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Previously on CMP784
• Sequence modeling

• Recurrent Neural Networks 
(RNNs)

• The Vanilla RNN unit

• How to train RNNs

• The Long Short-Term Memory 
(LSTM) unit and its variants

• Gated Recurrent Unit (GRU)
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Using RNNs to generate Super Mario Maker levels, Adam Geitgey



Lecture overview
• Content-based attention

• Location-based attention

• Soft vs. hard attention

• Show, Attend and Tell

• Self-attention and 
Transformer networks

• Vision Transformers

• Pretraining during transformers

Disclaimer: Much of the material and slides for this 
lecture were borrowed from 

—Dzmitry Bahdanau’s IFT 6266 slides

—Graham Neubig’s CMU CS11-747 Neural Networks for NLP 
class

—Mateusz Malinowski’s lecture on Attention-based Networks

— Yoshua Bengio’s talk on From Attention to Memory and 
towards Longer-Term Dependencies

— Kyunghyun Cho’s slides on neural sequence modeling

—Arian Hosseini’s IFT  6135 slides

—Hongsheng Li’s ELEG5491 class

— Justin Johnson’s EECS 498/598 class

— Jacob Devlin’s slides on transformers

— Lucas Beyer’s slides on transformers

— Philip Isola and Stefanie Jegelka's MIT 6.S898 Deep Learning 
class
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Deep Learning for Vision 

4Figure credit: Xiaogang Wang 

Deep Learning for Vision

What if we treat an existing deep model as 
a black box in pedestrian detection? 

ConvNet−U−MS  
 
–  Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with 
Unsupervised Multi-Stage Feature Learning,” CVPR 2013. 

Figure Credit: Xiaogang Wang
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Deep Learning for Speech

5Figure credit: NVidia

Deep Learning for Speech

Figure Credit: Nvidia

Deep Learning for Speech

Figure Credit: Nvidia



Deep Learning for Text
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Deep Learning for Text
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“The movie was not bad at all. I had fun.”

positivepositive

“The movie was not bad at all. I had fun.” 



Deep Models
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Deep Models

Input Representation

“The movie was not bad at all. I had fun.”

Feature Extractor 
(encoder)

Classifier/Regressor 
(decoder)

GW2

FW1

Loss Function

Fully Connected Network

Convolution Network

Recurrent Network

Typically a Linear Projection 
with some non-linearity  

(log-soft-max)

can be seen as  
a prior on the type of  

transformation you want

“The movie was not bad at all. I had fun.” 

can be seen as
a prior on the type of 

transformation you want 

Fully Connected Network 

Convolution Network 

Recurrent Network

Typically a Linear Projection 
with some non-linearity 

(log-soft-max)



Deep Models
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Deep Models

Input Representation

“The movie was not bad at all. I had fun.”

Feature Extractor 
(encoder)

Classifier/Regressor 
(decoder)

GW2

FW1

Loss Function

Fully Connected Network

Convolution Network

Recurrent Network

Typically a Linear Projection 
with some non-linearity  

(log-soft-max)

can be seen as  
a prior on the type of  

transformation you want

“The movie was not bad at all. I had fun.” 

can be seen as
a prior on the type of 

transformation you want 

Fully Connected Network 

Convolution Network 

Recurrent Network

Typically a Linear Projection 
with some non-linearity 

(log-soft-max)
Learnable parametric function

Inputs: generally considered I.I.D.

Outputs: classification or regression



Encoder-Decoder Framework
• Intermediate representation of meaning 

= ‘universal representation’

• Encoder: from word sequence to sentence representation

• Decoder: from representation to word sequence distribution
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Sequence Representations
• But what if we could use multiple vectors, based on the length of 

the sequence
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Sentence Representations

• But what if we could use multiple vectors, based on 
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing 
sentence into a single $&!*ing vector!” 

— Ray Mooney

Problem!



Attention Models
in Deep Learning
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A lot of things are called “attention” 
these days...
1. Attention (alignment) models used in applications of deep supervised learning 

with variable-length inputs and outputs (typical sequential).

2. Models of visual attention that process a region of an image at high resolution
or the whole image at low resolution.

3. Internal self-attention mechanisms can be used to replace recurrent and 
convolutional networks for sequential data.

4. Addressing schemes of memory-augmented neural networks

The shared idea: focus on the relevant parts of the input (output).

12



Attention in Deep Learning Applications 
[to Language Processing]

machine translation speech recognition

speech synthesis, summarization, …  any sequence-to-sequence 
(seq2seq) task

13



Traditional deep learning approach

input → d-dimensional feature vector → layer1 → .... → layerk → output

Good for: image classification, phoneme recognition, decision-making 
in reflex agents (ATARI)

Less good for: text classification

Not really good for: … everything else?!

14



Example: Machine Translation

[“An”, “RNN”, “example”, “.”] → [“Un”, “example”, “de”, “RNN”, “.”]

Machine translation presented a challenge to vanilla deep learning

● input and output are sequences

● the lengths vary

● input and output may have different lengths

● no obvious correspondence between positions in the input and 
in the output

15



Vanilla seq2seq learning for machine 
translation

Recurrent Continuous Translation Models, Kalchbrenner et al, EMNLP 2013
Sequence to Sequence Learning with Recurrent Neural Networks, Sutskever et al., NIPS 2014
Learning Phrase Representations using RNN Encoder–Decoder for 
Statistical Machine Translation, Cho et al., EMNLP 2014

input sequence output sequence

fixed size representation

16



Problems with vanilla seq2seq

● training the network to encode 50 words in a vector is hard ⇒ very big 
models are needed

● gradients has to flow for 50 steps back without vanishing ⇒ training can 
be slow and require lots of data

bottleneck

looong term dependencies

17



Soft attention

lets decoder focus on the relevant hidden states 
of the encoder, avoids squeezing everything 
into the last hidden state ⇒ no bottleneck!

dynamically creates shortcuts in the computation
graph that allow the gradient to flow freely
⇒ shorter dependencies!

best with a bidirectional encoder

18Neural Machine Translation by Jointly Learning to Align and Translate, Bahdanau et al, ICLR 2015



Soft attention - math 1
At each step the decoder consumes a different weighted combination 
of the encoder states, called context vector or glimpse. 

19



Soft attention - math 2
But where do the weights come from?  
They are computed by another network!

The choice from the original paper is 
1-layer MLP:

20



Soft attention - computational aspects
The computational complexity of using soft attention is quadratic. But it’s not slow:

● for each pair of i and j
○ sum two vectors
○ apply tanh
○ compute dot product

● can be done in parallel for all j, i.e.
○ add a vector to a matrix
○ apply tanh
○ compute vector-matrix product

● softmax is cheap

● weighted combination is another vector-matrix product

● in summary: just vector-matrix products = fast!

21



Soft attention - visualization

[penalty???]Great visualizations at http://distill.pub/2016/augmented-rnns/#attentional-interfaces
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Great visualizations at https://distill.pub/2016/augmented-rnns/#attentional-interfaces

https://distill.pub/2016/augmented-rnns/


Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Soft attention - visualization
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Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
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Output: “L’accord sur la
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Visualize attention weights at,i

Diagonal attention means 
words correspond in order
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words correspond in order
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Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures out 
different word orders

Diagonal attention means 
words correspond in order

Diagonal attention means 
words correspond in order

Verb conjugation

Soft attention - visualization

26Bahdanau et al., “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Soft attention - improvements
no performance drop on long sentences

much better than RNN 
Encoder-Decoder

without unknown words 
comparable with the 
SMT system

27



Progress in Machine Translation
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]
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From [Sennrich 2016, http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf] 

End-to-End Machine Translation with Recurrent Nets 
and Attention Mechanism

28

(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)  

Figure credit: Rico Sennrich
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Soft content-based attention pros and cons

Pros
● faster training, better performance
● good inductive bias for many tasks => lowers sample complexity

Cons
● not good enough inductive bias for tasks with monotonic 

alignment (handwriting recognition, speech recognition)
● chokes on sequences of length >1000

29



Location-based attention

● in content-based attention the attention weights depend 
on the content at different positions of the input (hence 
BiRNN)

● in location-based attention the current attention weights 
are computed relative to the previous attention weights

30



Gaussian mixture location-based attention
Originally proposed for handwriting synthesis.

The (unnormalized) weight of the input 
position u at the time step t is parametrized 
as a mixture of K Gaussians

31Section 5, Generating Sequence with Recurrent Neural Networks, A. Graves 2014



Gaussian mixture location-based attention
The new locations of Gaussians are computed as a sum of the 
previous ones and the predicted offsets 

32



Gaussian mixture location-based attention

The first soft attention mechanism ever!

Pros:
● good for problems with monotonic alignment

Cons:
● predicting the offset can be challenging
● only monotonic alignment (although exp in theory could be removed)

33



Various Soft-Attentions

● use dot-product or non-linearity of choice instead of tanh in content-based 
attention

● use unidirectional RNN insteaf of Bi- (but not pure word embeddings!)

● explicitly remember past alignments with an RNN

● use a separate embedding for each of the positions of the input (heavily 
used in Memory Networks)

● mix content-based and location-based attentions

See “Attention-Based Models for Speech Recognition” by Chorowski et al 
(2015) for a scalability analysis of various attention mechanisms on speech 
recognition.

34



Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 
 

• No parameters! But requires sizes to be the same. 

• Scaled Dot Product (Vaswani et al. 2017) 

• Problem: scale of dot product increases as dimensions get 
larger 

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

Attention Score Functions (1)
• q is the query and k is the key 

• Multi-layer Perceptron (Bahdanau et al. 2015) 
 

• Flexible, often very good with large data 

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk
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• No parameters! But requires sizes to be the same. 
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• Problem: scale of dot product increases as dimensions get 
larger 

• Fix: scale by size of the vector

a(q,k) = q|k
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Various Attention Score Functions
• q is the query and k is the key

• Multi-layer Perceptron
(Bahdanau et al. 2015) 

− Flexible, often very good with large
data 

• Bilinear (Luong et al. 2015)

• Dot Product (Luong et al. 2015) 

− No parameters! But requires sizes to
be the same.

• Scaled Dot Product (Vaswani et al. 
2017) 

− Problem: scale of dot product
increases as dimensions get • larger

− Fix: scale by size of the vector
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Going back in time: Connection Temporal 
Classification (CTC)
● CTC is a predecessor of soft attention 

that is still widely used 

● has very successful inductive 
bias for monotonous seq2seq 
transduction

● core idea: sum over all possible 
ways of inserting blank tokens 
in the output so that it aligns 
with the input

36Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks, Graves et al, ICML 2006



CTC
labeling

input
sum over all labelling 
with blanks

conditional 
probability of a 
labeling with blanks

probability of 
outputting \pi_t
at the step t 

37



CTC
● can be viewed as modelling p(y|x) as sum of all p(y|a,x), where a is 

a monotonic alignment

● thanks to the monotonicity assumption the marginalization of a 
can be carried out with forward-backward algorithm 
(a.k.a. dynamic programming)

● hard stochastic monotonic attention

● popular in speech and handwriting 
recognition 

● y_i are conditionally independent given a 
and x but this can be fixed 

38



Soft Attention and CTC for seq2seq: summary

● the most flexible and general is content-based soft 
attention and it is very widely used, especially in natural 
language processing

● location-based soft attention is appropriate for when the 
input and the output can be monotonously aligned; 
location-based and content-based approaches can be 
mixed

● CTC is less generic but can be hard to beat on tasks with 
monotonous alignments

39



Visual and Hard Attention

40



Models of Visual Attention

● Convnets are great! But they process the whole image at a high 
resolution.

● “Instead humans focus attention selectively on parts of the visual 
space to acquire information when and where it is needed, and 
combine information from different fixations over time to build up an 
internal representation of the scene” (Mnih et al, 2014)

● hence the idea: build a recurrent network that focus on a patch of 
an input image at each step and combines information from 
multiple steps

41Recurrent Models of Visual Attention, V. Mnih et al, NIPS 2014



Soft and Hard Attention

RAM attention mechanism is hard - it outputs a precise location where 
to look. 

Content-based attention from neural MT is soft - it assigns weights to 
all input locations.

CTC can be interpreted as a hard attention mechanism with tractable 
gradient.

42



Soft and Hard Attention

Soft

● deterministic

● exact gradient

● O(input size)

● typically easy to train

Hard

● stochastic*

● gradient approximation**

● O(1)

● harder to train

*  deterministic hard attention would not have gradients
** exact gradient can be computed for models with tractable marginalization 
(e.g. CTC)

43



Soft and Hard Attention

Can soft content-based attention be used for vision? Yes.

Show Attend and Tell, Xu et al, ICML 2015

Can hard attention be used for seq2seq? Yes.

Learning Online Alignments with 
Continuous Rewards Policy Gradient, 
Luo et al, NIPS 2016

(but the learning curves are a nightmare…)

44



Why attention?
• Long term memories - attending to memories 

− Dealing with gradient vanishing problem 

• Exceeding limitations of a global representation 
− Attending/focusing to smaller parts of data 

§ patches in images
§ words or phrases in sentences 

• Decoupling representation from a problem 
− Different problems required different sizes of representations

§ LSTM with longer sentences requires larger vectors 

• Overcoming computational limits for visual data 
− Focusing only on the parts of images 
− Scalability independent of the size of images 

• Adds some interpretability to the models (error inspection) 
45



Recurrent net memory

Attention 
mechanism

Attention on Memory Elements
• Recurrent networks cannot remember things for very long

• The cortex only remember things for 20 seconds 

• We need a “hippocampus” (a separate memory module) 
• LSTM [Hochreiter 1997], registers 
• Memory networks [Weston et 2014] (FAIR), associative memory 
• NTM [Graves et al. 2014], “tape”. 



Recall: Long-Term Dependencies
• The RNN gradient is a product of Jacobian matrices, each associated 

with a step in the forward computation. To store information robustly 
in a finite-dimensional state, the dynamics must be contractive 
[Bengio et al 1994]. 

• Problems: 
• sing. values of Jacobians > 1 à gradients explode 
• or sing. values < 1 à gradients shrink & vanish
• or random à variance grows exponentially

47

Storing bits
robustly requires
sing. values<1

(Hochreiter 1991)

Gradien
t 
clipping



×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Gated Recurrent Units & LSTM
• Create a path where gradients 

can flow for longer with self-
loop

• Corresponds to an eigenvalue of 
Jacobian slightly less than 1

• LSTM is heavily used
(Hochreiter & Schmidhuber 1997)

• GRU light-weight version 
(Cho et al 2014)
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Delays & Hierarchies to Reach Farther
• Delays and multiple time 

scales, Elhihi & Bengio NIPS 
1995, Koutnik et al ICML 2014
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Hierarchical RNNs 
(words / sentences):
Sordoni et al CIKM 2015, 
Serban et al AAAI 2016 



Large Memory Networks: Sparse Access 
Memory for Long-Term Dependencies
• A mental state stored in an external memory can stay for arbitrarily

long durations, until evoked for read or write

• Forgetting = vanishing gradient.

• Memory = larger state, avoiding the need for forgetting/vanishing

50

passive copy
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Memory Networks
• Class of models that combine large memory with learning component 

that can read and write to it.

• Incorporates reasoning with attention over memory (RAM).

• Most ML has limited memory which is more-or-less all that’s needed for 
“low level” tasks e.g. object detection.

51

Jason Weston, Sumit Chopra, Antoine Bordes. Memory Networks. ICLR 2016 
S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. End-to-end Memory Networks. NIPS 2015 
Ankit Kumar et al. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. ICML 2016
Alex Graves et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626): 471–476, 
2016.



Paying Attention 
to Selected Parts 
of the Image 
While Uttering 
Words

52Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, Y. Bengio. ICML 2015
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Regions in ConvNets

• Each point in a “higher” level of a convnet defines spatially localized 
feature vectors(/matrices). 

• Xu et al. calls these “annotation vectors”, 
55
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Regions in ConvNets
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Regions in ConvNets
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Regions in ConvNets
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Extension of LSTM via the context vector
• Extract L D-dimensional annotations

− Lower convolutional layer to have the correspondence between the feature vectors and 
portions of the 2-D image

59

M. Malinowski

Extension of LSTM via the context vector
• Extract L D-dimensional annotations  

‣ Lower convolutional layer to have the correspondence between the 
feature vectors and portions of the 2-D image 

20

Neural Image Caption Generation with Visual Attention

with images, Donahue et al. (2014) also apply LSTMs to
videos, allowing their model to generate video descriptions.

All of these works represent images as a single feature vec-
tor from the top layer of a pre-trained convolutional net-
work. Karpathy & Li (2014) instead proposed to learn a
joint embedding space for ranking and generation whose
model learns to score sentence and image similarity as a
function of R-CNN object detections with outputs of a bidi-
rectional RNN. Fang et al. (2014) proposed a three-step
pipeline for generation by incorporating object detections.
Their model first learn detectors for several visual concepts
based on a multi-instance learning framework. A language
model trained on captions was then applied to the detector
outputs, followed by rescoring from a joint image-text em-
bedding space. Unlike these models, our proposed atten-
tion framework does not explicitly use object detectors but
instead learns latent alignments from scratch. This allows
our model to go beyond “objectness” and learn to attend to
abstract concepts.

Prior to the use of neural networks for generating captions,
two main approaches were dominant. The first involved
generating caption templates which were filled in based
on the results of object detections and attribute discovery
(Kulkarni et al. (2013), Li et al. (2011), Yang et al. (2011),
Mitchell et al. (2012), Elliott & Keller (2013)). The second
approach was based on first retrieving similar captioned im-
ages from a large database then modifying these retrieved
captions to fit the query (Kuznetsova et al., 2012; 2014).
These approaches typically involved an intermediate “gen-
eralization” step to remove the specifics of a caption that
are only relevant to the retrieved image, such as the name
of a city. Both of these approaches have since fallen out of
favour to the now dominant neural network methods.

There has been a long line of previous work incorpo-
rating attention into neural networks for vision related
tasks. Some that share the same spirit as our work include
Larochelle & Hinton (2010); Denil et al. (2012); Tang et al.
(2014). In particular however, our work directly extends
the work of Bahdanau et al. (2014); Mnih et al. (2014); Ba
et al. (2014).

3. Image Caption Generation with Attention

Mechanism

3.1. Model Details

In this section, we describe the two variants of our
attention-based model by first describing their common
framework. The main difference is the definition of the
� function which we describe in detail in Section 4. We
denote vectors with bolded font and matrices with capital
letters. In our description below, we suppress bias terms for
readability.

Figure 4. A LSTM cell, lines with bolded squares imply projec-
tions with a learnt weight vector. Each cell learns how to weigh
its input components (input gate), while learning how to modulate
that contribution to the memory (input modulator). It also learns
weights which erase the memory cell (forget gate), and weights
which control how this memory should be emitted (output gate).

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

Our model takes a single raw image and generates a caption
y encoded as a sequence of 1-of-K encoded words.

y = {y1, . . . ,yC} , yi 2 RK

where K is the size of the vocabulary and C is the length
of the caption.

We use a convolutional neural network in order to extract a
set of feature vectors which we refer to as annotation vec-
tors. The extractor produces L vectors, each of which is
a D-dimensional representation corresponding to a part of
the image.

a = {a1, . . . ,aL} , ai 2 RD

In order to obtain a correspondence between the feature
vectors and portions of the 2-D image, we extract features
from a lower convolutional layer unlike previous work
which instead used a fully connected layer. This allows the
decoder to selectively focus on certain parts of an image by
selecting a subset of all the feature vectors.

3.1.2. DECODER: LONG SHORT-TERM MEMORY
NETWORK

We use a long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) that produces a
caption by generating one word at every time step condi-
tioned on a context vector, the previous hidden state and the
previously generated words. Our implementation of LSTM

E - embedding matrix 
y - captions
h - previous hidden state
z - context vector, a dynamic 
representation of the relevant 
part of the image input at time t

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL
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. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X
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p(s | a) log p(y | s,a)

 log
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put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
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input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
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ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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where � is a function that returns a single vector given the
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Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.
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decides to focus attention when generating the t
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st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
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the relative importance to give to location i in blending the
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a multilayer perceptron conditioned on the previous hidden
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
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E: embedding matrix
y: captions
h: previous hidden state
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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 log
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the marginal log-likelihood
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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N
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n=1
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@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls
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⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)
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+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.
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We represent the location variable st as where the model
decides to focus attention when generating the t
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st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
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ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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We define a new objective function Ls that is a variational
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

Loss is a variational lower bound on
the marginal log-likelihood

Due to Jensen’s inequality 
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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and element-wise multiplication respectively.
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ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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each location i, the mechanism generates a positive weight
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next depends on the sequence of words that has already
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Loss is a variational lower bound on 
the marginal log-likelihood
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Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
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. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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⇡ 1

N
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
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+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
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st,i is an indicator one-hot variable which is set to 1 if the
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features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
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ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt
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ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
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from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by
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p(st,i = 1 | sj<t,a) = ↵t,i (8)
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observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X
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Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
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features. By treating the attention locations as intermedi-
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p(st,i = 1 | sj<t,a) = ↵t,i (8)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
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observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)
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+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

[1] J. Ba et al. “Multiple object recognition with visual attention” 
[2] A. Mnih et al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.
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are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
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4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:
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We define a new objective function Ls that is a variational
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transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Once the weights (which sum to one) are computed, the
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ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
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4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t
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i-th location (out of L) is the one used to extract visual
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Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t
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st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
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can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

M. Malinowski

Hard attention

21

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)
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Loss is a variational lower bound on 
the marginal log-likelihood
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention” 
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

To reduce the estimator variance, entropy term H[s] and bias are added [1,2]
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1
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i

ai)

h0 = finit,h(
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i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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mation associated with a particular input location, as ex-
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to the features extracted at different image locations. For
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↵i which can be interpreted either as the probability that
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word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
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mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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. (11)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

Loss is a variational lower bound on
the marginal log-likelihood

Due to Jensen’s inequality 
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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put and hidden state of the LSTM, respectively. The vector
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plained below. E 2 Rm⇥K is an embedding matrix. Let
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input at time t. We define a mechanism � that computes ẑt
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↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
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is computed by an attention model fatt for which we use
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was introduced by Bahdanau et al. (2014). For emphasis,
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next depends on the sequence of words that has already
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ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
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ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Loss is a variational lower bound on 
the marginal log-likelihood

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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+

log p(y | s̃n,a)@ log p(s̃n | a)
@W
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(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:
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st,i is an indicator one-hot variable which is set to 1 if the
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ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)
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parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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X
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Equation 11 suggests a Monte Carlo based sampling ap-
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from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ẑt

1

A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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i-th location (out of L) is the one used to extract visual
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1
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NX

n=1


@ log p(y | s̃n,a)
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+

�r(log p(y | s̃n,a)� b)
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+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
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parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
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4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:
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ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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+

�r(log p(y | s̃n,a)� b)
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�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t
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st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.
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↵ti =
exp(eti)PL
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Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.
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2014) to compute the output word probability given the
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are learned parameters initialized randomly.
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In this section we discuss two alternative mechanisms for
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4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t
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st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
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parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

�

�

�

tanh

1

CCATD+m+n,n

0

@
Eyt�1

ht�1

ẑt
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
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from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]
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�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t
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st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
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is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

[1] J. Ba et al. “Multiple object recognition with visual attention” 
[2] A. Mnih et al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)
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ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
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Loss is a variational lower bound on 
the marginal log-likelihood
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
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ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.
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decides to focus attention when generating the t

th word.
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We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
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Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention”  
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

We have two sequences  
 ‘i’ that runs over localizations
 ’t’ that runs over words

Stochastic decisions are 
discrete here, so derivatives
are zero.
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ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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and Mnih et al. (2014), this is formulation is equivalent to
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sentence under the sampled attention trajectory.
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To reduce the estimator variance, entropy term H[s] 
and bias are added [1,2]

E[log(X)]≤ log(E[X])Due to Jensen’s inequality

[1] J. Ba et. al. “Multiple object recognition with visual attention” 
[2] A. Mnih et. al. “Neural variational inference and learning in belief networks”

To reduce the estimator variance, entropy term H[s] and bias are added [1,2]

• Instead of a soft interpolation, make a 
zero-one decision about where to attend

• Harder to train, requires methods such as 
reinforcement learning
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
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st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
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Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
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tion location st each time, instead we can take the expecta-
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
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encoding.

As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
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the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
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wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
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on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
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In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
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so learning end-to-end is trivial by using standard back-
propagation.
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able st from Sec. 4.1. The hidden activation of LSTM
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E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
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ometric mean of the caption prediction can be approxi-
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E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
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stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
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To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
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the later stages of training during our experiments. Since
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weighted context into the system. The whole model is
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so learning end-to-end is trivial by using standard back-
propagation.
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ẑt followed by tanh non-linearity. To the first order Tay-
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nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .
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with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)
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+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
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In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.
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tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,
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and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
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et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k
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word prediction:
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j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �
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i ↵iai, where
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k
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word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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softmax activation. That means the expectation of the out-
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dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
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to every part of the image over the course of generation. In
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
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corresponding subset of captions. Then, during training we
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64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
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In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
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In addition to dropout (Srivastava et al., 2014), the only
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propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
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ẑt followed by tanh non-linearity. To the first order Tay-
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to every part of the image over the course of generation. In
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ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
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corresponding subset of captions. Then, during training we
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the later stages of training during our experiments. Since
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
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encoding.
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wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
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on BLEU score. We observed a breakdown in correla-
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.
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LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
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where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.
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ments. Some of the intuitions we gained from hyperparam-
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.
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stood as approximately optimizing the marginal likelihood
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ht is a linear projection of the stochastic context vector
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the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i
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t

↵ti)
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
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Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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Equation 11 suggests a Monte Carlo based sampling ap-
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as an accumulated sum of the previous log likelihoods with
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To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
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i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
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ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
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softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-
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captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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the later stages of training during our experiments. Since
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weighted context into the system. The whole model is
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so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
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ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
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corresponding subset of captions. Then, during training we
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In addition to dropout (Srivastava et al., 2014), the only
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on BLEU score. We observed a breakdown in correla-
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weighted context into the system. The whole model is
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so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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convolutional layer before max pooling. This means our
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wasteful. To mitigate this problem, in preprocessing we
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corresponding subset of captions. Then, during training we
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Titan Black GPU.
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PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):
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In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
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t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
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Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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By construction,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �
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i ↵iai, where
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
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ometric mean of the caption prediction can be approxi-
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the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

•                     equals to computing       using a single forward prop with the expected context vector
• Normalized Weighted Geometric Mean approximation [1]
• Finally

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
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nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
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word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
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E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
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softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
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gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �
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i ↵iai, where
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As our implementation requires time proportional to the
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other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
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BLEU is the most commonly reported metric, we used
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normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
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i ↵ti = 1 as they are the output of a
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
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encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
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gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
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softmax. In training the deterministic version of our model
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
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In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
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mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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softmax. In training the deterministic version of our model
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

[1] P. Baldi et. al. “The dropout learning algorithm”
M. Malinowski

Soft attention

22

Neural Image Caption Generation with Visual Attention

closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
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tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i
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t

↵ti)
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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to every part of the image over the course of generation. In
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Flickr30k/MS COCO dataset we used the recently pro-
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the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
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As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
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corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
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by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
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mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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to every part of the image over the course of generation. In
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tant quantitatively to improving overall BLEU score and
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SProp (Tieleman & Hinton, 2012) worked best, while for
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To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
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corresponding subset of captions. Then, during training we
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64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
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tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gorithms. For the Flickr8k dataset, we found that RM-
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Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.
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length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
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64 of that length. We found that this greatly improved con-
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tion model took less than 3 days to train on an NVIDIA
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weighted context into the system. The whole model is
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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softmax activation. That means the expectation of the out-
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gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gating scalar � from previous hidden state ht�1 at each
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k
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word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where
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more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
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SProp (Tieleman & Hinton, 2012) worked best, while for
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
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corresponding subset of captions. Then, during training we
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64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
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tion model took less than 3 days to train on an NVIDIA
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In addition to dropout (Srivastava et al., 2014), the only
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stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
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to every part of the image over the course of generation. In
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trained on ImageNet without finetuning. In principle how-
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so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
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lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
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weighted context into the system. The whole model is
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so learning end-to-end is trivial by using standard back-
propagation.
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stood as approximately optimizing the marginal likelihood
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the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
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h0 = finit,h(
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i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s
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�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)
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and Mnih et al. (2014), this is formulation is equivalent to
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In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
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tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
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exp(Ep(st|a)[nt,k])P
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k
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word prediction:
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
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softmax activation. That means the expectation of the out-
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
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tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gorithms. For the Flickr8k dataset, we found that RM-
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Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
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wasteful. To mitigate this problem, in preprocessing we
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64 of that length. We found that this greatly improved con-
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tion model took less than 3 days to train on an NVIDIA
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other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
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BLEU is the most commonly reported metric, we used
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In our experiments with soft attention, we also used Whet-
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:
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exp(Ep(st|a)[nt,k])P
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gating scalar � from previous hidden state ht�1 at each
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
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To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
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The equation above shows the normalized weighted ge-
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mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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softmax. In training the deterministic version of our model
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)
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�
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the
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where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
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t

↵ti)
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
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the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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By construction,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
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where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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softmax. In training the deterministic version of our model
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
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64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
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In addition to dropout (Srivastava et al., 2014), the only
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the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
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mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �
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i ↵iai, where
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.
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stood as approximately optimizing the marginal likelihood
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able st from Sec. 4.1. The hidden activation of LSTM
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ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
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i exp(nt,k,i)p(st,i=1|a)
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j
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j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
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E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
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tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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By construction,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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Both variants of our attention model were trained with
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ẑt
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A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵

Neural Image Caption Generation with Visual Attention

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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By construction,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
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wasteful. To mitigate this problem, in preprocessing we
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
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The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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In addition to dropout (Srivastava et al., 2014), the only
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
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scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
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corresponding subset of captions. Then, during training we
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ht is a linear projection of the stochastic context vector
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to computing ht using a single forward prop with the ex-
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NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
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puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
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tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
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able st from Sec. 4.1. The hidden activation of LSTM
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wasteful. To mitigate this problem, in preprocessing we
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weighted context into the system. The whole model is
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so learning end-to-end is trivial by using standard back-
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nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

log p(y | s̃n,a)@ log p(s̃n | a)
@W

�
(12)

A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:

@Ls

@W
⇡ 1

N

NX

n=1


@ log p(y | s̃n,a)

@W
+

�r(log p(y | s̃n,a)� b)
@ log p(s̃n | a)

@W
+ �e

@H[s̃n]

@W

�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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as an accumulated sum of the previous log likelihoods with
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To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
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and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.
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Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
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and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
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et al. (2014). This corresponds to feeding in a soft ↵

The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
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i exp(nt,k,i)p(st,i=1|a)
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Q
i exp(nt,j,i)p(st,i=1|a)
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exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:
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i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
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To create the annotations ai used by our decoder, we used
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
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scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
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As our implementation requires time proportional to the
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ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
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vergence speed with no noticeable diminishment in perfor-
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tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.
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other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.
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dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
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Both variants of our attention model were trained with
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.
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i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage
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t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
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Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
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ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
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th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])
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mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
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to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
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gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.
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closely follows the one used in Zaremba et al. (2014) (see
Fig. 4). Using Ts,t : Rs ! Rt to denote a simple affine
transformation with parameters that are learned,
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A (1)

ct = ft � ct�1 + it � gt (2)
ht = ot � tanh(ct). (3)

Here, it, ft, ct, ot, ht are the input, forget, memory, out-
put and hidden state of the LSTM, respectively. The vector
ẑ 2 RD is the context vector, capturing the visual infor-
mation associated with a particular input location, as ex-
plained below. E 2 Rm⇥K is an embedding matrix. Let
m and n denote the embedding and LSTM dimensionality
respectively and � and � be the logistic sigmoid activation
and element-wise multiplication respectively.

In simple terms, the context vector ẑt (equations (1)–(3)) is
a dynamic representation of the relevant part of the image
input at time t. We define a mechanism � that computes ẑt
from the annotation vectors ai, i = 1, . . . , L corresponding
to the features extracted at different image locations. For
each location i, the mechanism generates a positive weight
↵i which can be interpreted either as the probability that
location i is the right place to focus for producing the next
word (the “hard” but stochastic attention mechanism), or as
the relative importance to give to location i in blending the
ai’s together. The weight ↵i of each annotation vector ai
is computed by an attention model fatt for which we use
a multilayer perceptron conditioned on the previous hidden
state ht�1. The soft version of this attention mechanism
was introduced by Bahdanau et al. (2014). For emphasis,
we note that the hidden state varies as the output RNN ad-
vances in its output sequence: “where” the network looks
next depends on the sequence of words that has already
been generated.

eti =fatt(ai,ht�1) (4)

↵ti =
exp(eti)PL

k=1 exp(etk)
. (5)

Once the weights (which sum to one) are computed, the
context vector ẑt is computed by

ẑt = � ({ai} , {↵i}) , (6)

where � is a function that returns a single vector given the
set of annotation vectors and their corresponding weights.
The details of � function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed

through two separate MLPs (init,c and init,h):

c0 = finit,c(
1

L

LX

i

ai)

h0 = finit,h(
1

L

LX

i

ai)

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability given the
LSTM state, the context vector and the previous word:

p(yt|a,yt�1
1 ) / exp(Lo(Eyt�1 + Lhht + Lz ẑt)) (7)

Where Lo 2 RK⇥m, Lh 2 Rm⇥n, Lz 2 Rm⇥D, and E
are learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fatt: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable st as where the model
decides to focus attention when generating the t

th word.
st,i is an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {↵i}, and view ẑt as a random variable:

p(st,i = 1 | sj<t,a) = ↵t,i (8)

ẑt =
X

i

st,iai. (9)

We define a new objective function Ls that is a variational
lower bound on the marginal log-likelihood log p(y | a) of
observing the sequence of words y given image features a.
The learning algorithm for the parameters W of the models
can be derived by directly optimizing Ls:

Ls =
X

s

p(s | a) log p(y | s,a)

 log
X

s

p(s | a)p(y | s,a)

= log p(y | a) (10)

@Ls

@W
=

X

s

p(s | a)

@ log p(y | s,a)

@W
+

log p(y | s,a)@ log p(s | a)
@W

�
. (11)

Instead of making hard decisions, we 
take the expected context vector
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Equation 11 suggests a Monte Carlo based sampling ap-
proximation of the gradient with respect to the model pa-
rameters. This can be done by sampling the location st

from a multinouilli distribution defined by Equation 8.

s̃t ⇠ MultinoulliL({↵i})
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A moving average baseline is used to reduce the vari-
ance in the Monte Carlo estimator of the gradient, follow-
ing Weaver & Tao (2001). Similar, but more complicated
variance reduction techniques have previously been used
by Mnih et al. (2014) and Ba et al. (2014). Upon seeing the
k
th mini-batch, the moving average baseline is estimated

as an accumulated sum of the previous log likelihoods with
exponential decay:

bk = 0.9⇥ bk�1 + 0.1⇥ log p(y | s̃k,a)

To further reduce the estimator variance, an entropy term
on the multinouilli distribution H[s] is added. Also, with
probability 0.5 for a given image, we set the sampled at-
tention location s̃ to its expected value ↵. Both techniques
improve the robustness of the stochastic attention learning
algorithm. The final learning rule for the model is then the

following:
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�

where, �r and �e are two hyper-parameters set by cross-
validation. As pointed out and used in Ba et al. (2014)
and Mnih et al. (2014), this is formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In making a hard choice at every point, � ({ai} , {↵i})
from Equation 6 is a function that returns a sampled ai at
every point in time based upon a multinouilli distribution
parameterized by ↵.

4.2. Deterministic “Soft” Attention

Learning stochastic attention requires sampling the atten-
tion location st each time, instead we can take the expecta-
tion of the context vector ẑt directly,

Ep(st|a)[ẑt] =
LX

i=1

↵t,iai (13)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
� ({ai} , {↵i}) =

PL
i ↵iai as introduced by Bahdanau

et al. (2014). This corresponds to feeding in a soft ↵
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The whole model is smooth and differentiable under the 
deterministic attention; learning via a standard backprop.

Theoretical arguments
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
normalized weighted geometric mean for the softmax k

th

word prediction:

NWGM [p(yt = k | a)] =
Q

i exp(nt,k,i)p(st,i=1|a)
P

j

Q
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])P
j exp(Ep(st|a)[nt,j ])

The equation above shows the normalized weighted ge-
ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �

LX

i

(1�
CX

t

↵ti)
2 (14)

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/

Neural Image Caption Generation with Visual Attention

weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
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weighted context into the system. The whole model is
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so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
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the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
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ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
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As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
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randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
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tion model took less than 3 days to train on an NVIDIA
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on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
ht is a linear projection of the stochastic context vector
ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
to computing ht using a single forward prop with the ex-
pected context vector Ep(st|a)[ẑt]. Considering Eq. 7, let
nt = Lo(Eyt�1+Lhht+Lz ẑt), nt,i denotes nt computed
by setting the random variable ẑ value to ai. We define the
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max to the expectations of the underlying linear projec-
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puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
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trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
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periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
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ing on a random group of captions to be computationally
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weighted context into the system. The whole model is
smooth and differentiable under the deterministic attention,
so learning end-to-end is trivial by using standard back-
propagation.

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Equation 10 under the attention location random vari-
able st from Sec. 4.1. The hidden activation of LSTM
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ẑt followed by tanh non-linearity. To the first order Tay-
lor approximation, the expected value Ep(st|a)[ht] is equal
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ometric mean of the caption prediction can be approxi-
mated well by using the expected context vector, where
E[nt] = Lo(Eyt�1 + LhE[ht] + LzE[ẑt]). It shows that
the NWGM of a softmax unit is obtained by applying soft-
max to the expectations of the underlying linear projec-
tions. Also, from the results in (Baldi & Sadowski, 2014),
NWGM [p(yt = k | a)] ⇡ E[p(yt = k | a)] under
softmax activation. That means the expectation of the out-
puts over all possible attention locations induced by ran-
dom variable st is computed by simple feedforward propa-
gation with expected context vector E[ẑt]. In other words,
the deterministic attention model is an approximation to the
marginal likelihood over the attention locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

By construction,
P

i ↵ti = 1 as they are the output of a
softmax. In training the deterministic version of our model
we introduce a form of doubly stochastic regularization,
where we also encourage

P
t ↵ti ⇡ 1. This can be in-

terpreted as encouraging the model to pay equal attention
to every part of the image over the course of generation. In
our experiments, we observed that this penalty was impor-
tant quantitatively to improving overall BLEU score and
that qualitatively this leads to more rich and descriptive
captions. In addition, the soft attention model predicts a
gating scalar � from previous hidden state ht�1 at each
time step t, such that, � ({ai} , {↵i}) = �

PL
i ↵iai, where

�t = �(f�(ht�1)). We notice our attention weights put
more emphasis on the objects in the images by including

the scalar �.

Concretely, the model is trained end-to-end by minimizing
the following penalized negative log-likelihood:

Ld = � log(P (y|x)) + �
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4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rate al-
gorithms. For the Flickr8k dataset, we found that RM-
SProp (Tieleman & Hinton, 2012) worked best, while for
Flickr30k/MS COCO dataset we used the recently pro-
posed Adam algorithm (Kingma & Ba, 2014) .

To create the annotations ai used by our decoder, we used
the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In principle how-
ever, any encoding function could be used. In addition,
with enough data, we could also train the encoder from
scratch (or fine-tune) with the rest of the model. In our ex-
periments we use the 14⇥14⇥512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 ⇥ 512 (i.e L ⇥ D)
encoding.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
1https://www.whetlab.com/
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[1] P. Baldi et. al. “The dropout learning algorithm”
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Instead, here we describe a more recently proposed approach
based on the attention-based encoder–decoder framework in
[22].

Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based
image caption generation models use the activation of the
last fully-connected hidden layer as the continuous-space
representation, or the context vector, of the input image (see
Sec. II-D.) The authors of [22] however proposed to use the
activation from the last convolutional layer of the pre-trained
convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set
consists of multiple vectors that correspond to different spatial
regions of the input image on which the attention mechanism
can be applied. Furthermore, due to convolution and pooling,
the spatial locations in pixel space represented by each con-
text vector overlaps substantially with those represented by
the neighbouring context vectors, which helps the attention
mechanism distinguish similar objects in an image using its
context information with respect to the whole image, or the
neighbouring pixels.

Similarly to the attention-based neural machine translation
in Sec. IV-A, the decoder is implemented as a conditional
RNN-LM. In [22], the content-based attention mechanism (see
Eq. (16)) with either the weighted sum (see Eq. (13)) or
hard decision (see Eq. (14) was tested by training a model
with the maximum likelihood estimator from Sec. III-C1 and
the variational learning from Sec. III-C2, respectively. The
authors of [22] reported the similar performances with these
two approaches on a number of benchmark datasets.

2) Experimental Result: In [22], the attention-based image
caption generator was evaluated on three datasets; Flickr
8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to
the self-evaluation, an ensemble of multiple attention-based
models was submitted to Microsoft COCO Image Captioning
Challenge6 and evaluated with multiple automatic evaluation
metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN
THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (?) [20], (•)

[18], (�) [45], (⇧) [46] AND (⇤) [22]. THE ROWS ARE SORTED
ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr
Human 0.638 0.675 0.471 0.91

Google? 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based⇤ 0.262 0.272 0.523 0.878
Captivator� 0.250 0.301 0.601 0.937

Berkeley LRCN⇧ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third
based on the percentage of captions that are evaluated as better
or equal to human caption (M1) and the percentage of captions
that pass the Turing Test (M2). Interestingly, the same model
was ranked eighth according to the most recently proposed
metric of CIDEr and ninth according to the most widely used
metric of BLEU.8 It means that this model has better relative
performance in terms of human evaluation than in terms of the
automatic metrics, which only look at matching subsequences
of words, not directly at the meaning of the generated sentence.
The performance of the top-ranked systems, including the
attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly
interpretable, especially, compared to the simple encoder–
decoder models. See Fig. 5 for some examples.

C. Video Description Generation
Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],
[3], it was further applied to video description generation,
which amounts to translating a (short) video clip to its natural
language description [28]. The authors of [28] used a pre-
trained convolutional network (see Sec. II-D) to extract a
feature vector from each frame of the video clip and average all
the frame-specific vectors to obtain a single fixed-dimensional
context vector of the whole video. A conditional RNN-LM
from Sec. II-B was used to generate a description based on
this context vector.

Since any video clip clearly has both temporal and spatial
structures, it is possible to exploit them by using the attention
mechanism described throughout this paper. In [23], the au-
thors proposed an approach based on the attention mechanism
to exploit the global and local temporal structures of the video
clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of
encoders are tested. The first one is a simple frame-wise
application of the pre-trained convolutional network. However,
they did not pool those per-frame context vectors as was done
in [28], but simply form a context set consisting of all the per-
frame feature vectors. The attention mechanism will work to
select one of those per-frame vectors for each output symbol
being decoded. In this way, the authors claimed that the overall
model captures the global temporal structure (the structure
across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap

M1 - humans preferred (or equal) the method over human annotation
M2 - turing test

M1: human preferred (or equal) the method over human annotation
M2: turing test

• Add soft attention to image captioning: +2 BLEU 
• Add hard attention to image captioning: +4 BLEU 



Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The encoder turns a sequence of tokens into a sequence of 
contextualized vectors.

• The underlying principle behind recently successful contextualized 
embeddings
• ELMo [Peters et al., 2018], 

BERT [Devlin et al., 2019] and 
all the other muppets
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Parametrization – Recurrent Neural Nets
• Following Bahdanau et al. [2015]

• The decoder consists of three stages
1. Attention: attend to a small subset of

source vectors
2. Update: update its internal state
3. Predict: predict the next token 

• Attention has become the core 
component in many recent 
advances
• Transformers [Vaswani et al., 2017], 

…
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Side-note: gated recurrent units to attention
• A key idea behind LSTM and GRU is the additive update 

• This additive update creates linear short-cut connections 
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Side-note: gated recurrent units to attention
• What are these shortcuts?

• If we unroll it, we see it’s a weighted combination of all previous 
hidden vectors:
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Side-note: gated recurrent units to attention
1. Can we “free” these dependent 

weights?

2. Can we “free” candidate vectors?

3. Can we separate keys and values?

4. Can we have multiple attention 
heads?
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keys values

queries

outputs

Generalized dot-product attention - vector 
form
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Generalized dot-product attention - matrix 
form

• rows of Q, K, V are keys, 
queries, values

• softmax acts row-wise
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Transformer Architecture
• introduces the self attention mechanism

• No locality bias, i.e. long-distance context has 
”equal opportunity” as compared to LSTMs

• more efficient than RNNs/LSTMs
• it breaks down the recurrent structure
• Single multiplication per layer
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Transformer Architecture
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Input text is first split into pieces. Can be characters, word, "tokens":
"The detective investigated" -> [The_] [detective_] [invest] [igat] [ed_]

Tokens are indices into the "vocabulary":
[The_] [detective_] [invest] [igat] [ed_] -> [3 721 68 1337 42]

Each vocab entry corresponds to a learned dmodel-dimensional vector.
[3 721 68 1337 42] -> [ [0.123, -5.234, ...], [...], [...], [...], [...] ]

Input (Tokenization and) Embedding

Positional Encoding
Remember attention is permutation invariant, but language is not!

Need to encode position of each word; just add something.

Think [The_] + 10   [detective_] + 20  [invest] + 30  ... but smarter.

Transformer Architecture
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Multi-headed Self-Attention

Meaning the input sequence is used to create 
queries, keys, and values!
Each token can "look around" the whole input, 
and decide how to update its representation
based on what it sees.

[The_] [detective_] [invest] [igat] [ed_]

MHSA

Transformer Architecture
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Point-wise MLP

Some people like to call it 1x1 convolution.

A simple MLP applied to each token individually:

zi =	W2	GeLU(W1x	+	b1)	+	b2

Think of it as each token pondering for itself 
about what it has observed previously.

There's some weak evidence this is where 
"world knowledge" is stored, too.
It contains the bulk of the parameters. When 
people make giant models and sparse/moe, this 
is what becomes giant.

GeLUGeLU GeLUGeLU

[The_] [detective_] [invest] [igat] [ed_]

GeLU

Transformer Architecture
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Residual connections
Each module's output has the exact same 
shape as its input.

Following ResNets, the module computes 
a "residual" instead of a new value:

zi =	Module(xi)	+	xi

This was shown to dramatically improve 
trainability.

LayerNorm
Normalization also dramatically improves trainability.
There's post-norm (original) and pre-norm (modern)
zi =	LN(Module(xi)	+	xi) zi =	Module(LN(xi))	+	xi

Block
+ +

Block

"Skip connection" "Residual block"

Transformer Architecture
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Encoding / Encoder
Since input and output shapes are identical, 
we can stack N such blocks.

Typically, N=6 ("base"), N=12 ("large") or more.

Encoder output is a "heavily processed" (think: 
"high level, contextualized") version of the 
input tokens, i.e. a sequence.

This has nothing to do with the requested 
output yet (think: translation). That comes 
with the decoder.

Transformer Architecture
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What we want to model: p(z|x)
e.g., in translation: p(z	|	"the	detective	investigated")	∀z

Decoding / the Decoder (alternatively Generating / the Generator)

Seems impossible at first, but we can exactly decompose into tokens:
p(z|x)	=	p(z1|x)	p(z2|z1,x)	p(z3|z2,z1,x)...

Meaning, we can generate the answer one token at a time.
Each p is a full pass through the model.

For generating p(z3|z2,z1,x):
x comes from the encoder,
z1,	z2 is what we have predicted so far, goes into the decoder.

Once we have p(z|x) we still need to actually sample a sentence such as 
"le	détective a	enquêté". Many strategies: greedy, beam-search, ...z1,	z2

x

p(z3|z2,z1,x)

Transformer Architecture
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This is regular self-attention as in the encoder, to process what's been 
decoded so far, but with a trick...

Masked self-attention

If we had to train on one single p(z3|z2,z1,x) at a time: SLOW!

Instead, train on all p(zi|z1:i,x) simultaneously.

How? In the attention weights for zi, set all entries i:N to 0.

This way, each token only sees the already generated ones.

At generation time
There is no such trick. We need to generate one zi at a time. This is why 
autoregressive decoding is extremely slow.

Transformer Architecture
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Each decoded token can "look at" the encoder's output:

Attn(q=Wqxdec,	k=Wkxenc,	v=Wvxenc)

This is where |x in p(z3|z2,z1,x) comes from.

"Cross" attention

xenc

xdec
Because self-attention is so widely used, people have started just calling 
it "attention".
Hence, we now often need to explicitly call this "cross attention".

Transformer Architecture
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Feedforward and stack layers.

Transformer Architecture
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Output layer

Assume we have already generated K tokens, generate the next one.

The decoder was used to gather all information necessary to predict a 
probability distribution for the next token (K), over the whole vocab. 

Simple:
linear projection of token K
SoftMax normalization

Transformer Architecture
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Three types of attention in Transformer
● usual attention between encoder and decoder:

Q=[current state] K=V=[BiRNN states]  

● self-attention in the encoder (encoder attends to itself!)
Q=K=V=[encoder states]

● masked self-attention in the decoder (attends to itself, 
but a states can only attend previous states)
Q=K=V=[decoder states]
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Positional Embeddings
• To give the model a sense of order

• Learned or predefined

91

Positional Embeddings

• To give the model a sense of 
order


• learned or predefined



Positional Embeddings
• What does it look like?

Positional Embeddings
• What does it look like?
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How to use Attention / Transformers for Vision?
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Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Start from standard CNN architecture (e.g. ResNet)

94

Idea #1: Add attention to existing CNNs



Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

S
elf-A

tten
tio

n

S
elf-A

tten
tio

n
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Idea #1: Add attention to existing CNNs

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018



Input

Softm
ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool
Start from standard CNN architecture (e.g. ResNet)

Add Self-Attention blocks between existing ResNet blocks

S
elf-A

tten
tio

n

S
elf-A

tten
tio

n

Model is still a CNN! 
Can we replace 
convolution entirely?
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Idea #1: Add attention to existing CNNs

Zhang et al., ”Self-Attention Generative Adversarial Networks”, ICML 2018
Wang et al., ”Non-local Neural Networks”, CVPR 2018



Input: C x H x W Output: C’ x H x W

Convolution: Output at each position is inner product of 
conv kernel with receptive field in input
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Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019



Input: C x H x W Output: C’ x H x W

Query: DQ

Map center of receptive field to query
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Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019



Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Map center of receptive field to query
Map each element in receptive field to key and value
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Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019



Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Attention

Output: C

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention

100

Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019



Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention

LR = “Local Relation”
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Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019



Input: C x H x W Output: C’ x H x W

Query: DQ

Keys: R x R x DQ

Values: R x R x C’

Attention

Output: C

Lots of tricky details, 
hard to implement, only 
marginally better than 
ResNets

Map center of receptive field to query
Map each element in receptive field to key and value
Compute output using attention
Replace all conv in ResNet with local attention
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Idea #2: Replace Convolution with “Local Attention”

Hu et al., “Local Relation Networks for Image Recognition”, ICCV 2019;  
Ramachandran et al., “Stand-Alone Self-Attention in Vision Models”, NeurIPS 2019



Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set 
of pixel values

Feed as input to 
standard Transformer
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Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020



Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set 
of pixel values

Feed as input to 
standard Transformer

Problem: Memory use!

R x R image needs R4

elements per attention 
matrix
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Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020



Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Treat an image as a set 
of pixel values

Feed as input to 
standard Transformer

Problem: Memory use!

R x R image needs R4

elements per attention 
matrix

R=128, 48 layers, 16 heads 
per layer takes 768GB of 
memory for attention 
matrices for a single 
example…
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Idea #3: Standard Transformer on Pixels

Chen et al., “Generative Pretraining from Pixels”, ICML 2020
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Transformer

Output vectors

Exact same as 
NLP Transformer!

+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Transformer
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer
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Idea #4: Standard Transformer on Patches

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Computer vision model with 
no convolutions!
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Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Computer vision model with 
no convolutions!

Not quite: With patch size p, first layer 
is Conv2D(pxp, 3->D, stride=p)
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Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

Computer vision model with 
no convolutions!

Not quite: MLPs in Transformer 
are stacks of 1x1 convolution
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Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

Each attention matrix has 144 = 38,416 
entries, takes 150 KB
(or 65,536 entries, takes 256 KB)
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Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



N input patches, each 
of shape 3x16x16

Linear projection to 
D-dimensional vector

Output vectors

Exact same as 
NLP Transformer!

Special extra input: 
classification token
(D dims, learned)+ + + + + + + + +

Add positional 
embedding: learned 
D-dim vector per position

Linear projection 
to C-dim vector 
of predicted class 
scores

Transformer

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per 
layer, all attention matrices 
take 112 MB (or 192MB)
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Vision Transformer (ViT)

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



BiT = ResNet152x4
ResNet-152x4

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



BiT = ResNet152x4

Recall: ImageNet 
dataset has 1k 
categories, 1.2M 
images

When trained on 
ImageNet, ViT models 
perform worse than 
ResNets ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



ImageNet-21k has 14M 
images with 21k 
categories

If you pretrain on 
ImageNet-21k and fine-
tune on ImageNet, ViT
does better: big ViTs
match big ResNets ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on JFT 
and finetune on 
ImageNet, large ViTs
outperform large 
ResNets

B = Base
L = Large
H = Huge

/32, /16, /14 is patch 
size; smaller patch 
size is a bigger model 
(more patches)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



ResNets

JFT-300M is an 
internal Google 
dataset with 300M 
labeled images

If you pretrain on JFT 
and finetune on 
ImageNet, large ViTs
outperform large 
ResNets

ViT: 2.5k TPU-v3 core 
days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU / 
TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



ResNets

Claim: ViT models have 
“less inductive bias” than 
ResNets, so need more 
pretraining data to learn 
good features

(Not sure I buy this 
explanation: “inductive 
bias” is not a well-
defined concept we can 
measure!)

ViT: 2.5k TPU-v3 core 
days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU / 
TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



ResNets

How can we 
improve the 
performance of 
ViT models on 
ImageNet?

ViT: 2.5k TPU-v3 core 
days of training

ResNet: 9.9k TPU-v3 
core days of training

ViTs make more 
efficient use of GPU / 
TPU hardware 
(matrix multiply is 
more hardware-
friendly than conv)
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Vision Transformer (ViT) vs ResNets

Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?
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C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

Divide image into 4x4 
patches and project to 

C dimensions
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Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8
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Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Hierarchical ViT: Swin Transformer
C ×

𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C
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Hierarchical ViT: Swin Transformer
C ×

𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

Concatenate 
groups of 
2x2 features
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Hierarchical ViT: Swin Transformer
C ×

𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

H/8

W/8
2C

Concatenate 
groups of 
2x2 features

Linear 
projection 
from 4C to 
2C channels 
(1x1 conv)
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C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16
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Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

8𝐶 ×
𝐻
32

×
𝑊
32

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32
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Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

8𝐶 ×
𝐻
32

×
𝑊
32

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Problem: 224x224 image 
with 56x56 grid of 4x4 
patches: attention matrix 
has 564 = 9.8M entries
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Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



C ×
𝐻
4 ×

𝑊
4

3 × 𝐻 ×𝑊

2𝐶 ×
𝐻
8 ×

𝑊
8

4𝐶 ×
𝐻
16

×
𝑊
16

8𝐶 ×
𝐻
32

×
𝑊
32

Divide image into 4x4 
patches and project to 

C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Problem: 224x224 image 
with 56x56 grid of 4x4 
patches: attention matrix 
has 564 = 9.8M entries

Solution: don’t use full 
attention, instead use 
attention over patches
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Hierarchical ViT: Swin Transformer

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size
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Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend to all 
other tokens, instead divide into windows of M 
x M tokens (here M=4); only compute attention 
within each window
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Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend to all 
other tokens, instead divide into windows of M 
x M tokens (here M=4); only compute attention 
within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network
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Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Problem: tokens only interact with other tokens within the 
same window; no communication across windows
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Swin Transformer: Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Ugly detail: 
Non-square 
windows at 
edges and 
corners
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Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image
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Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Standard Attention:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾.

𝐷
𝑉

𝑄,𝐾, 𝑉:𝑀/ × 𝐷 (Query, Key, Value)
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Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Solution: Alternate between normal windows and shifted 
windows in successive Transformer blocks

Block L: Normal windows Block L+1: Shifted Windows

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Attention with relative bias:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾.

𝐷
+ 𝐵 𝑉

𝑄,𝐾, 𝑉:𝑀/ × 𝐷 (Query, Key, Value)
𝐵:𝑀/ ×𝑀/ (learned biases)
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Swin Transformer: Shifted Window Attention

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Swin Transformer: Speed vs Accuracy

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Bonus: Swin Transformer can also be 
used as a backbone for object 
detection, instance segmentation, and 
semantic segmentation!
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Swin Transformer: Speed vs Accuracy

Liu et al., “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Liu et al, “Swin Transformer V2: Scaling 
up Capacity and Resolution”, CVPR 2022

Fan et al., “Multiscale Vision Transformers”, 
ICCV 2021

MViT Swin-V2

Li et al, “Improved Multiscale Vision Transformers 
for Classification and Detection”, arXiv 2021

Improved MViT
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Other Hierarchical Vision Transformers



Recap of Transformers
• Three key ideas

• Tokens
• Attention
• Positional encoding
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Tokens: A new data structure
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 

tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons
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A new data structure: Tokens
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 
tokens, but over there we called them “node attributes” or node “feature descriptors”) 

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons

array of neurons
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• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 

tokens, but over there we called them “node attributes” or node “feature descriptors”)

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons
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A new data structure: Tokens
• A token is just transformer lingo for a vector of neurons (note: GNNs also operate over 
tokens, but over there we called them “node attributes” or node “feature descriptors”) 

• But the connotation is that a token is an encapsulated bundle of information; with 
transformers we will operate over tokens rather than over neurons
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should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:

…

…

tokens

…

tokens

patches

input

1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.
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should direct their attention to the neurons on the layer before that represent the color of
the car. We will soon see how this is done, in full detail, but first we need to introduce a
new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like

summation, operate over
these groups (and,

ideally, in a di↵erentiable
manner).

Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:
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1.3.2 Mixing tokens

Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.
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new data structure and a new way of thinking about neural processing.

1.3 A new data type: tokens

We discussed that the main data structures in deep learning are di↵erent kinds of groups of
neurons – channels, tensors, batches, etc. Now we will introduce another fundamental data
structure, tokens. A “token” is another kind of group of neurons, but there are particular
ways we will operate over tokens that are di↵erent from how we operated over channels,
batches, and the other groupings we saw before. Specifically, we will think of tokens as
encapsulated groups of information; we will define operators over tokens, and these operators
will be our only interface for accessing and modifying the internal contents of tokens. From
a programming languages perspective, you can think of tokens as a new data type.

In this chapter we will only consider token whose internal content is a vector of neurons.
We will call this vector the token’s code vector; the code for a token t will be labeled as t.z.

Although we are only
considering vector-valued

tokens in this chapter, it’s
easy to imagine tokens

that are any kind of
structured group. We

just need to define how
basic operators, like
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these groups (and,
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Transformers consist of two main operations over tokens: 1) mixing tokens via a weighted
sum, and 2) modifying each individual token via a nonlinear transformation. These opera-
tions are analogous to the two workhorses of regular neural nets: the linear layer and the
pointwise nonlinearity. Before we get to that, though, how do we turn data into tokens in
the first place?

1.3.1 Tokenizing data

The first step to working with tokens is to tokenize the raw input data. Once we have done
this, all subsequent layers will operate over tokens, until the output layer, which will make
some decision or prediction as a function of the final set of tokens. How can we tokenize an
input image? Well, how did we “neuronize” an image for processing in a vanilla neural net?
We simply represented each pixel in the image with a neuron (or three neurons, if it’s a color
image). To tokenize an image, we may simply represent each patch of pixels in the image
with a token. The token vector is the vectorized patch (stacking the three color channels one
after the other). With each patch represented by a token, the full image corresponds to an
array of tokens. Here’s what it looks like to tokenize an image of guineafowl in this way:
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Once we have converted our data to tokens, we now need to define operations for transforming
these tokens and eventually making decisions based on them. The first key operation we will
define is how to take linear combinations of tokens.

You can tokenize anything.  
General strategy: chop the input up into chunks, project each chunk to a vector.
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Transformers
• Transformers takeover the communities since their introduction.
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Pre-training in NLP (before Transformers)
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word embeddings
word2vec 

[Mikolov et al., 2013]

contextualized
word embeddings via LM

ELMo
[Peters et al., 2018]

• Data: Monolingual Corpus 

• Task: predict next token given 
previous tokens (causal): 

• Usual models: LSTM, Transformer.

Background: 
Language Modeling
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• Word embeddings ⇒ Contextualized word embeddings

Neural Embedding Models (Mikolov et al. 2013)
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Pre-training in NLP (during Transformers)
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word embeddings
word2vec 

[Mikolov et al., 2013]

contextualized
word embeddings via LM

ELMo
[Peters et al., 2018]

• Data: Monolingual Corpus 

• Task: predict next token given 
previous tokens (causal): 

• Usual models: LSTM, Transformer.

Background: 
Language Modeling
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BERT
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embeddings

Token 
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Output tokens

• Tasks: masked LM + next sentence prediction 

• Model: self-attention layers 

• Tokens: subwords
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• Word embeddings ⇒ Contextualized word embeddings ⇒ Transformers

• Transformer-based models take over the language modelling / NLP domain

Neural Embedding Models (Mikolov et al. 2013)
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contextualized
word embeddings via

masked LM +
next sentence prediction

BERT
[Devlin et al., 2019]



Pre-training in NLP (during Transformers)
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Decoder-only
GPT

Encoder-only
BERT

Enc-Dec
T5

[The_] [cat_] [MASK] [on_] [MASK] [mat_]

[*]    [*]   [sat_] [*]  [the_] [*]

[START] [The_] [cat_]

[sat_]

Translate EN-DE: This is good.

Summarize: state authorities dispatched…

Is this toxic: You look beautiful today!

Das ist gut.

A storm in Attala caused 6 victims.

This is not toxic.



Vision Transformer 
(ViT)

Many prior works attempted to introduce 
self-attention at the pixel level.

For 224px², that's 50k sequence length, too much!

Thus, most works restrict attention to local 
pixel neighborhoods, or as high-level 
mechanism on top of detections.

The key breakthrough in using the full 
Transformer architecture, standalone, was to 
"tokenize" the image by cutting it into 
patches of 16px², and treating each patch as a 
token, e.g. embedding it into input space.

Pre-training in Vision (during Transformers)

Transformer-based models take over the 
vision domain!

158Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021



Largely the same story as in computer vision.
But with spectrograms instead of images.

[The_] [detective_] [invest]

[igat]

Add a third type of block using convolutions, and slightly 
reorder blocks, but overall very transformer-like.

Exists as encoder-decoder variant, or as 
encoder-only variant with CTC loss.

Pre-training in Speech (during Transformers)

Gulati et al. Conformer: Convolution-augmented Transformer for Speech Recognition. In INTERSPEECH 2020

Transformer-based models take over the 
speech domain!
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Summary
● Attention is used to focus on parts of inputs/outputs

● It can be content/location based and hard/soft

● It’s three main distinct uses are
○ connecting encoder and decoder in sequence-to-sequence task
○ achieving scale-invariance and focus in image processing
○ self-attention can be a basic building block for neural nets, often 

replacing RNNs and CNNs [recent research, take it with a grain of salt]

● ViTs are an evolution, not a revolution. We can still fundamentally 
solve the same problems as with CNNs.

● Matrix multiply is more hardware-friendly than convolution, 
so ViTs with same FLOPs as CNNs can train and run much faster
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Next lecture: 
Deep Generative Models


