="pjMFZf3jTgp6JRzTYZtnGunX9ag=">AAACoXicfZHLbhMxFIad4VaGS1NYsnGJkApC0QwUlQWLSrCABSIg0kbKRKMzzklq1TfZnsIwzJOwhYfibfAkE4m2iCNZ/vT/v+WjcwojuPNJ8rsXXbl67fqNrZvxrdt37m73d+4dOV1ahmOmhbaTAhwKrnDsuRc4MRZBFgKPi9PXrX98htZxrT77yuBMwlLxBWfgg5T3t81elYvvVV6/Es3TyeO8P0iGyaroZUg7GJCuRvlO71s216yUqDwT4Nw0TYyf1WA9ZwKbOCsdGmCnsMRpQAUS3axedd7QR0GZ04W24ShPV+rfL2qQzlWyCEkJ/sRd9FrxX9609IuXs5orU3pUbP3RohTUa9qOgc65ReZFFQCY5aFXyk7AAvNhWHGcKfzCtJSg5nWmuJqjaQJon+1mBq0J126HzfnwJttadB2jm9wbDBOy+D50+yFI4LV9Umdgl5KrZgVZS/8LwtdNMFActpVe3M1lOHo2TJ8PX3zcHxzud3vbIg/IQ7JHUnJADslbMiJjwkhJfpCf5Fc0iN5Fo+jTOhr1ujf3ybmKpn8A5PjQ1Q==</latexit>

NLL

y⇤l
<latexit sha1_base64="1uItCexg0/++G2JBVfzOFkBTrz4=">AAAClXicfZFNSxxBEIZ7JyYxkw81HnLw0mYJBA/LjBqSS0BQQi6igawKO5ulpqd2bewvuns06zC/wWvy0/Jv0rM7C36EFDT98NZbdHVVbgR3Pkn+dKJHS4+fPF1+Fj9/8fLVyura6xOnS8uwz7TQ9iwHh4Ir7HvuBZ4ZiyBzgaf5xX6TP71E67hW3/3U4FDCRPExZ+CD1J/+2BqJ0Wo36SWzoA8hbaFL2jgerXWus0KzUqLyTIBzgzQxfliB9ZwJrOOsdGiAXcAEBwEVSHTDatZtTd8FpaBjbcNRns7U2xUVSOemMg9OCf7c3c814r9yg9KPPw0rrkzpUbH5Q+NSUK9p83VacIvMi2kAYJaHXik7BwvMhwHFcabwimkpQRVVprgq0NQBtM82M4PWhGuzxfqueeFtUnRuowvfAYYJWTwM3R4FCby2W1UGdiK5qmeQNfQ/I/xcGAPFYVvp/d08hJPtXrrT+/Btt7u32+5tmWyQt+Q9SclHske+kmPSJ4xwckN+kd/Rm+hzdBB9mVujTluzTu5EdPQXstvMjw==</latexit>

y⇤1 , y
⇤
2 , . . . , y

⇤
l�1

<latexit sha1_base64="vx/XlptpfJV8udVlOej677SJ26c=">AAACsXicfZFNbxMxEIadLR9l+WgKRw64REioKtFuWwTHSuXABVEk0hZlQ/B6J6kVf8meLaSrPfJruMKP4d/gTTYSbREjWX78zjuyPZNbKTwmye9OtHbj5q3b63fiu/fuP9jobj489qZ0HAbcSONOc+ZBCg0DFCjh1DpgKpdwks8Om/zJOTgvjP6IcwsjxaZaTARnGKRx98n88/Y43aHNtrtDM1kY9MtjJV+k9bjbS/rJIuh1SFvokTaOxpudi6wwvFSgkUvm/TBNLI4q5lBwCXWclR4s4zM2hWFAzRT4UbX4SU2fBaWgE+PC0kgX6t8VFVPez1UenIrhmb+aa8R/5YYlTl6PKqFtiaD58qJJKSka2rSFFsIBRzkPwLgT4a2UnzHHOIbmxXGm4Ss3SjFdVJkWugBbBzCYbWUWnA3bVov1ZfPK26To0kZXvjcQOuTgXXjt+yAxNG67ypibKqHrBWQN/c/Ivq2MgeIwrfTqbK7D8W4/3eu//LDfO9hv57ZOHpOn5DlJyStyQN6SIzIgnHwnP8hP8ivaiz5FX6J8aY06bc0jcimi2R++OdWj</latexit>

ht = [
�!
h t;
 �
h t], r?2`2 �!h t = _LL(xt,

�!
h t�1),

 �
h t = _LL(xt,

 �
h t+1)

<latexit sha1_base64="WdtZynw8vn0i/T8oyAgirhDM/4U=">AAADVHicfZHRbtMwFIadlsEIMLpxyY1HhVSgqxrYBBJCmgQX3FAGomulpopc96SxltiRfUJbouzheAgk3oUL3DaV1q1wJMu//vMd2/I/SmNhsN3+7VSqt3Zu39m96967/2DvYW3/4NyoTHPochUr3R8xA7GQ0EWBMfRTDSwZxdAbXbxf9HvfQRuh5DecpzBM2ESKUHCG1gpqP6MA6Ts68JWltJhEyLRW0zwqAnxLl24M4RVz2HQvfYQZ5tMINBSX7rZRe+QK+trpFI1ZgE26BcvxyCueNd0t1/zrgA0qxxd2PqjV2632suhN4ZWiTso6C/adH/5Y8SwBiTxmxgy8dorDnGkUPIbC9TMDKeMXbAIDKyVLwAzz5WcX9Kl1xjRU2i6JdOlenchZYsw8GVkyYRiZ672Fua03yDB8M8yFTDMEyVcXhVlMUdFFcnQsNHCM51YwroV9K+UR04yjzdd1fQlTrpKEyXHuSyHHkBZWKPQP/RR0arfDUhab8JpdtOgKo2vuA9gf0vDJvvaztRgq/Tz3mZ4kQhZL4S/U/0A2W4NWuTYt73o2N8X5y5b3qnXy5bh+elzmtksekyekQTzympySj+SMdAl3Gk7H6Tn9yq/Kn2q1urNCK04584hsVHXvL6R/Fn4=</latexit>

Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The decoder consists of three stages
1. Attention: attend to a small subset of

source vectors
2. Update: update its internal state
3. Predict: predict the next token

• Attention has become the core
component in many recent
advances
• Transformers [Vaswani et al., 2017],

…
72

x1, x2, . . . , xTx
<latexit sha1_base64="Z9/H7I5ZYgNdnrx+gRsrtE3C0ro=">AAACq3icfZHbbhMxEIad5VSWUwpXiBuXCAmhEu2WonJZCS64QRTRtBVxtPJ6J6lVH1b2bElYrXgabuF5eBu8yUaiLWIky5//+Ue2Z/JSSY9J8rsXXbt+4+atjdvxnbv37j/obz488rZyAkbCKutOcu5BSQMjlKjgpHTAda7gOD972+aPz8F5ac0hLkqYaD4zcioFxyBl/cfzLN2m82xnmzJVWPTtoT7M5k3WHyTDZBn0KqQdDEgXB9lm7xsrrKg0GBSKez9OkxInNXcohYImZpWHkoszPoNxQMM1+Em9/ENDnwWloFPrwjJIl+rfFTXX3i90Hpya46m/nGvFf+XGFU7fTGppygrBiNVF00pRtLRtCC2kA4FqEYALJ8NbqTjljgsMbYtjZuCrsFpzU9TMSFNA2QSwyLZYCa4M21aHzUXz2tum6MpG1753EDrk4EN47ccgcbTuRc24m2lpmiWwlv5n5PO1MVAcppVens1VONoZpq+Grz/tDvZ3u7ltkCfkKXlOUrJH9sl7ckBGRJDv5Af5SX5FL6PP0ZeIraxRr6t5RC5EBH8AAQLULQ==</latexit>

Encoder Decoder

p(yl|y<l, X)
<latexit sha1_base64="pjMFZf3jTgp6JRzTYZtnGunX9ag=">AAACoXicfZHLbhMxFIad4VaGS1NYsnGJkApC0QwUlQWLSrCABSIg0kbKRKMzzklq1TfZnsIwzJOwhYfibfAkE4m2iCNZ/vT/v+WjcwojuPNJ8rsXXbl67fqNrZvxrdt37m73d+4dOV1ahmOmhbaTAhwKrnDsuRc4MRZBFgKPi9PXrX98htZxrT77yuBMwlLxBWfgg5T3t81elYvvVV6/Es3TyeO8P0iGyaroZUg7GJCuRvlO71s216yUqDwT4Nw0TYyf1WA9ZwKbOCsdGmCnsMRpQAUS3axedd7QR0GZ04W24ShPV+rfL2qQzlWyCEkJ/sRd9FrxX9609IuXs5orU3pUbP3RohTUa9qOgc65ReZFFQCY5aFXyk7AAvNhWHGcKfzCtJSg5nWmuJqjaQJon+1mBq0J126HzfnwJttadB2jm9wbDBOy+D50+yFI4LV9Umdgl5KrZgVZS/8LwtdNMFActpVe3M1lOHo2TJ8PX3zcHxzud3vbIg/IQ7JHUnJADslbMiJjwkhJfpCf5Fc0iN5Fo+jTOhr1ujf3ybmKpn8A5PjQ1Q==</latexit>

NLL

y⇤l
<latexit sha1_base64="1uItCexg0/++G2JBVfzOFkBTrz4=">AAAClXicfZFNSxxBEIZ7JyYxkw81HnLw0mYJBA/LjBqSS0BQQi6igawKO5ulpqd2bewvuns06zC/wWvy0/Jv0rM7C36EFDT98NZbdHVVbgR3Pkn+dKJHS4+fPF1+Fj9/8fLVyura6xOnS8uwz7TQ9iwHh4Ir7HvuBZ4ZiyBzgaf5xX6TP71E67hW3/3U4FDCRPExZ+CD1J/+2BqJ0Wo36SWzoA8hbaFL2jgerXWus0KzUqLyTIBzgzQxfliB9ZwJrOOsdGiAXcAEBwEVSHTDatZtTd8FpaBjbcNRns7U2xUVSOemMg9OCf7c3c814r9yg9KPPw0rrkzpUbH5Q+NSUK9p83VacIvMi2kAYJaHXik7BwvMhwHFcabwimkpQRVVprgq0NQBtM82M4PWhGuzxfqueeFtUnRuowvfAYYJWTwM3R4FCby2W1UGdiK5qmeQNfQ/I/xcGAPFYVvp/d08hJPtXrrT+/Btt7u32+5tmWyQt+Q9SclHske+kmPSJ4xwckN+kd/Rm+hzdBB9mVujTluzTu5EdPQXstvMjw==</latexit>

y⇤1 , y
⇤
2 , . . . , y

⇤
l�1

<latexit sha1_base64="vx/XlptpfJV8udVlOej677SJ26c=">AAACsXicfZFNbxMxEIadLR9l+WgKRw64REioKtFuWwTHSuXABVEk0hZlQ/B6J6kVf8meLaSrPfJruMKP4d/gTTYSbREjWX78zjuyPZNbKTwmye9OtHbj5q3b63fiu/fuP9jobj489qZ0HAbcSONOc+ZBCg0DFCjh1DpgKpdwks8Om/zJOTgvjP6IcwsjxaZaTARnGKRx98n88/Y43aHNtrtDM1kY9MtjJV+k9bjbS/rJIuh1SFvokTaOxpudi6wwvFSgkUvm/TBNLI4q5lBwCXWclR4s4zM2hWFAzRT4UbX4SU2fBaWgE+PC0kgX6t8VFVPez1UenIrhmb+aa8R/5YYlTl6PKqFtiaD58qJJKSka2rSFFsIBRzkPwLgT4a2UnzHHOIbmxXGm4Ss3SjFdVJkWugBbBzCYbWUWnA3bVov1ZfPK26To0kZXvjcQOuTgXXjt+yAxNG67ypibKqHrBWQN/c/Ivq2MgeIwrfTqbK7D8W4/3eu//LDfO9hv57ZOHpOn5DlJyStyQN6SIzIgnHwnP8hP8ivaiz5FX6J8aY06bc0jcimi2R++OdWj</latexit>

↵t0 / exp(�hh(ht0 , zt�1, yt�1))

ct =
TxX

t0=1

↵t0ht0

zt = _LL([yt�1; ct], zt�1)

p(yt = v|y<t, X) / exp(Plh(zt, v))
<latexit sha1_base64="QAGPd4LHywyn5W8GQpvTvzutNhA=">AAADaHicfZFbb9MwFMeTlssItw4eEOLFW8Vo0agaGAKJVRqCB17YBmq3SnUXOa7bWk0cy3ZK25CvicRX4FNwcinaTRzJ8k/n/P0/Jzm+DLg27fZvu1K9cfPW7Y07zt179x88rG0+OtFRrCjr0SiIVN8nmgVcsJ7hJmB9qRgJ/YCd+rNPWf10zpTmkeiapWTDkEwEH3NKDKS82q8dTAI5JV5iXqQISxVJEyHMFrKBDVuY5GO3mzameXkXreB+5QIsC2g2EcbODvUM6iCs4zDTddz0LOl6C7A7Zz0tO4B8Vchz+++Hh2ljUNp9QOA0/NemMJeNpWc6c/Qza7pvoHm/ed2gRz0YFKx30bzZ9Gr1dqudB7oKbgl1q4xjb9Ne4VFE45AJQwOi9cBtSzNMiDKcBix1cKyZJHRGJmwAKEjI9DDJF5Ci55AZoXGk4AiD8uz5FwkJtV6GPihDYqb6ci1LXlcbxGb8fphwIWPDBC0ajeMAwadn20Qjrhg1wRKAUMVhVkSnRBFqYOeOgwX7QaMwJGKUYMHFiMkUIDJ4C0umJFxbJaYXxWttVkKFDK11nxn8IcW+wrRHkCImUi8TTNQk5CLNAWf0PyFZrIVADmzLvbybq3DyuuW+ab39tlc/2Cv3tmE9s7athuVa76wD64t1bPUsau/bvj2zg8qfaq36pPq0kFbs8s1j60JUt/8C0EcUBQ==</latexit>

Side-note: gated recurrent units to attention
• A key idea behind LSTM and GRU is the additive update

• This additive update creates linear short-cut connections

73

ht = ut � ht�1 + (1� ut)� h̃t, r?2`2 h̃t = f(xt, ht�1)
<latexit sha1_base64="5wriGvWZXFVdX4URBTwRuH1fDFQ=">AAAC9HicfZHNbtQwFIU94a+Evyks2biMkKbQjhIogg1SJViwQRSJaSuNR5Hj3JlYTezIvmlniNInYYfY8hy8Ai/BFpY4MxlBW8SV7Hw659ix7o2LTFoMgu8d79LlK1evrV33b9y8dftOd/3uvtWlETAUOtPmMOYWMqlgiBIzOCwM8DzO4CA+etX4B8dgrNTqA84LGOd8quRECo5OirpxGiF9SUu3M51opGlU4XZY08e0H247ebPVGcosgSqtnV9vnTKEGVYnKRioT/0/ZnPZpD+LcGt102bU7QWDYFH0IoQt9Ehbe9F65yNLtChzUCgybu0oDAocV9ygFBnUPistFFwc8SmMHCqegx1Xi2bU9KFTEjrRxi2FdKH+faLiubXzPHbJnGNqz3uN+C9vVOLkxbiSqigRlFj+aFJmFDVtOksTaUBgNnfAhZHurVSk3HCBrv++zxScCJ3nXCUVU1IlUNQONLINVoAp3GejxfpseJVtLLqM0VXuNbgOGXjrXvvOSRy1eVQxbqa5VPUCWEP/C/LZKujId9MKz8/mIuw/GYRPB8/e7/R2d9q5rZH75AHpk5A8J7vkDdkjQyLIN/KD/CS/vGPvk/fZ+7KMep32zD1ypryvvwHU9/Ep</latexit>

Side-note: gated recurrent units to attention
• What are these shortcuts?

• If we unroll it, we see it’s a weighted combination of all previous
hidden vectors:

74

ht =ut � ht�1 + (1� ut)� h̃t,

=ut � (ut�1 � ht�2 + (1� ut�1)� h̃t�1) + (1� ut)� h̃t,

=ut � (ut�1 � (ut�2 � ht�3 + (1� ut�2)� h̃t�2) + (1� ut�1)� h̃t�1) + (1� ut)� h̃t,

XXX

=
tX

i=1

0

@
t�i+1Y

j=i

uj

1

A

i�1Y

k=1

(1� uk)

!
h̃i

<latexit sha1_base64="cuHZREnpiY4tg92aO0t98HoBsDw=">AAAEaXicrVJdb9MwFHW7AiN8rfCC4MWjYmoZq5puCF4qTYIHXhBDotukuotcx228+iOznUGJ8jeR+A38CZw0Re1WsRcsOT4599x7buI7ijkzttP5Valu1G7dvrN517t3/8HDR1v1x8dGJZrQPlFc6dMRNpQzSfuWWU5PY02xGHF6Mpq+z+Mnl1QbpuRXO4vpUOCJZGNGsHVUUK/8jAILezswcQdSobIwClK752dwFzb9PUe3Sh5ZxkOaRpmLZ6+hh5C3mthMysylOt2/dYrQulp5RusGtxvNvPl7d8V8f9m8u97c0d7/6nAHXVwkOFzzvHQJZvERyCQiSFnPz85cFU7HtolircIgPe+x7Mz5sV3nmATnSLNJZFsrmmmel7K8p6KfaatULTXEvGCr0Wl3igWvA78EDVCuIzcJP1CoSCKotIRjYwZ+J7bDFGvLCKeZhxJDY0ymeEIHDkosqBmmxQRm8KVjQjhW2m1pYcEuZ6RYGDMTI6cU2Ebmaiwn18UGiR2/G6ZMxomlksyNxgmHVsF8nGHINCWWzxzARDPXKyQR1phYN/SehyT9RpQQWIYpkkyGNM4cUBZto5jq2B3bJcxWxQttHoJzGVzoPlD3hzT95Lr97ChslX6VIqwngsmsAChH/xLi7wuhQ/lt+Vfv5jo47rb9/fabLweNw4Py3jbBc/ACNIEP3oJD8BEcgT4g1V6VVHlVbPyu1WtPa8/m0mqlzHkCVlat8Qd2VmkR</latexit>

Side-note: gated recurrent units to attention
1. Can we “free” these dependent

weights?

2. Can we “free” candidate vectors?

3. Can we separate keys and values?

4. Can we have multiple attention
heads?

75

ht =
tX

i=1

0

@
t�i+1Y

j=i

uj

1

A

i�1Y

k=1

(1� uk)

!
h̃i

<latexit sha1_base64="7XVTWD31JIyz3GBUw4py/GnjTYQ=">AAAC+3icfZFLbxMxEICd5VXCoykcubhESCkoURaK4BKpEhy4IIpE2kpxunK8TtaNHyt7FgjW/hpuiCu/gzM/hCvgTTYSaREjWf40841szUxyKRz0+z8a0aXLV65e27revHHz1u3t1s6dI2cKy/iQGWnsyYQ6LoXmQxAg+UluOVUTyY8n8xdV/fg9t04Y/Q4WOR8rOtNiKhiFkEpaIksAD4grVOLFIC5PARPJp9AhuTVp4s8Gojz10BWP4hIXyRmxYpbB3oYzr/q86AajE3eLZL5XW5iAkCn3WZmIZtJq93v9ZeCLENfQRnUcJjuNTyQ1rFBcA5PUuVHcz2HsqQXBJC+bpHA8p2xOZ3wUUFPF3dgvZ1LiByGT4qmx4WjAy+zfHZ4q5xZqEkxFIXPna1XyX7VRAdPnYy90XgDXbPXQtJAYDK4GjFNhOQO5CECZFeGvmGXUUgZhDc0m0fwDM0pRnXqihU55XgYwQHZJzm0ert0ay0157VYlvNLw2nvJw4Qsfx1++yakKBj70BNqZ0rocgmkov+J9ONaDFRtKz6/m4tw9LgXP+k9fbvfPtiv97aF7qH7qINi9AwdoFfoEA0RQ9/RT/QL/Y7K6HP0Jfq6UqNG3XMXbUT07Q84HfSn</latexit>

ht =
tX

i=1

↵ih̃i, r?2`2 ↵i / exp(�hh(h̃i, xt))
<latexit sha1_base64="Fj/zphCLxbrgT8mRA0O5Xp2U9Q4=">AAAC+3icfZFLbxMxEICd5VXCK4UjF5cIKUWoykIRXCoVwYELokhJWykOK8c7yVq1vZY9SxNW2z/DDXHld3Dmh3AFvHmIPhAjWf40841szYyskh673R+N6NLlK1evrV1v3rh56/ad1vrdfZ8XTkBf5Cp3hyPuQUkDfZSo4NA64Hqk4GB09KquH3wE52VuejizMNR8YuRYCo4hlbRkliDdYb7QSSl34uoDUsaVzXgiKUOpUiizKpGPTxjCFMvjDBxUJ38V63KLOWUwtZ2F8rLXqzqnW+k0wc3NZtJqd7e686AXIV5CmyxjL1lvfGJpLgoNBoXi3g/irsVhyR1KoaBqssKD5eKIT2AQ0HANfljOZ1LRhyGT0nHuwjFI59nTHSXX3s/0KJiaY+bP1+rkv2qDAscvhqU0tkAwYvHQuFA0TKEeME2lA4FqFoALJ8Nfqci44wLDGppNZuBY5Fpzk5bMSJOCrQLkyDaYBWfDtbHE6qy8cusSXWh05b2GMCEHb8Nv34UUx9w9Khl3Ey1NNQdW0/9EPl2Jgeptxed3cxH2n2zFT7eevd9u724v97ZG7pMHpENi8pzskjdkj/SJIN/JT/KL/I6q6HP0Jfq6UKPGsuceORPRtz994fZv</latexit>

ht =
tX

i=1

↵if(xi), r?2`2 ↵i / exp(�hh(f(xi), xt))
<latexit sha1_base64="nanXEc2zQYGev51vQvlRCNXa0V8=">AAAC8XicfZHLbhMxFIad4VbCpSks2bhESAlCUQaKYFOpCBZsEEVK2kpxGDnOSWJ1fJF9hiaMpu/BDrHlOXgInoEt7PEkE0RbxJEsfzr/f2TrPyObSo/d7vdadOnylavXNq7Xb9y8dXuzsXXnwJvMCegLkxp3NOIeUqmhjxJTOLIOuBqlcDg6flnqhx/AeWl0DxcWhopPtZxIwTG0kkYyS5DuMp+pJJe7cfEeKeOpnfFE0klrnsj2o1OGMMf8ZAYOitM/KrPOWDSUwdy2VpYXvV7RqqboPMF2u540mt1Od1n0IsQVNElV+8lW7SMbG5Ep0ChS7v0g7loc5tyhFCkUdZZ5sFwc8ykMAmquwA/zZRIFfRA6YzoxLhyNdNn9eyLnyvuFGgWn4jjz57Wy+S9tkOHk+TCX2mYIWqwemmQpDQGUsdKxdCAwXQTgwsnwVypm3HGBIfx6nWk4EUYprsc501KPwRYBDLJtZsHZcG1XWJw1r72lRFc2uva9gpCQgzfht29Di6NxD3PG3VRJXSyBlfQ/I5+vjYHKbcXnd3MRDh534iedp+92mns71d42yD1yn7RITJ6RPfKa7JM+EeQb+UF+kl+Rjz5Fn6MvK2tUq2bukjMVff0N5HPwzQ==</latexit>

ht =
tX

i=1

↵iV (f(xi)), r?2`2 ↵i / exp(�hh(K(f(xi)), Q(xt)))
<latexit sha1_base64="DHCBrs1oBbqSP6I674aSpLe1gBk=">AAAC+nicfZFLbxMxEICd5VXCoykcubhESAlCURaK2kulIjggIUQrJWmlOKwcZ5K1umtb9ixNWLY/hhviyu/gzv/gCsKbR0VbxEiWP818I1szQ5NIh+32j0pw5eq16zfWblZv3b5zd722ca/ndGYFdIVOtD0acgeJVNBFiQkcGQs8HSZwODx+WdYPP4B1UqsOzgwMUj5RciwFR5+KanEcId1lLkujXO6GxXukjCcm5pGkvca4MY1ks/nklCFMMT+JwUJxeiYwY7VBTRlMTWOhvOh0isabs0Z64AGbzWY1qtXbrfY86GUIl1Any9iPNiof2UiLLAWFIuHO9cO2wUHOLUqRQFFlmQPDxTGfQN+j4im4QT4fSUEf+cyIjrX1RyGdZ//uyHnq3CwdejPlGLuLtTL5r1o/w/HOIJfKZAhKLB4aZwn1YyjnS0fSgsBk5oELK/1fqYi55QL9FqpVpuBE6DTlapQzJdUITOFBI9tkBqzx1+YSi/Pyyi1LdKHRlfcK/IQsvPW/fedTHLV9nDNuJ6lUxRxYSf8T+XQleiq3FV7czWXoPW2Fz1rPD7bqe1vLva2RB+QhaZCQbJM98prsky4R5Dv5SX6R38Gn4HPwJfi6UIPKsuc+ORfBtz98DfMM</latexit>

ht = [h1
t ; · · · ;hK

t], r?2`2 hk
t =

tX

i=1

↵k
i V

k(f(xi)), r?2`2 ↵k
i / exp(�hh(Kk(f(xi)), Q

k(xt)))
<latexit sha1_base64="kcXR15P1JO0fkCILanYiu9TzVgw=">AAADMnicfZHfahNBFMZnV601/mmql95MDUIiJWS1VaEEKnohFLGFJC1kkmUye5IM2Z0ZZmZt4rJ9Fh/Cl9E78daHcDZ/IE3FA8v85jvfYYfzDVTMjW00fnj+rdt3tu5u3yvdf/Dw0U5593HHyFQzaDMZS30xoAZiLqBtuY3hQmmgySCG88HkfdE//wLacCladqagl9CR4EPOqHVSWP42Di1u4q47+sERJiyS1hzh4nrS278iFqY2uxyDhvyqVKgT3CQmTcKMN4O8bzGhsRrTkLtGpz+pDqvTkNdqG5NrJqK0VFZiAlNVXZjetVp59WRtGJ+5yzS0tVqtFJYrjXpjXvgmBEuooGWdhrveVxJJliYgLIupMd2goWwvo9pyFkNeIqkBRdmEjqDrUNAETC+brzLHz50S4aHU7hMWz9X1iYwmxsySgXMm1I7NZq8Q/9Xrpnb4tpdxoVILgi1+NExj7FZR5IIjroHZeOaAMs3dWzEbU02ZdemVSkTAJZNJQkWUEcFFBCp3IC3ZIwq0csfeEvPr5pW3aOGFDa98H8BtSMMn99rPTqJW6hcZoXqUcJHPgRT0PyOdroyOirSCzWxuQudlPXhVPzw7qBwfLHPbRk/RM1RFAXqDjtFHdIraiHlb3r536L32v/s//V/+74XV95YzT9C18v/8Bf+VBbg=</latexit>

0

1

2

3

4

keys values

queries

outputs

Generalized dot-product attention - vector
form

76

Generalized dot-product attention - matrix
form

• rows of Q, K, V are keys,
queries, values

• softmax acts row-wise

77

Transformer Architecture
• introduces the self attention mechanism

• No locality bias, i.e. long-distance context has
”equal opportunity” as compared to LSTMs

• more efficient than RNNs/LSTMs
• it breaks down the recurrent structure
• Single multiplication per layer

78

ZĲôøĦ��ŎîđĔřøîřŞŎø

Ɣ)īŋĔŎĔîÔĦ�ÔôűÔĬřÔČøŒ�Ĳċ��ŎÔĬŒċĲŎīøŎ�űŒ̵�T��Z̷
ʽ̵ �øĦċͦÔřřøĬřĔĲĬ�ώώ�ĬĲ�ĦĲîÔĦĔřŸ�íĔÔŒ

Ɣ TĲĬČͦôĔŒřÔĬîø�îĲĬřøŷř�đÔŒ�ͱøōŞÔĦ�ĲŋŋĲŎřŞĬĔřŸͲ

ʾ̵ �ĔĬČĦø�īŞĦřĔŋĦĔîÔřĔĲĬ�ŋøŎ�ĦÔŸøŎ�ώώ�øċċĔîĔøĬîŸ�ĲĬ��z�
Ɣ)ċċøîřĔűø�íÔřîđ�ŒĔƀø�ĔŒ�ĬŞīíøŎ�Ĳċ�ŲĲŎôŒ̶�ĬĲř�ŒøōŞøĬîøŒ

¥ͫʼͫʼ ¥ͫʼͫʽ ¥ͫʼͫʾ ¥ͫʼͫʿ

¥ͫʽͫʼ ¥ͫʽͫʽ ¥ͫʽͫʾ ¥ͫʽͫʿ

Ї

¥ͫʼͫʼ ¥ͫʼͫʽ ¥ͫʼͫʾ ¥ͫʼͫʿ

¥ͫʽͫʼ ¥ͫʽͫʽ ¥ͫʽͫʾ ¥ͫʽͫʿ

Ї

�ŎÔĬŒċĲŎīøŎ T��Z

ZĲôøĦ��ŎîđĔřøîřŞŎø

Ɣ)īŋĔŎĔîÔĦ�ÔôűÔĬřÔČøŒ�Ĳċ��ŎÔĬŒċĲŎīøŎ�űŒ̵�T��Z̷
ʽ̵ �øĦċͦÔřřøĬřĔĲĬ�ώώ�ĬĲ�ĦĲîÔĦĔřŸ�íĔÔŒ

Ɣ TĲĬČͦôĔŒřÔĬîø�îĲĬřøŷř�đÔŒ�ͱøōŞÔĦ�ĲŋŋĲŎřŞĬĔřŸͲ

ʾ̵ �ĔĬČĦø�īŞĦřĔŋĦĔîÔřĔĲĬ�ŋøŎ�ĦÔŸøŎ�ώώ�øċċĔîĔøĬîŸ�ĲĬ��z�
Ɣ)ċċøîřĔűø�íÔřîđ�ŒĔƀø�ĔŒ�ĬŞīíøŎ�Ĳċ�ŲĲŎôŒ̶�ĬĲř�ŒøōŞøĬîøŒ

¥ͫʼͫʼ ¥ͫʼͫʽ ¥ͫʼͫʾ ¥ͫʼͫʿ

¥ͫʽͫʼ ¥ͫʽͫʽ ¥ͫʽͫʾ ¥ͫʽͫʿ

Ї

¥ͫʼͫʼ ¥ͫʼͫʽ ¥ͫʼͫʾ ¥ͫʼͫʿ

¥ͫʽͫʼ ¥ͫʽͫʽ ¥ͫʽͫʾ ¥ͫʽͫʿ

Ї

�ŎÔĬŒċĲŎīøŎ T��Z

A. Vaswani et al. Attention Is All You Need. In NeurIPS 2017

Transformer Architecture

79

Input text is first split into pieces. Can be characters, word, "tokens":
"The detective investigated" -> [The_] [detective_] [invest] [igat] [ed_]

Tokens are indices into the "vocabulary":
[The_] [detective_] [invest] [igat] [ed_] -> [3 721 68 1337 42]

Each vocab entry corresponds to a learned dmodel-dimensional vector.
[3 721 68 1337 42] -> [[0.123, -5.234, ...], [...], [...], [...], [...]]

Input (Tokenization and) Embedding

Positional Encoding
Remember attention is permutation invariant, but language is not!

Need to encode position of each word; just add something.

Think [The_] + 10 [detective_] + 20 [invest] + 30 ... but smarter.

Transformer Architecture

80

Multi-headed Self-Attention

Meaning the input sequence is used to create
queries, keys, and values!
Each token can "look around" the whole input,
and decide how to update its representation
based on what it sees.

[The_] [detective_] [invest] [igat] [ed_]

MHSA

Transformer Architecture

81

Point-wise MLP

Some people like to call it 1x1 convolution.

A simple MLP applied to each token individually:

zi =	W2	GeLU(W1x	+	b1)	+	b2

Think of it as each token pondering for itself
about what it has observed previously.

There's some weak evidence this is where
"world knowledge" is stored, too.
It contains the bulk of the parameters. When
people make giant models and sparse/moe, this
is what becomes giant.

GeLUGeLU GeLUGeLU

[The_] [detective_] [invest] [igat] [ed_]

GeLU

Transformer Architecture

82

Residual connections
Each module's output has the exact same
shape as its input.

Following ResNets, the module computes
a "residual" instead of a new value:

zi =	Module(xi)	+	xi

This was shown to dramatically improve
trainability.

LayerNorm
Normalization also dramatically improves trainability.
There's post-norm (original) and pre-norm (modern)
zi =	LN(Module(xi)	+	xi) zi =	Module(LN(xi))	+	xi

Block
+ +

Block

"Skip connection" "Residual block"

Transformer Architecture

83

Encoding / Encoder
Since input and output shapes are identical,
we can stack N such blocks.

Typically, N=6 ("base"), N=12 ("large") or more.

Encoder output is a "heavily processed" (think:
"high level, contextualized") version of the
input tokens, i.e. a sequence.

This has nothing to do with the requested
output yet (think: translation). That comes
with the decoder.

Transformer Architecture

84

What we want to model: p(z|x)
e.g., in translation: p(z	|	"the	detective	investigated")	∀z

Decoding / the Decoder (alternatively Generating / the Generator)

Seems impossible at first, but we can exactly decompose into tokens:
p(z|x)	=	p(z1|x)	p(z2|z1,x)	p(z3|z2,z1,x)...

Meaning, we can generate the answer one token at a time.
Each p is a full pass through the model.

For generating p(z3|z2,z1,x):
x comes from the encoder,
z1,	z2 is what we have predicted so far, goes into the decoder.

Once we have p(z|x) we still need to actually sample a sentence such as
"le	détective a	enquêté". Many strategies: greedy, beam-search, ...z1,	z2

x

p(z3|z2,z1,x)

Transformer Architecture

85

This is regular self-attention as in the encoder, to process what's been
decoded so far, but with a trick...

Masked self-attention

If we had to train on one single p(z3|z2,z1,x) at a time: SLOW!

Instead, train on all p(zi|z1:i,x) simultaneously.

How? In the attention weights for zi, set all entries i:N to 0.

This way, each token only sees the already generated ones.

At generation time
There is no such trick. We need to generate one zi at a time. This is why
autoregressive decoding is extremely slow.

Transformer Architecture

86

Each decoded token can "look at" the encoder's output:

Attn(q=Wqxdec,	k=Wkxenc,	v=Wvxenc)

This is where |x in p(z3|z2,z1,x) comes from.

"Cross" attention

xenc

xdec
Because self-attention is so widely used, people have started just calling
it "attention".
Hence, we now often need to explicitly call this "cross attention".

Transformer Architecture

87

Feedforward and stack layers.

Transformer Architecture

88

Output layer

Assume we have already generated K tokens, generate the next one.

The decoder was used to gather all information necessary to predict a
probability distribution for the next token (K), over the whole vocab.

Simple:
linear projection of token K
SoftMax normalization

Transformer Architecture

89

Three types of attention in Transformer
● usual attention between encoder and decoder:

Q=[current state] K=V=[BiRNN states]

● self-attention in the encoder (encoder attends to itself!)
Q=K=V=[encoder states]

● masked self-attention in the decoder (attends to itself,
but a states can only attend previous states)
Q=K=V=[decoder states]

90

Positional Embeddings
• To give the model a sense of order

• Learned or predefined

91

Positional Embeddings

• To give the model a sense of
order

• learned or predefined

Positional Embeddings
• What does it look like?

Positional Embeddings
• What does it look like?

92

How to use Attention / Transformers for Vision?

93

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Start from standard CNN architecture (e.g. ResNet)

94

Idea #1: Add attention to existing CNNs

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

S
elf-A

tten
tio

n

S
elf-A

tten
tio

n

95

Idea #1: Add attention to existing CNNs

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

S
elf-A

tten
tio

n

S
elf-A

tten
tio

n

Model is still a CNN!
Can we replace
convolution entirely?

96

Idea #1: Add attention to existing CNNs

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018

Input: C x H x W Output: C’ x H x W

Convolution: Output at each position is inner product of
conv kernel with receptive field in input

97

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Input: C x H x W Output: C’ x H x W

Query: DQ

Map center of receptive field to query

98

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Map center of receptive field to query
Map each element in receptive field to key and value

99

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Attention

Output: C

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention

100

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention

LR = “Local Relation”

101

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Attention

Output: C

Lots of tricky details,
hard to implement, only
marginally better than
ResNets

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention

102

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set
of pixel values

Feed as input to
standard Transformer

103

Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set
of pixel values

Feed as input to
standard Transformer

Problem: Memory use!

R x R image needs R4

elements per attention
matrix

104

Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set
of pixel values

Feed as input to
standard Transformer

Problem: Memory use!

R x R image needs R4

elements per attention
matrix

R=128, 48 layers, 16 heads
per layer takes 768GB of
memory for attention
matrices for a single
example…

105

Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020

106

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

107

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

108

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

109

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

110

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Transformer

Output vectors

Exact same as
NLP Transformer!

+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

111

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Transformer

112

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Linear projection
to C-dim vector
of predicted class
scores

Transformer

113

Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Linear projection
to C-dim vector
of predicted class
scores

Transformer

Computer vision model with
no convolutions!

114

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Linear projection
to C-dim vector
of predicted class
scores

Transformer

Computer vision model with
no convolutions!

Not quite: With patch size p, first layer
is Conv2D(pxp, 3->D, stride=p)

115

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Linear projection
to C-dim vector
of predicted class
scores

Transformer

Computer vision model with
no convolutions!

Not quite: MLPs in Transformer
are stacks of 1x1 convolution

116

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Linear projection
to C-dim vector
of predicted class
scores

Transformer

In practice: take 224x224 input image,
divide into 14x14 grid of 16x16 pixel
patches (or 16x16 grid of 14x14 patches)

Each attention matrix has 144 = 38,416
entries, takes 150 KB
(or 65,536 entries, takes 256 KB)

117

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

N input patches, each
of shape 3x16x16

Linear projection to
D-dimensional vector

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Add positional
embedding: learned
D-dim vector per position

Linear projection
to C-dim vector
of predicted class
scores

Transformer

In practice: take 224x224 input image,
divide into 14x14 grid of 16x16 pixel
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per
layer, all attention matrices
take 112 MB (or 192MB)

118

Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

BiT = ResNet152x4
ResNet-152x4

B = Base
L = Large
H = Huge

/32, /16, /14 is patch
size; smaller patch
size is a bigger model
(more patches)

119

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

BiT = ResNet152x4

Recall: ImageNet
dataset has 1k
categories, 1.2M
images

When trained on
ImageNet, ViT models
perform worse than
ResNets ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch
size; smaller patch
size is a bigger model
(more patches)

120

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ImageNet-21k has 14M
images with 21k
categories

If you pretrain on
ImageNet-21k and fine-
tune on ImageNet, ViT
does better: big ViTs
match big ResNets ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch
size; smaller patch
size is a bigger model
(more patches)

121

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

JFT-300M is an
internal Google
dataset with 300M
labeled images

If you pretrain on JFT
and finetune on
ImageNet, large ViTs
outperform large
ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch
size; smaller patch
size is a bigger model
(more patches)

122

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

JFT-300M is an
internal Google
dataset with 300M
labeled images

If you pretrain on JFT
and finetune on
ImageNet, large ViTs
outperform large
ResNets

ViT: 2.5k TPU-v3 core
days of training

ResNet: 9.9k TPU-v3
core days of training

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

123

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

Claim: ViT models have
“less inductive bias” than
ResNets, so need more
pretraining data to learn
good features

(Not sure I buy this
explanation: “inductive
bias” is not a well-
defined concept we can
measure!)

ViT: 2.5k TPU-v3 core
days of training

ResNet: 9.9k TPU-v3
core days of training

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

124

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

ResNets

How can we
improve the
performance of
ViT models on
ImageNet?

ViT: 2.5k TPU-v3 core
days of training

ResNet: 9.9k TPU-v3
core days of training

ViTs make more
efficient use of GPU /
TPU hardware
(matrix multiply is
more hardware-
friendly than conv)

125

Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

126

ViT vs CNN

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

127

ViT vs CNN

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?

128

ViT vs CNN

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

Divide image into 4x4
patches and project to

C dimensions

129

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

130

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Hierarchical ViT: Swin Transformer
C ×

𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4
C

131Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Hierarchical ViT: Swin Transformer
C ×

𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

Concatenate
groups of
2x2 features

132Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Hierarchical ViT: Swin Transformer
C ×

𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

H/8

W/8
2C

Concatenate
groups of
2x2 features

Linear
projection
from 4C to
2C channels
(1x1 conv)

133Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

134

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

8𝐶 ×
𝐻
32

×
𝑊
32

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Merge 2x2
neighborhoods;
now patches are

(effectively) 32x32

135

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

8𝐶 ×
𝐻
32

×
𝑊
32

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Merge 2x2
neighborhoods;
now patches are

(effectively) 32x32

Problem: 224x224 image
with 56x56 grid of 4x4
patches: attention matrix
has 564 = 9.8M entries

136

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

8𝐶 ×
𝐻
32

×
𝑊
32

Divide image into 4x4
patches and project to

C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Merge 2x2
neighborhoods;
now patches are

(effectively) 32x32

Problem: 224x224 image
with 56x56 grid of 4x4
patches: attention matrix
has 564 = 9.8M entries

Solution: don’t use full
attention, instead use
attention over patches

137

Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

138

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend to all
other tokens, instead divide into windows of M
x M tokens (here M=4); only compute attention
within each window

139

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend to all
other tokens, instead divide into windows of M
x M tokens (here M=4); only compute attention
within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

140

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Problem: tokens only interact with other tokens within the
same window; no communication across windows

141

Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Solution: Alternate between normal windows and shifted
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Ugly detail:
Non-square
windows at
edges and
corners

142

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Solution: Alternate between normal windows and shifted
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to
input tokens, encodes absolute
position of each token in the image

143

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Solution: Alternate between normal windows and shifted
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to
input tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
when computing attention:

Standard Attention:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾.

𝐷
𝑉

𝑄,𝐾, 𝑉:𝑀/ × 𝐷 (Query, Key, Value)

144

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Solution: Alternate between normal windows and shifted
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to
input tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
when computing attention:

Attention with relative bias:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾.

𝐷
+ 𝐵 𝑉

𝑄,𝐾, 𝑉:𝑀/ × 𝐷 (Query, Key, Value)
𝐵:𝑀/ ×𝑀/ (learned biases)

145

Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

79

80

81

82

83

84

85

0 5 10 15 20

A
cc

ur
ac

y
(Im

ag
eN

et
 T

op
1)

Speed (ms/image on V100)

RegNetY EffNet ViT+Distillation (DeiT) Swin

146

Swin Transformer: Speed vs Accuracy

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

79

80

81

82

83

84

85

0 5 10 15 20

A
cc

ur
ac

y
(Im

ag
eN

et
 T

op
1)

Speed (ms/image on V100)

RegNetY EffNet ViT+Distillation (DeiT) Swin

Bonus: Swin Transformer can also be
used as a backbone for object
detection, instance segmentation, and
semantic segmentation!

147

Swin Transformer: Speed vs Accuracy

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Liu et al, “Swin Transformer V2: Scaling
up Capacity and Resolution”, CVPR 2022

Fan et al., “Multiscale Vision Transformers”,
ICCV 2021

MViT Swin-V2

Li et al, “Improved Multiscale Vision Transformers
for Classification and Detection”, arXiv 2021

Improved MViT

148

Other Hierarchical Vision Transformers

Recap of Transformers
• Three key ideas

• Tokens
• Attention
• Positional encoding

149

Tokens: A new data structure
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over

tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

150

A new data structure: Tokens
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over
tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

array of neurons

x
<latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit>

array of tokens

t
<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit>

array of neurons array of tokens

Tokens: A new data structure
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over

tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

151

A new data structure: Tokens
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over
tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with
transformers we will operate over tokens rather than over neurons

array of neurons

x
<latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit><latexit sha1_base64="qs7zOlksqv4NNZKed59cy1KO4ZM=">AAACRHicfZDNSsNAFIUn/tb61+rSTbAKIlISEXRZ1IUbsYK1YlPkZnpTh04mYWYiLaFv4VYfx3fwHdyJW3HSVtBWvDDwce6ZmXuPH3OmtOO8WlPTM7Nz87mF/OLS8spqobh2raJEUqzRiEfyxgeFnAmsaaY53sQSIfQ51v3OSdavP6BULBJXuhdjM4S2YAGjoI1064Wg7/0g7fbvCiWn7AzKngR3BCUyqupd0dryWhFNQhSaclCq4TqxbqYgNaMc+3kvURgD7UAbGwYFhKia6WDkvr1tlJYdRNIcoe2B+vNGCqFSvdA3zmxENd7LxL96jUQHR82UiTjRKOjwoyDhto7sbH+7xSRSzXsGgEpmZrXpPUig2qSUz3unaJaReG4evohRgo7kbuqBbIfQ7Zvl2t5eRv8Zmfg2GjK5uuMpTsL1ftl1yu7lQalyPEo4RzbIJtkhLjkkFXJGqqRGKBHkkTyRZ+vFerPerY+hdcoa3Vknv8r6/ALvc7Hf</latexit>

array of tokens

t
<latexit sha1_base64="5stcGrXqsoASK8xcqONY8G/32M8=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhhrNBtebW3TnIKvEKUoMCzUH1qz+MWRpxhUxSY3qem6CfUY2CST6r9FPDE8omdMR7lioaceNn88QzcmaVIQljbZ9CMld/b2Q0MmYaBXYyT2iWvVz8z+ulGF77mVBJilyxxUdhKgnGJD+fDIXmDOXUEsq0sFkJG1NNGdqSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWCg4Ble4c0xzovz7nwsRktOsXMMf+B8/gD3JZEY</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit><latexit sha1_base64="w9W1987jyYCglqugohyzztGZ6b8=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYVcELYM2lgrmgckSZiezyZDZ2WXmrhCW/IWFjb9iI2Irdv6Ns8kWmlh4YOBwzr3cOSdIpDDoul/O0vLK6tp6aaO8ubW9s1vZ22+aONWMN1gsY90OqOFSKN5AgZK3E81pFEjeCkZXud964NqIWN3hOOF+RAdKhIJRtNJ9N6I4DMIMJ71K1a25U5BF4hWkCgX+N96rfHb7MUsjrpBJakzHcxP0M6pRMMkn5W5qeELZiA54x1JFI278bBprQo6t0idhrO1TSKbqz42MRsaMo8BO5jHMvJeLf3mdFMMLPxMqSZErNjsUppJgTPKOSF9ozlCOLaFMC/tXwoZUU4a2ybKN7s0HXSTN05rn1rzbs2r9suisBIdwBCfgwTnU4RpuoAEMFDzCM7w6T86L8+a8z0aXnGLnAH7B+fgG6kiYkQ==</latexit>

set of neurons set of tokens

Tokenizing the input data

152

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

Tokenizing the input data

e.g., linear projection

• When operating over neurons, we represent
the input as an array of scalar-valued
measurements (e.g., pixels)

• When operating over tokens, we represent
the input as an array of vector-valued
measurements

tokens

patches

input

• When operating over neurons, we represent
the input as an array of scalar-valued
measurements (e.g., pixels)

• When operating over tokens, we represent
the input as an array of vector-valued
measurements

e.g., linear projection

Tokenizing the input data

153

• You can tokenize anything.

• General strategy: chop the input up into chunks, project each chunk to a vector.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

Tokenizing the input data

Three guineafowl.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

byte pairs
<latexit sha1_base64="+Sf3zqHGAo2Kqc7zyjp9ki++ZDQ=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0l60WPRi8cK9gPbUDbbTbt0swm7EyGE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmljc2t7p7xb2ds/ODyqHp90TJxqxtsslrHuBdRwKRRvo0DJe4nmNAok7wbT27nffeLaiFg9YJZwP6JjJULBKFrpMciQk4QKbYbVmlt3FyDrxCtIDQq0htWvwShmacQVMkmN6Xtugn5ONQom+awySA1PKJvSMe9bqmjEjZ8vLp6RC6uMSBhrWwrJQv09kdPImCwKbGdEcWJWvbn4n9dPMbz2c6GSFLliy0VhKgnGZP4+GQnNGcrMEsq0sLcSNqGaMrQhVWwI3urL66TTqHtu3btv1Jo3RRxlOINzuAQPrqAJd9CCNjBQ8Ayv8OYY58V5dz6WrSWnmDmFP3A+fwCKRZDP</latexit><latexit sha1_base64="3/2qHCDhNXktMT9Tcj+lOOaKR60=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzwGQJs5O7yZDZ2WVmVliW/IWFjb9iI2Irdv6Nk2QLTSw8MHA451zu3BMkgmvjul/Oyura+sZmaau8vbO7t185OGzpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw19dsPqDSP5Z3JEvQjOpQ85IwaK90HmUGSUK50v1J1a+4MZJl4BalCgf/F+5XP3iBmaYTSMEG17npuYvycKsOZwEm5l2pMKBvTIXYtlTRC7eezsybk1CoDEsbKPmnITP05kdNI6ywKbDKiZqQXvan4l9dNTXjh51wmqUHJ5ovCVBATk2lHZMAVMiMySyhT3P6VsBFVlBnbZNme7i0eukxa9Zrn1rzberVxWXRWgmM4gTPw4BwacA030AQGEh7hGV6dJ+fFeXPe59EVp5g5gl9wPr4BcyWYSA==</latexit><latexit sha1_base64="3/2qHCDhNXktMT9Tcj+lOOaKR60=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzwGQJs5O7yZDZ2WVmVliW/IWFjb9iI2Irdv6Nk2QLTSw8MHA451zu3BMkgmvjul/Oyura+sZmaau8vbO7t185OGzpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw19dsPqDSP5Z3JEvQjOpQ85IwaK90HmUGSUK50v1J1a+4MZJl4BalCgf/F+5XP3iBmaYTSMEG17npuYvycKsOZwEm5l2pMKBvTIXYtlTRC7eezsybk1CoDEsbKPmnITP05kdNI6ywKbDKiZqQXvan4l9dNTXjh51wmqUHJ5ovCVBATk2lHZMAVMiMySyhT3P6VsBFVlBnbZNme7i0eukxa9Zrn1rzberVxWXRWgmM4gTPw4BwacA030AQGEh7hGV6dJ+fFeXPe59EVp5g5gl9wPr4BcyWYSA==</latexit><latexit sha1_base64="3/2qHCDhNXktMT9Tcj+lOOaKR60=">AAACFnicjVC7SgNBFL3rM8ZX1NJmMAhWYTeNlkEbSwXzwGQJs5O7yZDZ2WVmVliW/IWFjb9iI2Irdv6Nk2QLTSw8MHA451zu3BMkgmvjul/Oyura+sZmaau8vbO7t185OGzpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw19dsPqDSP5Z3JEvQjOpQ85IwaK90HmUGSUK50v1J1a+4MZJl4BalCgf/F+5XP3iBmaYTSMEG17npuYvycKsOZwEm5l2pMKBvTIXYtlTRC7eezsybk1CoDEsbKPmnITP05kdNI6ywKbDKiZqQXvan4l9dNTXjh51wmqUHJ5ovCVBATk2lHZMAVMiMySyhT3P6VsBFVlBnbZNme7i0eukxa9Zrn1rzberVxWXRWgmM4gTPw4BwacA030AQGEh7hGV6dJ+fFeXPe59EVp5g5gl9wPr4BcyWYSA==</latexit> [Th][re] [wl][.]

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

...

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

2 CHAPTER 1. TRANSFORMERS

should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

You can tokenize anything.
General strategy: chop the input up into chunks, project each chunk to a vector.

sound
<latexit sha1_base64="55NdVzHkFl0bC+gNosRoHYa+/sc=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkveix68VjBtIU2lM1m0i7dbMLuRiihv8GLB0W8+oO8+W/ctjlo64OFx3szszMvzATXxnW/nY3Nre2d3cpedf/g8Oi4dnLa0WmuGPosFanqhVSj4BJ9w43AXqaQJqHAbji5m/vdJ1Sap/LRTDMMEjqSPOaMGiv5do6MhrW623AXIOvEK0kdSrSHta9BlLI8QWmYoFr3PTczQUGV4UzgrDrINWaUTegI+5ZKmqAOisWyM3JplYjEqbJPGrJQf3cUNNF6moS2MqFmrFe9ufif189NfBMUXGa5QcmWH8W5ICYl88tJxBUyI6aWUKa43ZWwMVWUGZtP1YbgrZ68TjrNhuc2vIdmvXVbxlGBc7iAK/DgGlpwD23wgQGHZ3iFN0c6L86787Es3XDKnjP4A+fzBw4mjtM=</latexit><latexit sha1_base64="7AcENEZCM7KvW+YHxwZEzz23P9s=">AAACEXicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwggSaSu1UeU4TmvVcSL7BqmK+g0MLPwKC0KsbGz8De5jgJaBI1k6Ovdc2+eEmRQGXffLKa2tb2xulbcrO7t7+wfVw6OWSXPNuM9SmepOSA2XQnEfBUreyTSnSSh5OxxdT+ftB66NSNU9jjMeJHSgRCwYRSv59h4V9as1t+7OQFaJtyA1WOB/9n71sxelLE+4QiapMV3PzTAoqEbBJJ9UernhGWUjOuBdSxVNuAmKWaIJObNKROJU26OQzNSfGwVNjBknoXUmFIdmeTYV/5p1c4wvg0KoLEeu2PyhOJcEUzKth0RCc4ZybAllWti/EjakmjK0JVZsdG856CppNeqeW/fuGrXm1aKzMpzAKZyDBxfQhBu4BR8YCHiEZ3h1npwX5815n1tLzmLnGH7B+fgGtAyWTA==</latexit><latexit sha1_base64="7AcENEZCM7KvW+YHxwZEzz23P9s=">AAACEXicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwggSaSu1UeU4TmvVcSL7BqmK+g0MLPwKC0KsbGz8De5jgJaBI1k6Ovdc2+eEmRQGXffLKa2tb2xulbcrO7t7+wfVw6OWSXPNuM9SmepOSA2XQnEfBUreyTSnSSh5OxxdT+ftB66NSNU9jjMeJHSgRCwYRSv59h4V9as1t+7OQFaJtyA1WOB/9n71sxelLE+4QiapMV3PzTAoqEbBJJ9UernhGWUjOuBdSxVNuAmKWaIJObNKROJU26OQzNSfGwVNjBknoXUmFIdmeTYV/5p1c4wvg0KoLEeu2PyhOJcEUzKth0RCc4ZybAllWti/EjakmjK0JVZsdG856CppNeqeW/fuGrXm1aKzMpzAKZyDBxfQhBu4BR8YCHiEZ3h1npwX5815n1tLzmLnGH7B+fgGtAyWTA==</latexit><latexit sha1_base64="7AcENEZCM7KvW+YHxwZEzz23P9s=">AAACEXicjVC7TsMwFL0pr1JeBUYWiwqJqUq6wFjBwggSaSu1UeU4TmvVcSL7BqmK+g0MLPwKC0KsbGz8De5jgJaBI1k6Ovdc2+eEmRQGXffLKa2tb2xulbcrO7t7+wfVw6OWSXPNuM9SmepOSA2XQnEfBUreyTSnSSh5OxxdT+ftB66NSNU9jjMeJHSgRCwYRSv59h4V9as1t+7OQFaJtyA1WOB/9n71sxelLE+4QiapMV3PzTAoqEbBJJ9UernhGWUjOuBdSxVNuAmKWaIJObNKROJU26OQzNSfGwVNjBknoXUmFIdmeTYV/5p1c4wvg0KoLEeu2PyhOJcEUzKth0RCc4ZybAllWti/EjakmjK0JVZsdG856CppNeqeW/fuGrXm1aKzMpzAKZyDBxfQhBu4BR8YCHiEZ3h1npwX5815n1tLzmLnGH7B+fgGtAyWTA==</latexit>

snippets
<latexit sha1_base64="VMwPDJ1tm9HmaHgdH2KJkvnCQic=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNgFe7SaBm0sYxgPiA5wt5mL1myt7fuzgkh5E/YWChi69+x89+4Sa7QxAcDj/dmmJkXaSks+v63V9jY3NreKe6W9vYPDo/Kxyctm2aG8SZLZWo6EbVcCsWbKFDyjjacJpHk7Wh8O/fbT9xYkaoHnGgeJnSoRCwYRSd1rBJac7T9csWv+guQdRLkpAI5Gv3yV2+QsizhCpmk1nYDX2M4pQYFk3xW6mWWa8rGdMi7jiqacBtOF/fOyIVTBiROjSuFZKH+npjSxNpJErnOhOLIrnpz8T+vm2F8HU6F0hlyxZaL4kwSTMn8eTIQhjOUE0coM8LdStiIGsrQRVRyIQSrL6+TVq0a+NXgvlap3+RxFOEMzuESAriCOtxBA5rAQMIzvMKb9+i9eO/ex7K14OUzp/AH3ucPfWWQPg==</latexit><latexit sha1_base64="0rWtOt5kDjVx/oia9l70dVlCGoQ=">AAACFHicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLBXMA5IlzE7uJkNmZ4eZu0JY8hMWNv6KjYithZ1/4+RRaGLhgYHDOedy555IS2HR97+8wtr6xuZWcbu0s7u3f1A+PGraNDMcGjyVqWlHzIIUChooUEJbG2BJJKEVja6nfusBjBWpusexhjBhAyViwRk6qW2V0BrQ9soVv+rPQFdJsCAVssD/4r3yZ7ef8iwBhVwyazuBrzHMmUHBJUxK3cyCZnzEBtBxVLEEbJjPjprQM6f0aZwa9xTSmfpzImeJteMkcsmE4dAue1PxL6+TYXwZ5kLpDEHx+aI4kxRTOm2I9oUBjnLsCONGuL9SPmSGcXQ9ltzpwfKhq6RZqwZ+NbirVepXi86K5IScknMSkAtSJzfkljQIJ5I8kmfy6j15L96b9z6PFrzFzDH5Be/jG1Pql7c=</latexit><latexit sha1_base64="0rWtOt5kDjVx/oia9l70dVlCGoQ=">AAACFHicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLBXMA5IlzE7uJkNmZ4eZu0JY8hMWNv6KjYithZ1/4+RRaGLhgYHDOedy555IS2HR97+8wtr6xuZWcbu0s7u3f1A+PGraNDMcGjyVqWlHzIIUChooUEJbG2BJJKEVja6nfusBjBWpusexhjBhAyViwRk6qW2V0BrQ9soVv+rPQFdJsCAVssD/4r3yZ7ef8iwBhVwyazuBrzHMmUHBJUxK3cyCZnzEBtBxVLEEbJjPjprQM6f0aZwa9xTSmfpzImeJteMkcsmE4dAue1PxL6+TYXwZ5kLpDEHx+aI4kxRTOm2I9oUBjnLsCONGuL9SPmSGcXQ9ltzpwfKhq6RZqwZ+NbirVepXi86K5IScknMSkAtSJzfkljQIJ5I8kmfy6j15L96b9z6PFrzFzDH5Be/jG1Pql7c=</latexit><latexit sha1_base64="0rWtOt5kDjVx/oia9l70dVlCGoQ=">AAACFHicjVC7SgNBFJ2NrxhfUUubwSBYhd00WgZtLBXMA5IlzE7uJkNmZ4eZu0JY8hMWNv6KjYithZ1/4+RRaGLhgYHDOedy555IS2HR97+8wtr6xuZWcbu0s7u3f1A+PGraNDMcGjyVqWlHzIIUChooUEJbG2BJJKEVja6nfusBjBWpusexhjBhAyViwRk6qW2V0BrQ9soVv+rPQFdJsCAVssD/4r3yZ7ef8iwBhVwyazuBrzHMmUHBJUxK3cyCZnzEBtBxVLEEbJjPjprQM6f0aZwa9xTSmfpzImeJteMkcsmE4dAue1PxL6+TYXwZ5kLpDEHx+aI4kxRTOm2I9oUBjnLsCONGuL9SPmSGcXQ9ltzpwfKhq6RZqwZ+NbirVepXi86K5IScknMSkAtSJzfkljQIJ5I8kmfy6j15L96b9z6PFrzFzDH5Be/jG1Pql7c=</latexit>

Transformers
• Transformers takeover the communities since their introduction.

154

Computer
Vision

Natural
Lang. Proc.

Speech Reinf.
Learning

Graphs /
Science

Pre-training in NLP (before Transformers)

155

word embeddings
word2vec

[Mikolov et al., 2013]

contextualized
word embeddings via LM

ELMo
[Peters et al., 2018]

• Data: Monolingual Corpus

• Task: predict next token given
previous tokens (causal):

• Usual models: LSTM, Transformer.

Background:
Language Modeling

TNT1<s>

T2T1 </s>…

…

P(Ti |T1…Ti−1)

…

…

Model

embed1

softmaxsoftmax softmax

project.project. project.

embed2 embed3

Im
ag

e
cr

ed
it:

 N
oe

 C
as

as

• Word embeddings ⇒ Contextualized word embeddings

Neural Embedding Models (Mikolov et al. 2013)

152

2IYVEP�)QFIHHMRK�1SHIPW��'&S;��1MOSPSZ�IX�EP������

%PP�PMRIEV��WS�ZIV]�JEWX��&EWMGEPP]�E�GLIET�[E]�
SJ�ETTP]MRK�SRI�QEXVM\�XS�EPP�MRTYXW�

,MWXSVMGEPP]��RIKEXMZI�WEQTPMRK�YWIH�MRWXIEH�
SJ�I\TIRWMZI�WSJXQE\�

200�QMRMQMWEXMSR�MW�QSVI�WXEFPI�ERH�MW�JEWX�
IRSYKL�XSHE]�

:EVMERXW��TSWMXMSR�WTIGMJMG�QEXVM\�TIV�MRTYX�
�0MRK�IX�EP������
�

2IYVEP�)QFIHHMRK�1SHIPW��7OMT�KVEQ��1MOSPSZ�IX�EP������

8EVKIX�[SVH�TVIHMGXW�GSRXI\X�[SVHW�

)QFIH�XEVKIX�[SVH�

4VSNIGX�MRXS�ZSGEFYPEV]��7SJXQE\�

0IEVR�XS�IWXMQEXI�PMOIPMLSSH�SJ�GSRXI\X�[SVHW�

Distributed representations of words and phrases and their compositionality [Mikolov vd.'13]

CBoW model Skip-gram model

Image credit: Ed Grefenstette

Pre-training in NLP (during Transformers)

156

word embeddings
word2vec

[Mikolov et al., 2013]

contextualized
word embeddings via LM

ELMo
[Peters et al., 2018]

• Data: Monolingual Corpus

• Task: predict next token given
previous tokens (causal):

• Usual models: LSTM, Transformer.

Background:
Language Modeling

TNT1<s>

T2T1 </s>…

…

P(Ti |T1…Ti−1)

…

…

Model

embed1

softmaxsoftmax softmax

project.project. project.

embed2 embed3

BERT

he [MASK] be late [SEP] you [MASK] leave now [SEP]

0 1 2 3 4 5 6 7 8 9

+ + + + + + + + + +

[CLS]

10

+

Positional
embeddings

Token
embeddings

Output tokens

• Tasks: masked LM + next sentence prediction

• Model: self-attention layers

• Tokens: subwords

A A A A A B B B B BASegment
embeddings

+ + + + + + + + + ++

he will br late [SEP] you should leave now [SEP]

15% of tokens
get masked

softmax

project.

Self-attention Layers

softmax

project.

softmax

project.

softmax

project.

softmax

project.

softmax

project.

softmax

project.

softmax

project.

softmax

project.

softmax

project.

This output is used
for classification tasks

Im
ag

e
cr

ed
it:

 N
oe

 C
as

as

• Word embeddings ⇒ Contextualized word embeddings ⇒ Transformers

• Transformer-based models take over the language modelling / NLP domain

Neural Embedding Models (Mikolov et al. 2013)

152

2IYVEP�)QFIHHMRK�1SHIPW��'&S;��1MOSPSZ�IX�EP������

%PP�PMRIEV��WS�ZIV]�JEWX��&EWMGEPP]�E�GLIET�[E]�
SJ�ETTP]MRK�SRI�QEXVM\�XS�EPP�MRTYXW�

,MWXSVMGEPP]��RIKEXMZI�WEQTPMRK�YWIH�MRWXIEH�
SJ�I\TIRWMZI�WSJXQE\�

200�QMRMQMWEXMSR�MW�QSVI�WXEFPI�ERH�MW�JEWX�
IRSYKL�XSHE]�

:EVMERXW��TSWMXMSR�WTIGMJMG�QEXVM\�TIV�MRTYX�
�0MRK�IX�EP������
�

2IYVEP�)QFIHHMRK�1SHIPW��7OMT�KVEQ��1MOSPSZ�IX�EP������

8EVKIX�[SVH�TVIHMGXW�GSRXI\X�[SVHW�

)QFIH�XEVKIX�[SVH�

4VSNIGX�MRXS�ZSGEFYPEV]��7SJXQE\�

0IEVR�XS�IWXMQEXI�PMOIPMLSSH�SJ�GSRXI\X�[SVHW�

Distributed representations of words and phrases and their compositionality [Mikolov vd.'13]

CBoW model Skip-gram model

Image credit: Ed Grefenstette

contextualized
word embeddings via

masked LM +
next sentence prediction

BERT
[Devlin et al., 2019]

Pre-training in NLP (during Transformers)

157

Decoder-only
GPT

Encoder-only
BERT

Enc-Dec
T5

[The_] [cat_] [MASK] [on_] [MASK] [mat_]

[*] [*] [sat_] [*] [the_] [*]

[START] [The_] [cat_]

[sat_]

Translate EN-DE: This is good.

Summarize: state authorities dispatched…

Is this toxic: You look beautiful today!

Das ist gut.

A storm in Attala caused 6 victims.

This is not toxic.

Vision Transformer
(ViT)

Many prior works attempted to introduce
self-attention at the pixel level.

For 224px², that's 50k sequence length, too much!

Thus, most works restrict attention to local
pixel neighborhoods, or as high-level
mechanism on top of detections.

The key breakthrough in using the full
Transformer architecture, standalone, was to
"tokenize" the image by cutting it into
patches of 16px², and treating each patch as a
token, e.g. embedding it into input space.

Pre-training in Vision (during Transformers)

Transformer-based models take over the
vision domain!

158Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Largely the same story as in computer vision.
But with spectrograms instead of images.

[The_] [detective_] [invest]

[igat]

Add a third type of block using convolutions, and slightly
reorder blocks, but overall very transformer-like.

Exists as encoder-decoder variant, or as
encoder-only variant with CTC loss.

Pre-training in Speech (during Transformers)

Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In INTERSPEECH 2020

Transformer-based models take over the
speech domain!

159

Summary
● Attention is used to focus on parts of inputs/outputs

● It can be content/location based and hard/soft

● It’s three main distinct uses are
○ connecting encoder and decoder in sequence-to-sequence task
○ achieving scale-invariance and focus in image processing
○ self-attention can be a basic building block for neural nets, often

replacing RNNs and CNNs [recent research, take it with a grain of salt]

● ViTs are an evolution, not a revolution. We can still fundamentally
solve the same problems as with CNNs.

● Matrix multiply is more hardware-friendly than convolution,
so ViTs with same FLOPs as CNNs can train and run much faster

160

161

Next lecture:
Deep Generative Models

