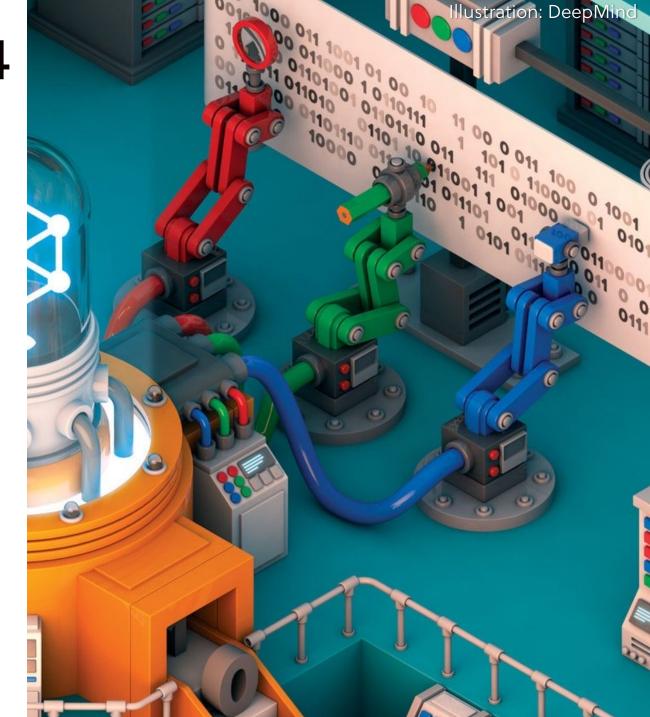


Previously on CMP784

- Content-based attention
- Location-based attention
- Soft vs. hard attention
- Show, Attend and Tell
- Self-attention and Transformer networks
- Vision Transformers
- Pretraining during transformers



Lecture overview

- Supervised vs. Unsupervised Learning
- Generative Modeling
- Basic Foundations
 - -Sparse Coding
 - -Autoencoders
- Autoregressive Generative Models

Disclaimer: Much of the material and slides for this lecture were borrowed from

- Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas' Berkeley CS294-158 class
- Ruslan Salakhutdinov's talk titled "Unsupervised Learning: Learning Deep Generative Models"
- Yoshua Bengio's IDT6266 class
- Bill Freeman, Antonio Torralba and Phillip Isola's MIT 6.869 class
- Nal Kalchbrenner's talks on "Generative Modelling as Sequence Learning" and "Generative Models of Language and Images"
- Justin Johnson's EECS 498/598 class

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Classification

Cat

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Object Detection

DOG, DOG, CAT

Supervised Learning

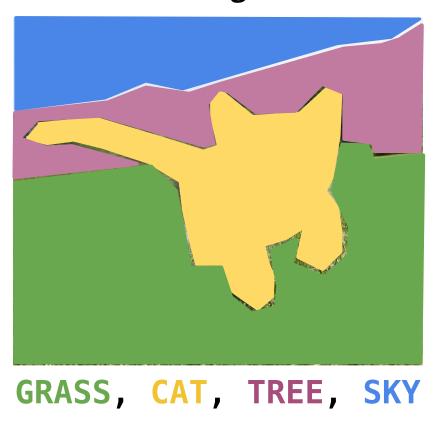
Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Semantic Segmentation



Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Image captioning

A cat sitting on a suitcase on the floor

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Sentiment Analysis

"This Movie is amazing."
It has a great plot and talented actors, and the supporting cast is really good as well."

Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

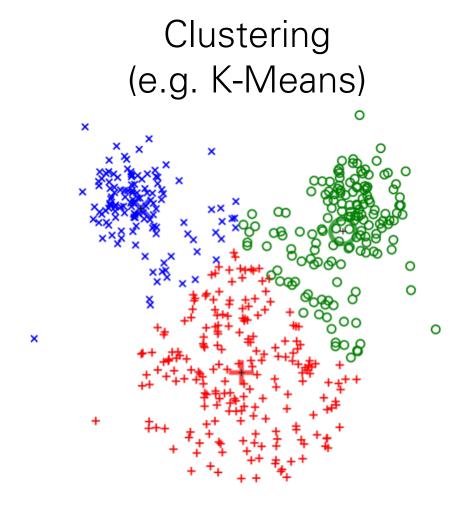
Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data



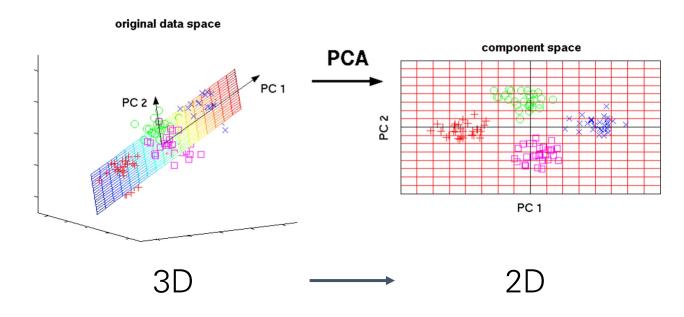
Unsupervised Learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Dimensionality Reduction (e.g. Principal Components Analysis)



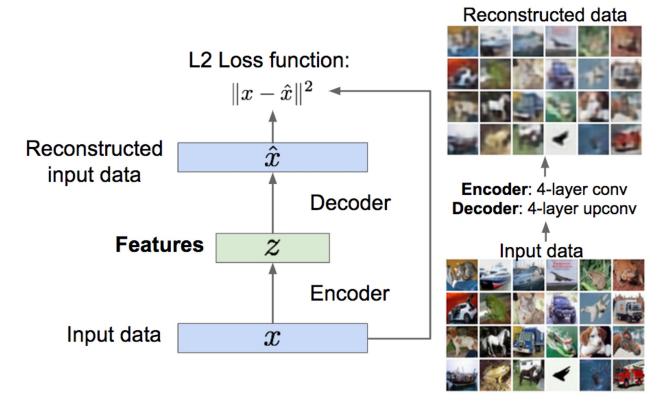
Unsupervised Learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Feature Learning (e.g. autoencoders)



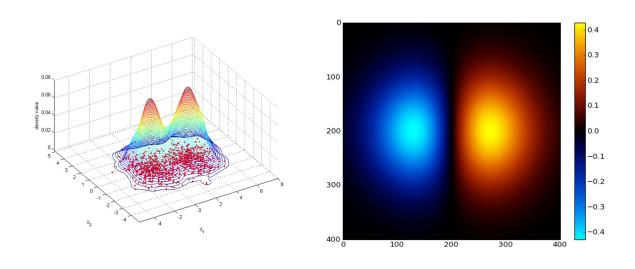
Unsupervised Learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Density Estimation



Unsupervised Learning

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, sentiment analysis, etc.

Data: X

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Discriminative Model:
Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)

Data: x

Label: y

Cat

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)

Data: x

Label: y

Cat

Probability Recap:

Density Function
p(x) assigns a positive
number to each possible x;
higher numbers mean x is
more likely

Density functions are **normalized**:

$$\int_X p(x)dx = 1$$

Different values of x compete for density

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)

Data: x

P(dog

P(cat|

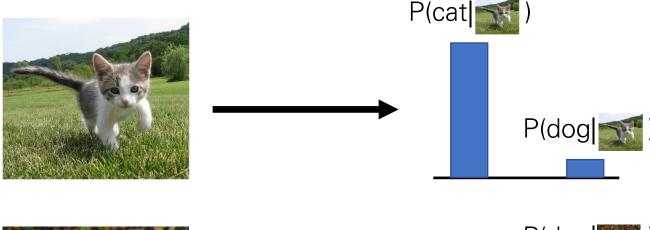
Density Function

p(x) assigns a positive number to each possible x; higher numbers mean x is more likely Density functions are **normalized**:

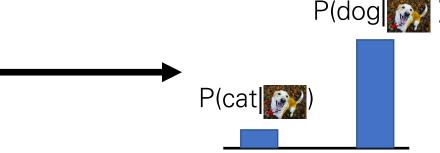
$$\int_X p(x)dx = 1$$

Different values of x compete for density

Discriminative
Model:
Learn a probability
distribution p(y|x)



Generative Model: Learn a probability distribution p(x)



Conditional
Generative Model:
Learn p(x|y)

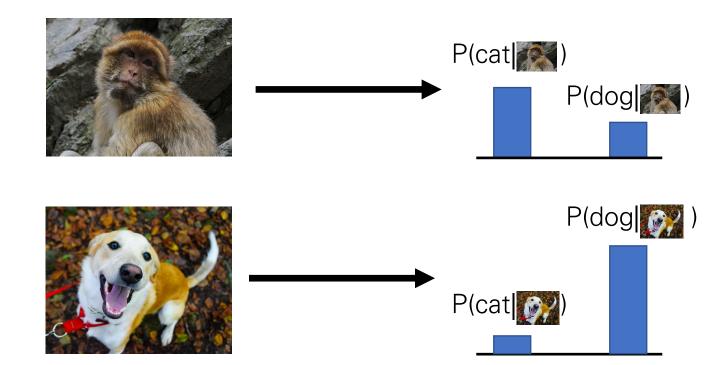
Discriminative model: the possible labels for each input "compete" for probability mass. But no competition between **images**

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



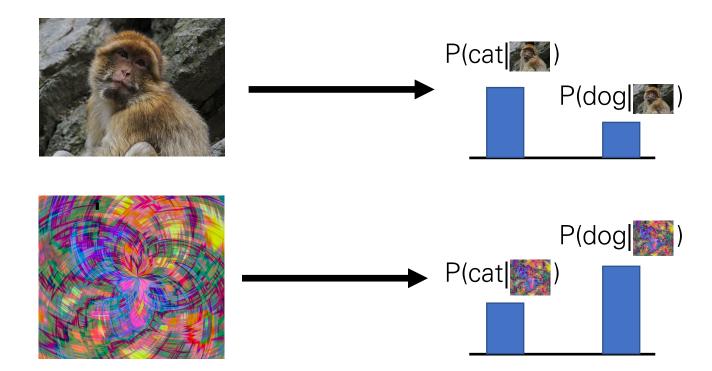
Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



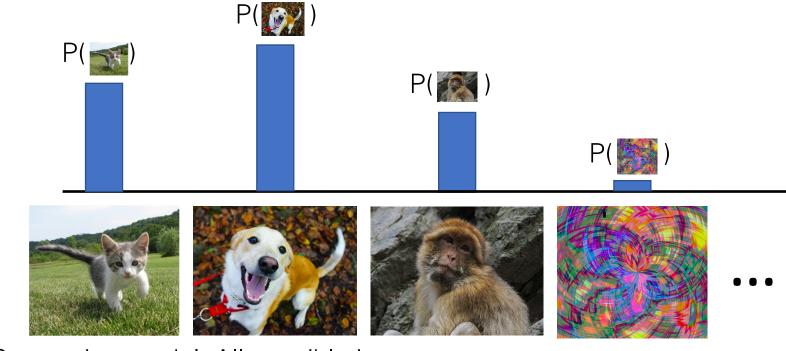
Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



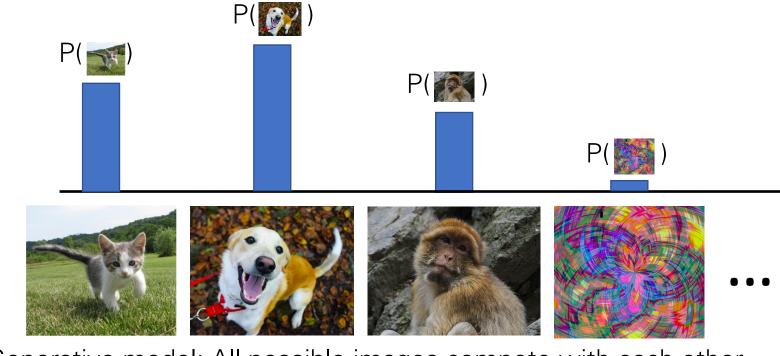
Generative model: All possible images compete with each other for probability mass

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



Generative model: All possible images compete with each other for probability mass

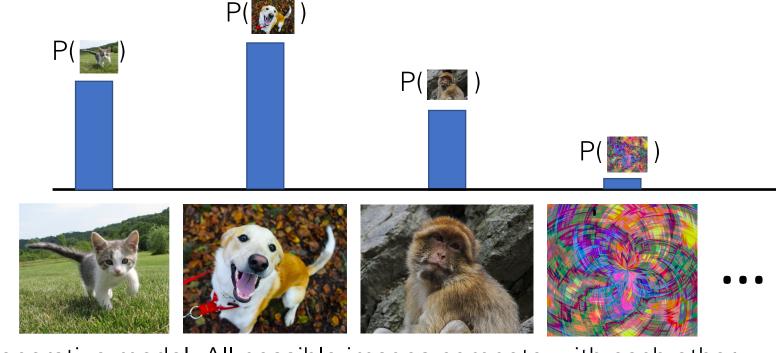
Requires deep image understanding! Is a dog more likely to sit or stand? How about 3-legged dog vs 3-armed monkey?

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



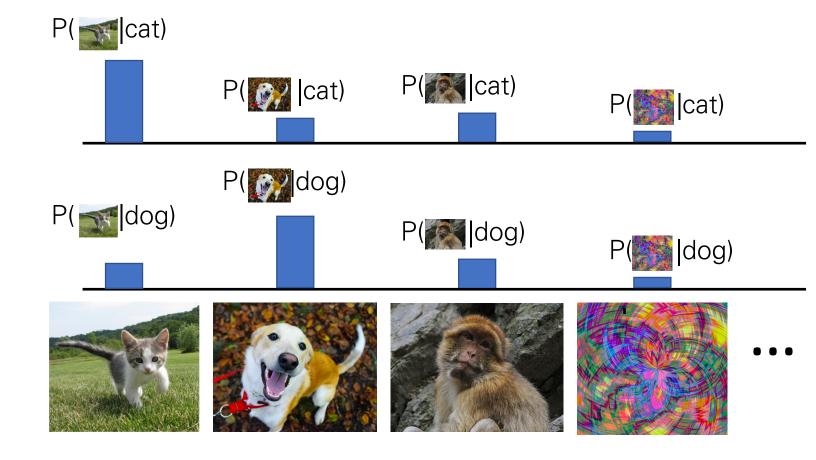
Generative model: All possible images compete with each other for probability mass

Model can "reject" unreasonable inputs by assigning them small values

Discriminative
Model:
Learn a probability
distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)



Conditional Generative Model: Each possible label induces a competition among all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)

Recall Bayes' Rule:

$$P(x \mid y) = \frac{P(y \mid x)}{P(y)} P(x)$$

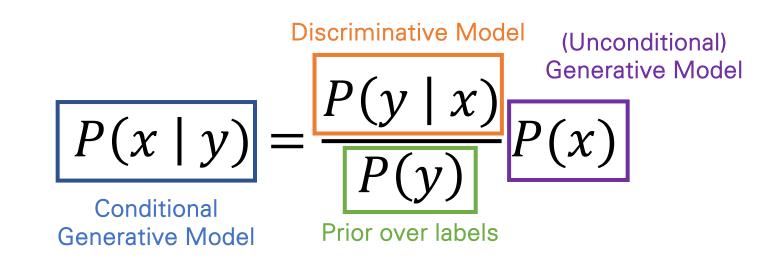
Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)

Recall Bayes' Rule:



We can build a conditional generative model from other components!

What can we do with a discriminative model?

Discriminative Model:
Learn a probability

distribution p(y|x)

Assign labels to data Feature learning (with labels)

Generative Model: Learn a probability distribution p(x)

Conditional
Generative Model:
Learn p(x|y)

What can we do with a discriminative model?

Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data

Feature learning (with labels)

Generative Model: Learn a probability distribution p(x)

Detect outliers
Feature learning (without labels)
Sample to **generate** new data

Conditional
Generative Model:
Learn p(x|y)

What can we do with a discriminative model?

Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data

Feature learning (with labels)

Generative Model:

Learn a probability distribution p(x)

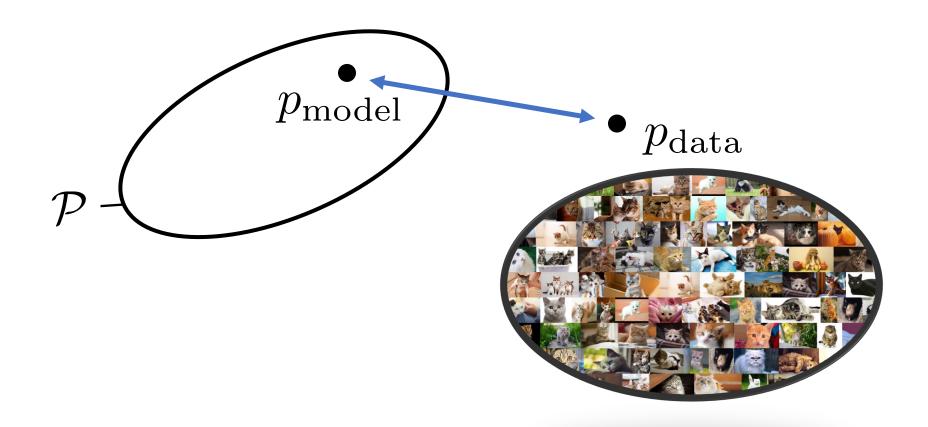
Detect outliers
 Feature learning (without labels)
 Sample to generate new data

Conditional Generative Model:

Learn p(x|y)

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels

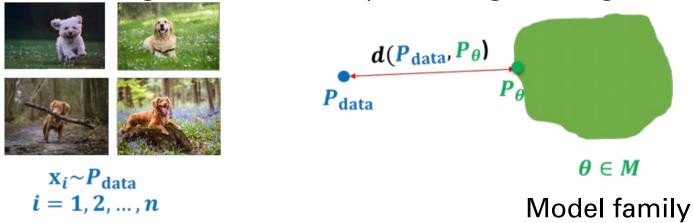
Generative Modeling



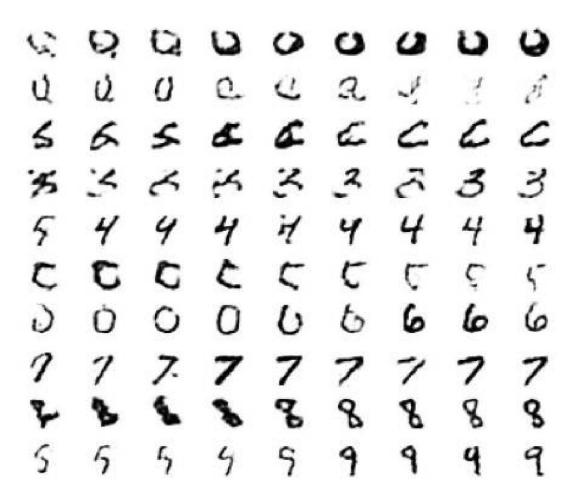
• Goal: Learn some underlying hidden structure of the training samples to generate novel samples from same data distribution

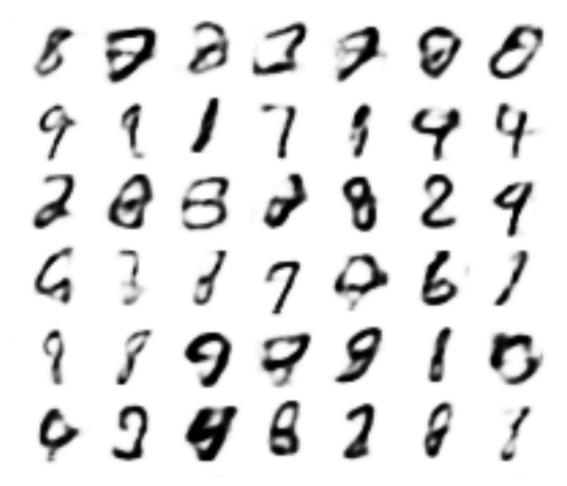
Learning a generative model

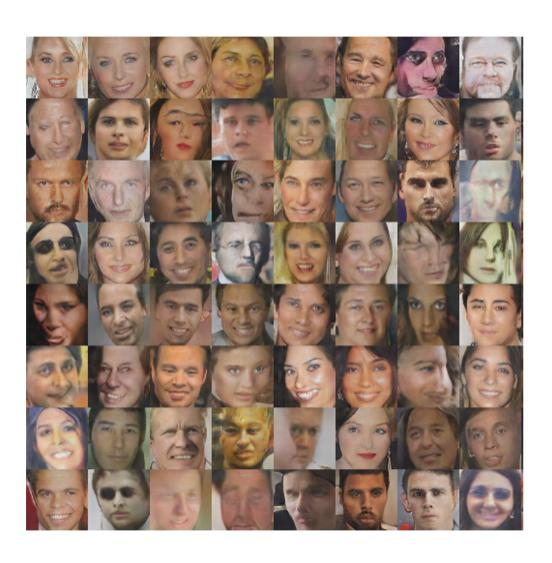
We are given a training set of examples, e.g., images of dogs



- We want to learn a probability distribution p(x) over images x s.t.
 - **Generation**: If we sample $x_{new} \sim p(x)$, x_{new} should look like a dog (sampling)
 - Density estimation: p(x) should be high if x looks like a dog, and low otherwise (anomaly detection)
 - **Unsupervised representation learning**: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)





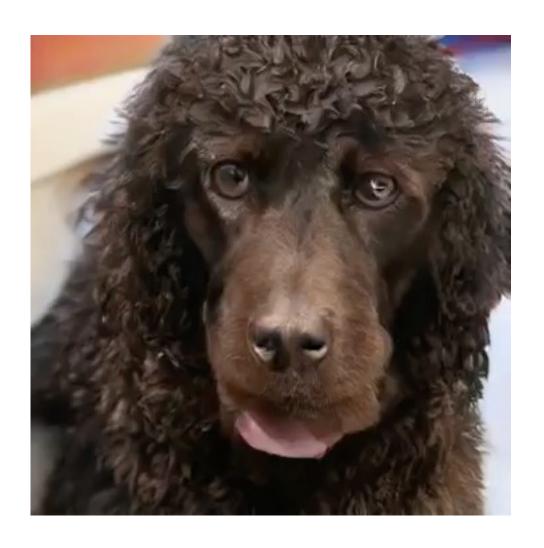


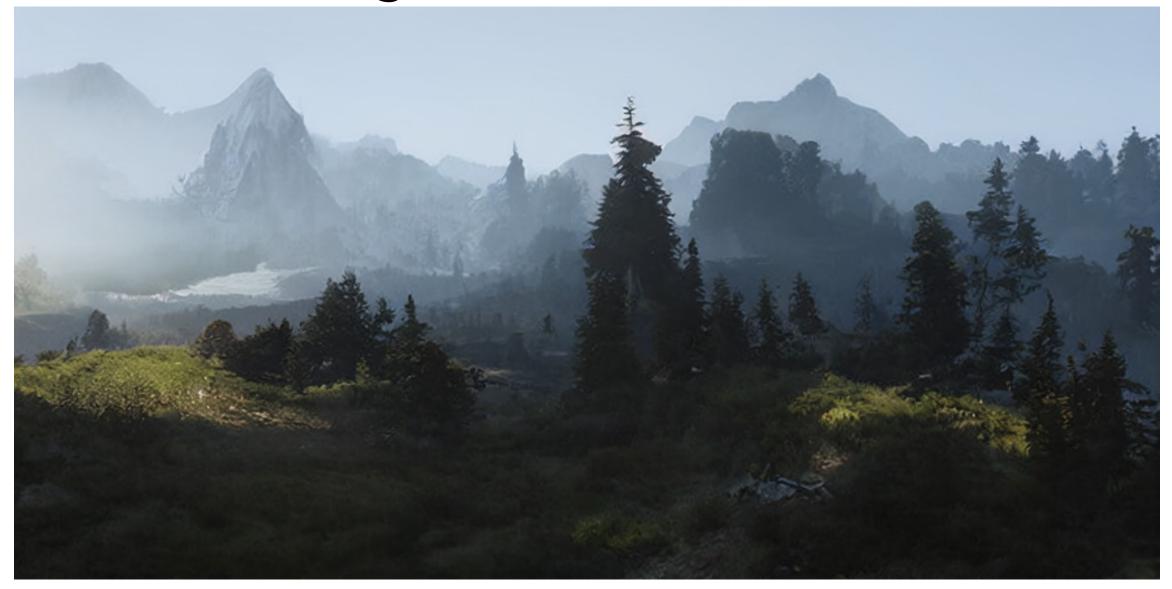
bicubic (21.59dB/0.6423)

SRResNet (23.53dB/0.7832)

SRGAN (21.15dB/0.6868)

original



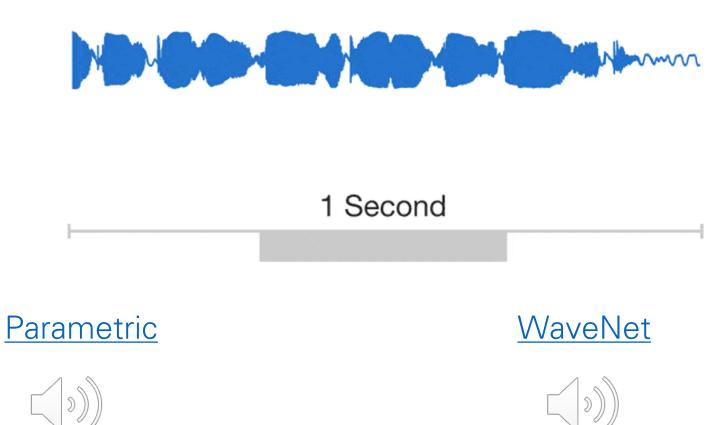


[Latent Diffusion, Rombach, Blattmann, Lorenz, Esser, Ommer, 2022] 41

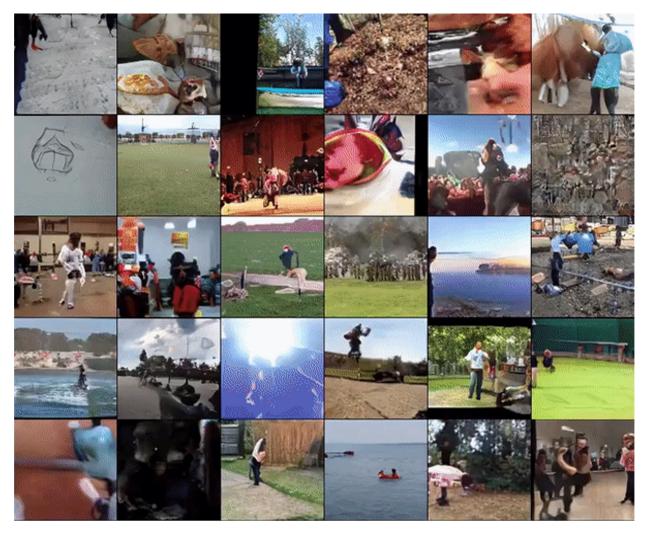


[Latent Diffusion, Rombach, Blattmann, Lorenz, Esser, Ommer, 2022] 42

Generate Audio

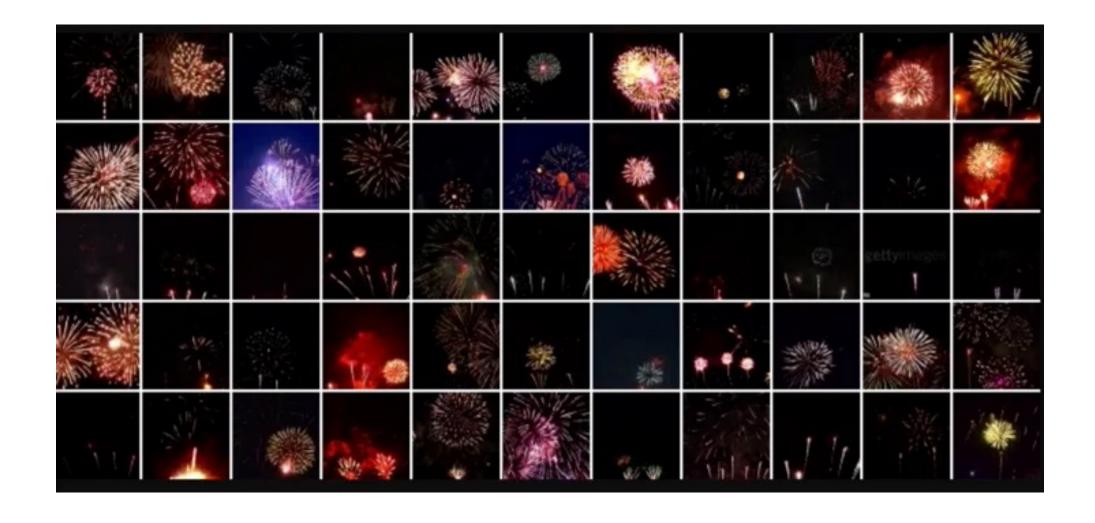


Generate Video



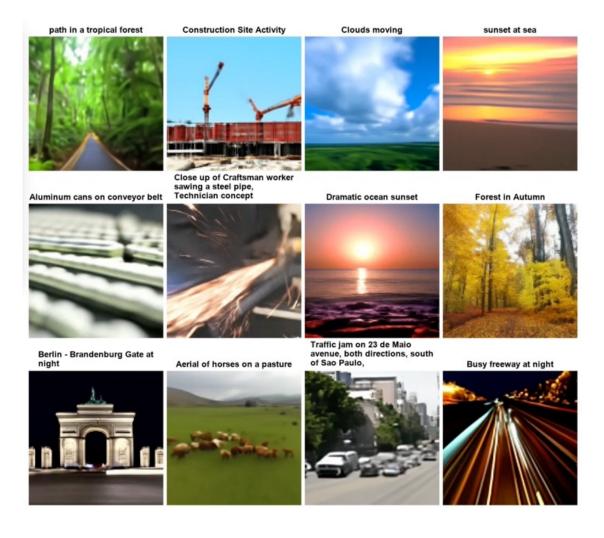
DVD-GAN: Adversarial Video Generation on Complex Datasets, Clark, Donahue, Simonyan, 2019

Generate Video



[Video Diffusion Models, Ho, Salimans, Gritsenko, Chan, Norouzi, Fleet, 2022] 45

Generate Video



[Video Diffusion Models, Ho, Salimans, Gritsenko, Chan, Norouzi, Fleet, 2022] 46

Generate Text

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Generate Math

```
\begin{proof}
We may assume that $\mathcal{I}$ is an abelian sheaf on
$\mathcal{C}$.
\item Given a morphism $\Delta : \mathcal{F} \to \mathcal{I}$
is an injective and let $\mathfrak q$ be an abelian sheaf on
$X$.
Let \mathcal{F} be a fibered complex. Let \mathcal{F} be a
category.
\begin{enumerate}
\item \hyperref[setain-construction-phantom]{Lemma}
\label{lemma-characterize-quasi-finite}
Let $\mathcal{F}$ be an abelian quasi-coherent sheaf on
$\mathcal{C}$.
Let \mathcal{F}\ be a coherent \mathcal{O}\ X$-module. Then
$\mathcal{F}$ is an abelian catenary over $\mathcal{C}$.
\item The following are equivalent
\begin{enumerate}
\item $\mathcal{F}$ is an $\mathcal{O} X$-module.
\end{lemma}
```

For $\bigoplus_{n=1,\ldots,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparison in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x,x',s''\in S'$ such that $\mathcal{O}_{X,x'}\to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i>0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F}=U/\mathcal{F}$ we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

$$Arrows = (Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example $\ref{eq:condition}$. It may replace S by $X_{spaces, \'etale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma $\ref{eq:condition}$. Namely, by Lemma $\ref{eq:condition}$? we see that R is geometrically regular over S.

Generate Text

Prompt [human written]: A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts are unknown.

GPT-2: The incident occurred on the downtown train line, which runs from Covington and Ashland stations. In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal Railroad Administration to find the thief.

'The theft of this nuclear material will have significant negative consequences on public and environmental health, our workforce and the economy of our nation,' said Tom Hicks, the U.S. Energy Secretary, in a statement. 'Our top priority is to secure the theft and ensure it doesn't happen again.'

The stolen material was taken from the University of Cincinnati's Research Triangle Park nuclear research site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information. According to the release, the U.S. Department of Energy's Office of Nuclear Material Safety and Security is leading that team's investigation.

'The safety of people, the environment and the nation's nuclear stockpile is our highest priority,' Hicks said. 'We will get to the bottom of this and make no excuses.'

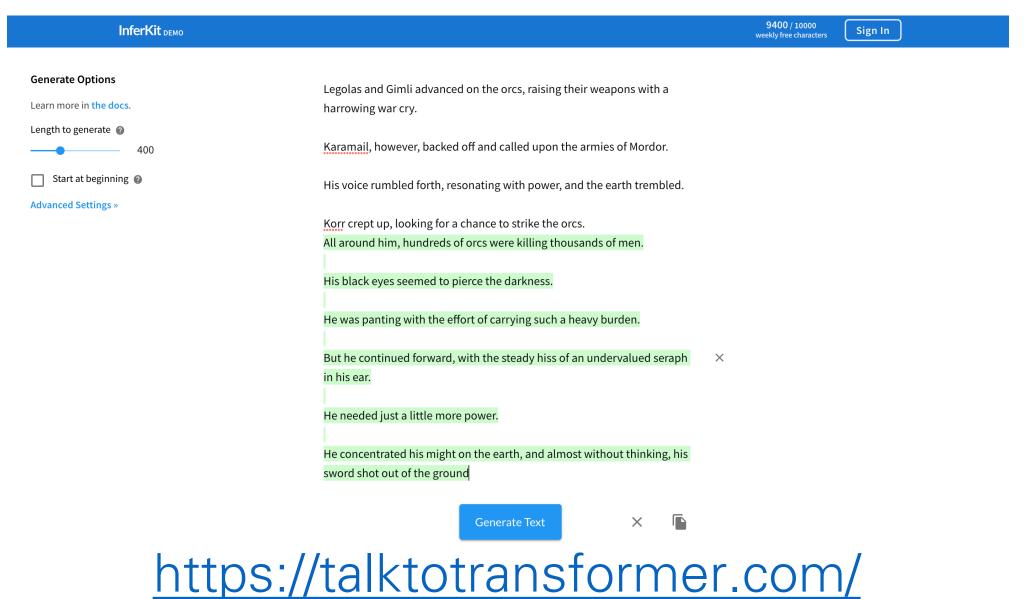
Generate Text

Prompt (human written): Recycling is good for the world, no, you could not be more wrong.

GPT-2: Recycling is NOT good for the world. It is bad for the environment, it is bad for our health, and it is bad for our economy. I'm not kidding. Recycling is not good for the environment. It is destructive to the earth and it is a major contributor to global warming. Recycling is not good for our health. It contributes to obesity and diseases like heart disease and cancer. Recycling is bad for our economy. It increases the cost of a product, and in turn, the price of everything that is made with that product. Recycling is not good for our nation. We pay a tremendous price for the privilege of having the world's most advanced and efficient recycling system. Recycling is a huge, colossal waste of time, energy, money, and resources.

[OpenAl's GPT2 – Radford, Wu, Child, Luan, Amodei, Sutskever, 2019]

Try it yourself



Try it yourself

OpenAI's API Now Available with No Waitlist

Wider availability made possible by safety progress

November 18, 2021 2 minute read OpenAI is committed to the safe deployment of AI. Since the launch of our API, we've made deploying applications faster and more streamlined while adding new safety features. Our progress with safeguards makes it possible to remove the waitlist for GPT-3. Starting today, developers in <u>supported</u> countries can <u>sign up</u> and start experimenting with our API right away.

Improvements to our API over the past year include the <u>Instruct Series</u> models that adhere better to human instructions, specialized endpoints for more truthful <u>question-answering</u>, and a free <u>content filter</u> to help developers mitigate abuse. Our work also allows us to review applications before they <u>go live</u>, monitor for misuse, support developers as their product scales, and better <u>understand the effects</u> of this technology.

Other changes include an improved Playground, which makes it easy to prototype with our models, an <u>example library</u> with dozens of prompts to get developers started, and <u>Codex</u>, a new model that translates natural language into code.

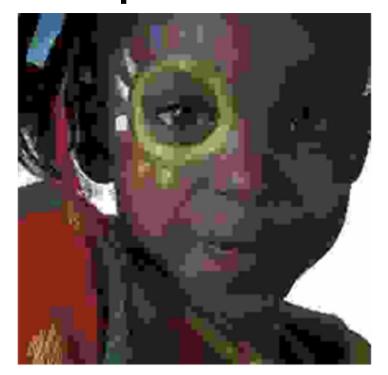
https://openai.com/api/

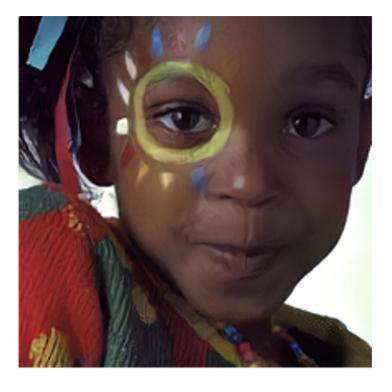
Compression - Lossless

Model	Bits per byte
CIFAR-10	
PixelCNN (Oord et al., 2016)	3.03
PixelCNN++ (Salimans et al., 2017)	2.92
Image Transformer (Parmar et al., 2018)	2.90
PixelSNAIL (Chen et al., 2017)	2.85
Sparse Transformer 59M (strided)	2.80
Enwik8	
Ellwiko	
Deeper Self-Attention (Al-Rfou et al., 2018)	1.06
Transformer-XL 88M (Dai et al., 2018)	1.03
Transformer-XL 277M (Dai et al., 2018)	0.99
Sparse Transformer 95M (fixed)	0.99
ImageNet 64x64	
PixelCNN (Oord et al., 2016)	3.57
Parallel Multiscale (Reed et al., 2017)	3.7
Glow (Kingma & Dhariwal, 2018)	3.81
SPN 150M (Menick & Kalchbrenner, 2018)	3.52
Sparse Transformer 152M (strided)	3.44
Classical music, 5 seconds at 12 kHz	
Sparse Transformer 152M (strided)	1.97

Generative models provide better bit-rates than distribution-unaware compression methods like JPEG, etc.

Compression - Lossy





JPEG JPEG2000 WaveOne

[Rippel & Bourdev, 2017]

Downstream Task - Sentiment Detection

This is one of Crichton's best books. The characters of Karen Ross, Peter Elliot, Munro, and Amy are beautifully developed and their interactions are exciting, complex, and fast-paced throughout this impressive novel. And about 99.8 percent of that got lost in the film. Seriously, the screenplay AND the directing were horrendous and clearly done by people who could not fathom what was good about the novel. I can't fault the actors because frankly, they never had a chance to make this turkey live up to Crichton's original work. I know good novels, especially those with a science fiction edge, are hard to bring to the screen in a way that lives up to the original. But this may be the absolute worst disparity in quality between novel and screen adaptation ever. The book is really, really good. The movie is just dreadful.

Downstream Tasks - NLP (BERT Revolution)

Rank Name	Model	URL	Score E	BoolQ C	в сора	MultiRC	ReCoRD	RTE	WiC	wsc	AX-b	AX-g
1 JDExplore d-team	Vega v2		91.3	90.5 98.6/99.	2 99.4	88.2/62.4	94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0
2 Liam Fedus	ST-MoE-32B		91.2	92.4 96.9/98.	0 99.2	89.6/65.8	3 95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.1
3 Microsoft Alexander v-team	Turing NLR v5		90.9	92.0 95.9/97.	6 98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
4 ERNIE Team - Baidu	ERNIE 3.0		90.6	91.0 98.6/99.	2 97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
5 Yi Tay	PaLM 540B		90.4	91.9 94.4/96.	0 99.0	88.7/63.6	94.2/93.3	94.1	77.4	95.9	72.9	95.5/90.4
+ 6 Zirui Wang	T5 + UDG, Single Model (Google Brain)		90.4	91.4 95.8/97.	6 98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	69.1	92.7/91.9
7 DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4 95.7/97.	6 98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	66.7	93.3/93.8
8 SuperGLUE Human Baseline	s SuperGLUE Human Baselines		89.8	89.0 95.8/98.	9 100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	76.6	99.3/99.7
9 T5 Team - Google	T5		89.3	91.2 93.9/96.	8 94.8	88.1/63.3	3 94.1/93.4	92.5	76.9	93.8	65.6	92.7/91.9
10 SPoT Team - Google	Frozen T5 1.1 + SPoT		89.2	91.1 95.8/97.	6 95.6	87.9/61.9	93.3/92.4	92.9	75.8	93.8	66.9	83.1/82.6

Downstream Tasks - Vision (Contrastive)

Method	Architecture	mAP	
Transfer from labeled data: Supervised baseline	ResNet-152	74.7	
Transfer from unlabeled data: Exemplar [17] by [13] Motion Segmentation [47] by [13] Colorization [64] by [13] Relative Position [14] by [13] Multi-task [13] Instance Discrimination [60] Deep Cluster [7] Deeper Cluster [8] Local Aggregation [66] Momentum Contrast [25]	ResNet-101 ResNet-101 ResNet-101 ResNet-101 ResNet-50 VGG-16 VGG-16 ResNet-50 ResNet-50	60.9 61.1 65.5 66.8 70.5 65.4 65.9 67.8 69.1 74.9	"If, by the first day of autumn (Sept 23) 2015, a method will exist that can mate beat the performance of R-CNN on Past VOC detection, without the use of any human annotations (e.g. ImageNet) as training, Mr. Malik promises to buy Mr. one (1) gelato (2 scoops: one chocolate vanilla)."
Faster-RCNN trained on CPC v2	ResNet-161	76.6	Table: Data-Efficient Image Recognition using CPC

Why Unsupervised Learning?

- Given high-dimensional data $X=(x_1,\ldots,x_n)$ we want to find a low-dimensional model characterizing the population.
- Recent progress mostly in supervised DL
- Real challenges for unsupervised DL
- Potential benefits:
 - Exploit tons of unlabeled data
 - Answer new questions about the variables observed
 - Regularizer transfer learning domain adaptation
 - Easier optimization (divide and conquer)
 - Joint (structured) outputs

Why Latent Factors & Unsupervised Representation Learning? Because of Causality.

• If Ys of interest are among the causal factors of X, then

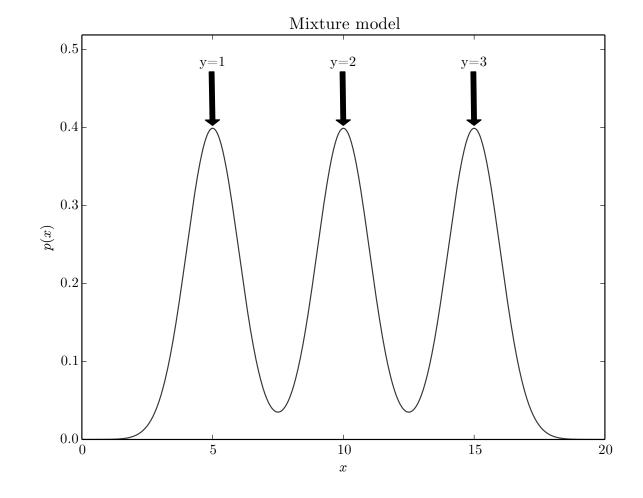
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X|Y), i.e.

- The best possible model of X (unsupervised learning) MUST involve Y as a latent factor, implicitly or explicitly.
- Representation learning SEEKS the latent variables H that explain the variations of X, making it likely to also uncover Y.

If Y is a Cause of X, Semi-Supervised Learning Works

- Just observing the x-density reveals the causes y (cluster ID)
- After learning p(x) as a mixture, a single labeled example per class suffices to learn p(y|x)



Invariance & Disentangling Underlying Factors

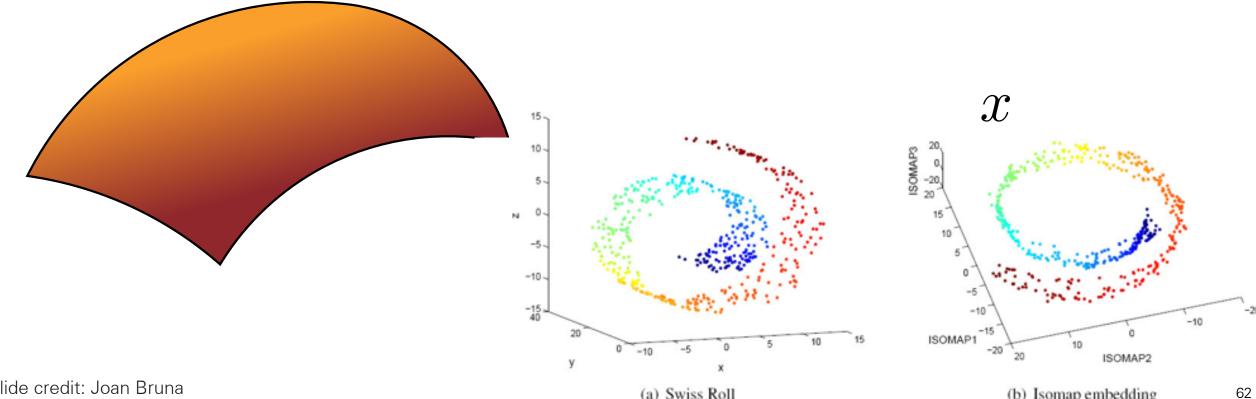
- Invariant features
- Which invariances?

- Good disentangling → avoid the curse of dimensionality
- Emerges from representation learning

$$p(x)$$
, $x \in \mathbb{R}^{n}$ (or $x \in \Omega^{n}$)

Curse of Dimensionality

- Challenge: How to model p(x), $x \in \mathbb{R}^N$ (or $x \in \Omega^N$) for target N?
- An existing hypothesis is that, although the ambient dimensionality is high, the intrinsic dimensionality of x is low.



Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- Fully observed
 Belief Nets
- NADE
- PixelRNN

Non-Tractable Models

- BoltzmannMachines
- Variational Autoencoders
- Helmholtz Machines
- Many others...

- Generative
 - Adversarial
 - Networks
- Moment
 - Matching
 - Networks

Explicit Density p(x)

Implicit Density

Unsupervised Learning

- Basic Building Blocks:
 - Sparse Coding
 - Autoencoders
- Autoregressive Generative Models
- Generative Adversarial Networks
- Variational Autoencoders
- Normalizing Flow Models
- Diffusion Models

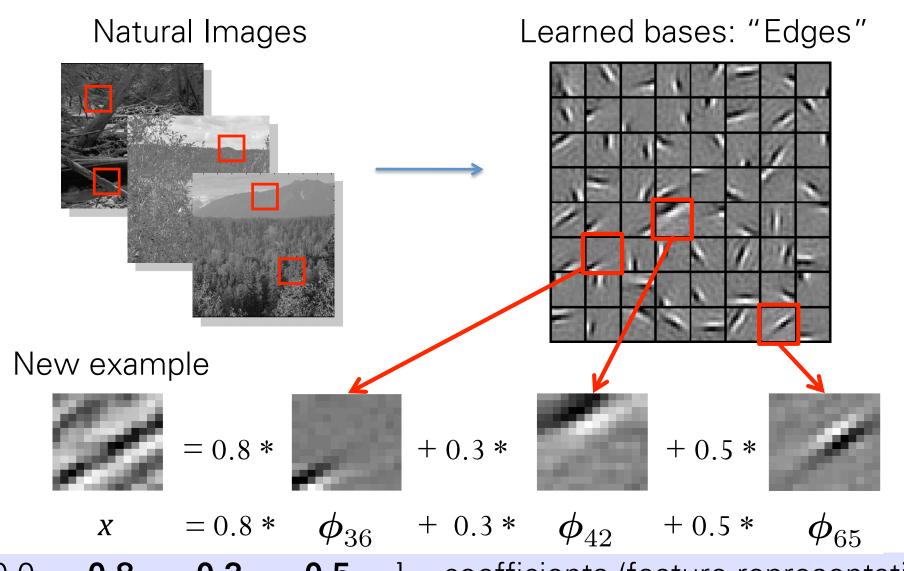
Sparse Coding

- Sparse coding (Olshausen & Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).
- **Objective:** Given a set of input data vectors $\{x_1, x_2, ..., x_N\}$, learn a dictionary of bases, such that: $\{\phi_1, \phi_2, ..., \phi_K\}$,

$$\mathbf{x}_n = \sum_{k=1}^K \mathbf{x}_{nk} \overline{\phi}_k \sum_{k=1}^K a_{nk} \phi_k$$
 Sparse: mostly zeros

• Each data vector is represented as a sparse linear combination of bases.

Sparse Coding



[0.0, 0.0, ... **0.8**, ..., **0.3**, ..., **0.5**, ...] = coefficients (feature representation)

Slide Credit: Honglak Lee

Sparse Coding: Training

- Input image patches: $\mathbf{x}_{\mathbf{X}_1}, \mathbf{x}_2, \dots, \mathbf{x}_N \in \mathbb{R}^D$ Learn dictionary of bases: $\phi_1, \phi_2, \dots, \phi_k \in \mathbb{R}^D$

$$\min_{\boldsymbol{\epsilon} \text{ a}, \boldsymbol{\phi}} \min_{\mathbf{a}, \boldsymbol{\phi}} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \sum_{k=1}^{K} a_{nk} \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}|$$

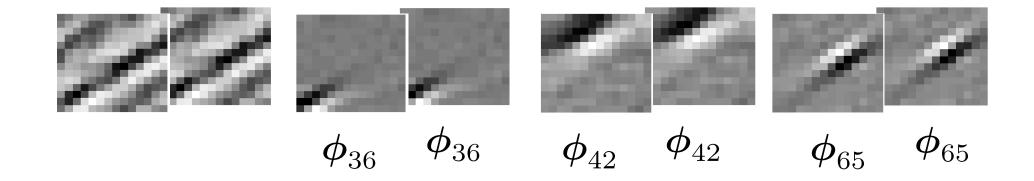
Reconstruction error Sparsity penalty

- Alternating Optimization:
 - 1. Fix dictionary of bases and \hat{q}_{ϕ_1} , $\hat{\phi}_{\phi_2}$, ..., $\hat{\phi}_{\kappa}$ is **a** (a standard Lasso problem).
 - Fix activations **a**, optimize the dictionary of bases (convex QP problem).

Sparse Coding: Testing Time

- Input: a new image patch x* , and K learned bases $\phi_1, \phi_2, ..., \phi_K, ..., \phi_K$
- Output: sparse representation a of an image patch x*.

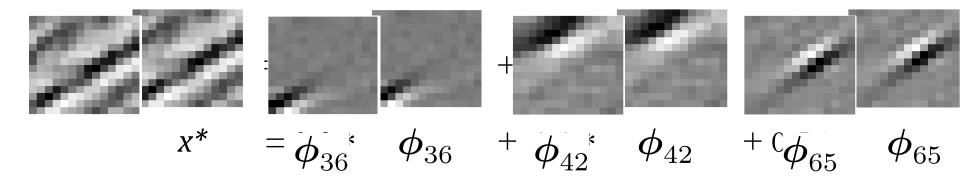
$$\min_{\mathbf{a}} \left\| \mathbf{x}^* - \sum_{k=1}^K a_k \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{k=1}^K |a_k| \sum_{k=1}^K |a_k|$$



Sparse Coding: Testing Time

- Input: a new image patch x* , and K learned bases $\phi_1, \phi_2, ..., \phi_K, ..., \phi_K$
- Output: sparse representation a of an image patch x*.

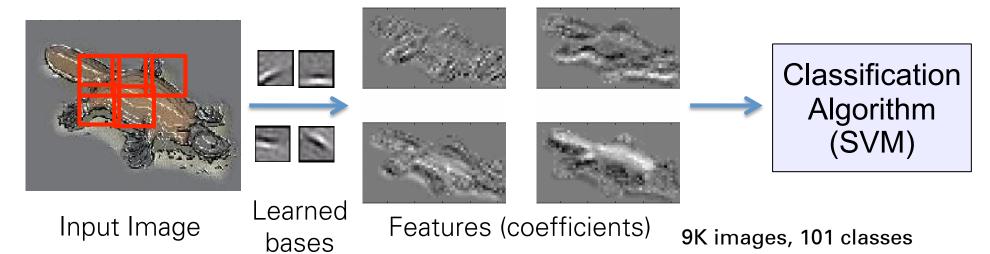
$$\min_{\mathbf{a}} \left\| \mathbf{x}^* - \sum_{k=1}^K a_k \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{k=1}^K |a_k| \sum_{k=1}^K |a_k|$$



[0.0, 0.0, ... **0.8**, ..., **0.3**, ..., **0.5**, ...] = coefficients (feature representation)

Image Classification

Evaluated on Caltech101 object category dataset.



Algorithm	Accuracy				
Baseline (Fei-Fei et al., 2004)	16%				
PCA	37%				
Sparse Coding	47%				

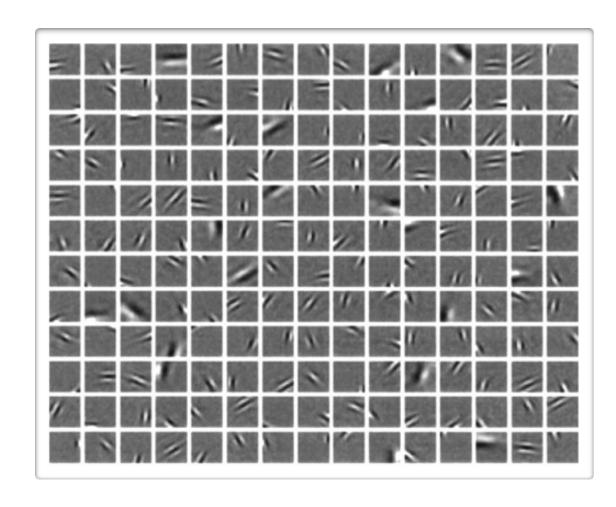
Modeling Image Patches

- Natural image patches:
 - small image regions extracted from an image of nature (forest, grass, ...)



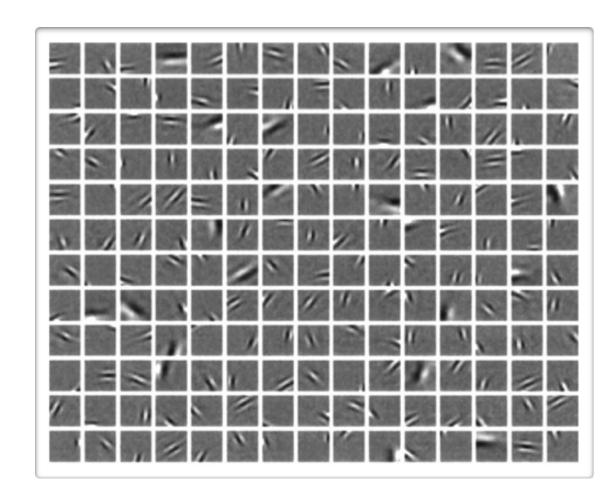
Relationship to V1

- When trained on natural image patches
 - the dictionary columns ("atoms") look
 like edge detectors
 - each atom is tuned to a particularposition, orientation and spatialfrequency
 - V1 neurons in the mammalian brain have a similar behavior



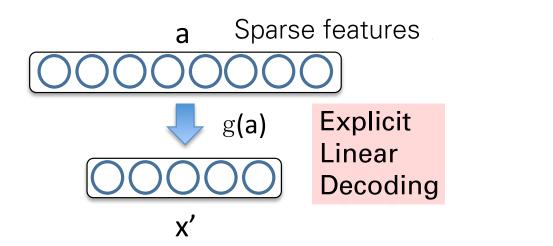
Relationship to V1

- Suggests that the brain might be learning a sparse code of visual stimulus
 - Since then, many other models have been shown to learn similar features
 - they usually all incorporate a notion of sparsity



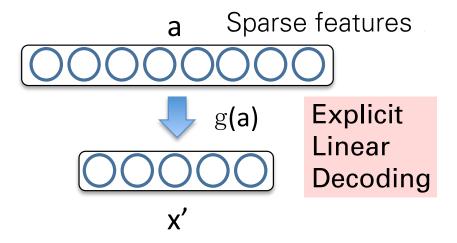
Interpreting Sparse Coding

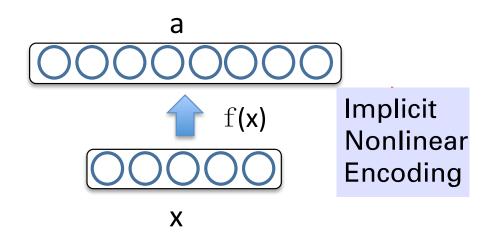
$$\min_{\mathbf{a}, \boldsymbol{\phi}} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \sum_{k=1}^{K} a_{nk} \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}|$$



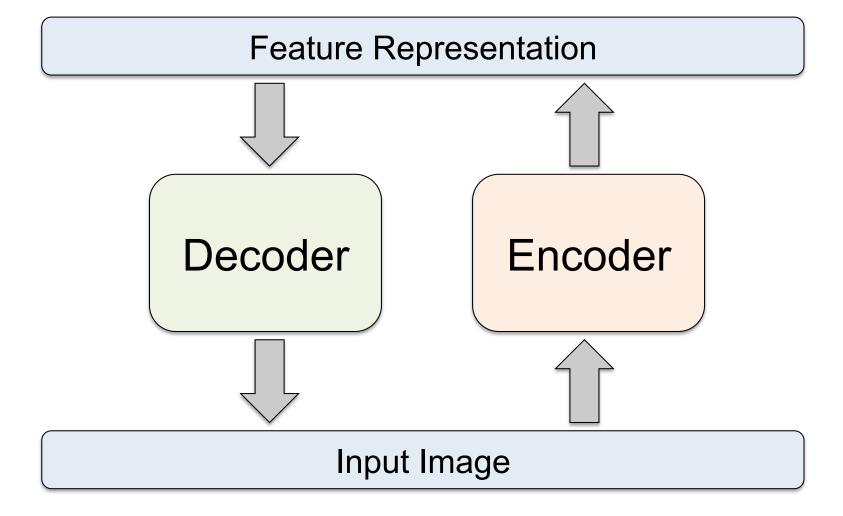
Interpreting Sparse Coding

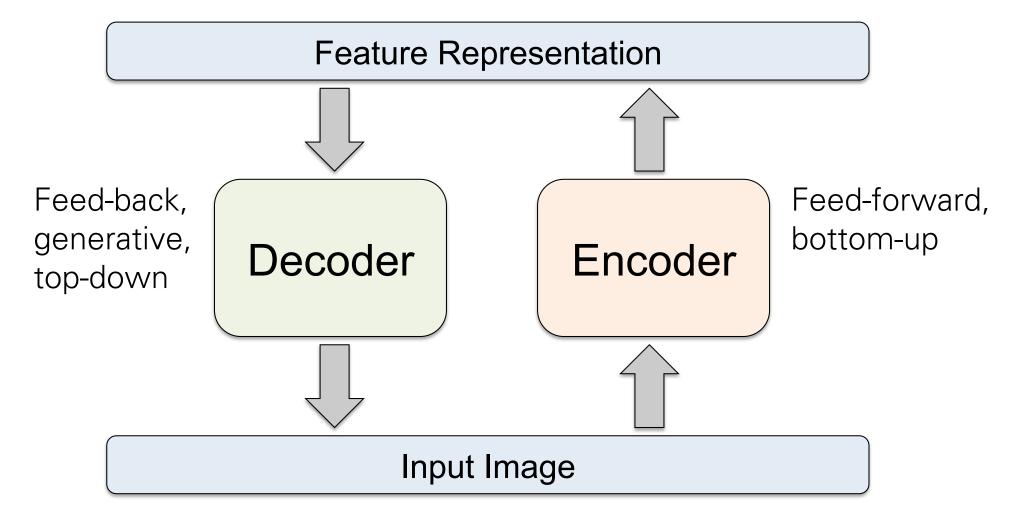
$$\min_{\mathbf{a}, \boldsymbol{\phi}} \sum_{n=1}^{N} \left\| \mathbf{x}_n - \sum_{k=1}^{K} a_{nk} \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{n=1}^{N} \sum_{k=1}^{K} |a_{nk}|$$



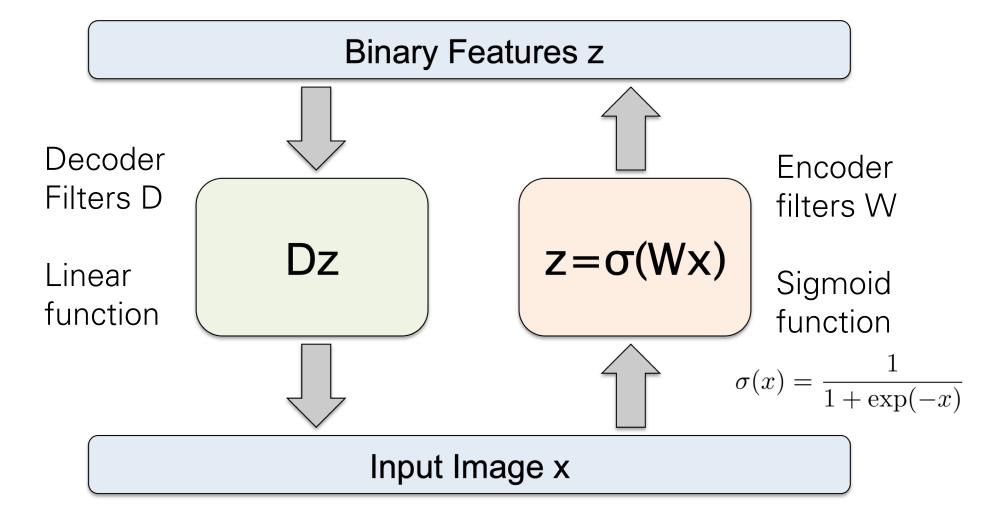


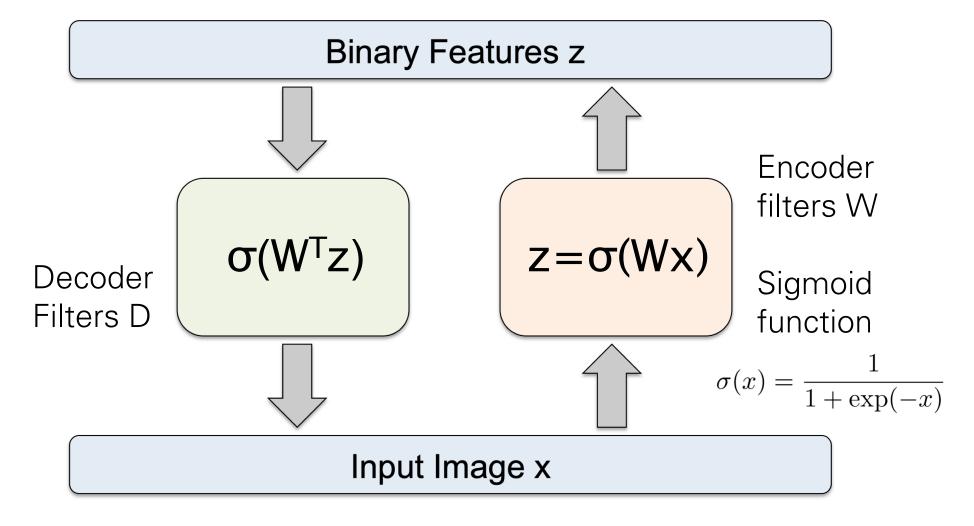
- Sparse, over-complete representation a.
- Encoding a = f(x) is implicit and nonlinear function of x.
- Reconstruction (or decoding) x' = g(a) is linear and explicit.





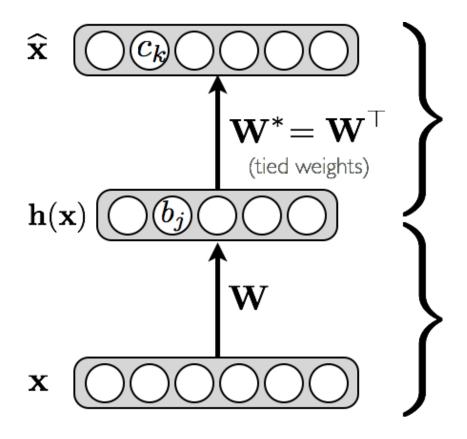
- Details of what goes insider the encoder and decoder matter!
- Need constraints to avoid learning an identity.





- Need additional constraints to avoid learning an identity.
- Relates to Restricted Boltzmann Machines (later).

 Feed-forward neural network trained to reproduce its input at the output layer



Decoder

$$\widehat{\mathbf{x}} = o(\widehat{\mathbf{a}}(\mathbf{x}))$$

$$= \operatorname{sigm}(\mathbf{c} + \mathbf{W}^* \mathbf{h}(\mathbf{x}))$$
for binary units

Encoder

$$\mathbf{h}(\mathbf{x}) = g(\mathbf{a}(\mathbf{x}))$$
$$= \operatorname{sigm}(\mathbf{b} + \mathbf{W}\mathbf{x})$$

$$\text{LossFunction}_{\widehat{\mathbf{x}}} \underset{\overline{\theta}(\mathbf{c}, \boldsymbol{\theta}(\mathbf{w})^*, \mathbf{w}, \mathbf{y}, \mathbf{x}))}{\text{LossFunction}}$$

• Loss function for binary inputs

$$\begin{aligned} \mathbf{h}(\mathbf{k}) &== g(\mathbf{g}(\mathbf{k}))) \\ &== \operatorname{sigign}(\mathbf{b}(\mathbf{b} - \mathbf{k})) \end{aligned}$$

$$\widehat{x}_{k})^{2}x_{k}(f(k)) + \sum_{k} \sum_{k} (g(k)) - g(k) + \sum_{k} (g(k)) - g(k) + \sum_{k} (g(k)) - g(k) - g(k) + \sum_{k} (g(k)) - g(k) - g(k)$$

- Cross-entropy error function (reconstruction $\bigotimes \mathbf{x} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x} = \mathbf{x} \cdot \mathbf{x} \cdot$

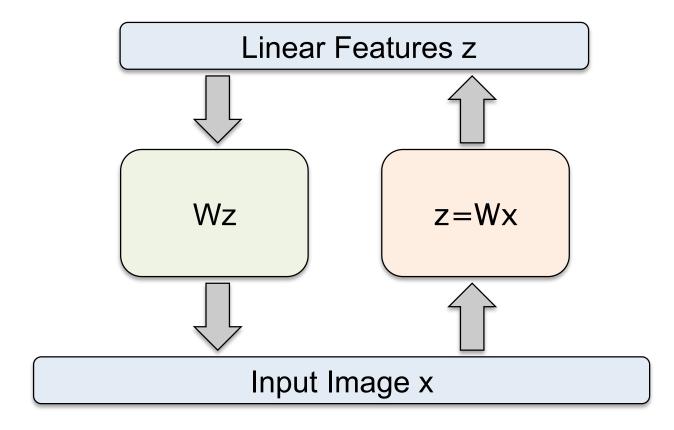
$$==\operatorname{sigign}(\operatorname{c}(\mathbf{e}+\mathbf{W}\mathbf{h}^*(\mathbf{h}(\mathbf{x})))$$

Loss function for real-valued inputs

$$(\mathbf{x}) = \frac{1}{2} \sum_{k} (\hat{x}_{k} - x_{k})^{2} |_{k}^{2})^{2} l(\mathbf{x}) = \sum_{k} (\mathbf{x}) \log(\hat{\mathbf{x}}) + (1 + x_{k}) |_{k}^{2})^{2} l(\mathbf{x}) + \sum_{k} (\mathbf{x}) \log(\hat{\mathbf{x}}) + (1 + x_{k}) |_{k}^{2})$$

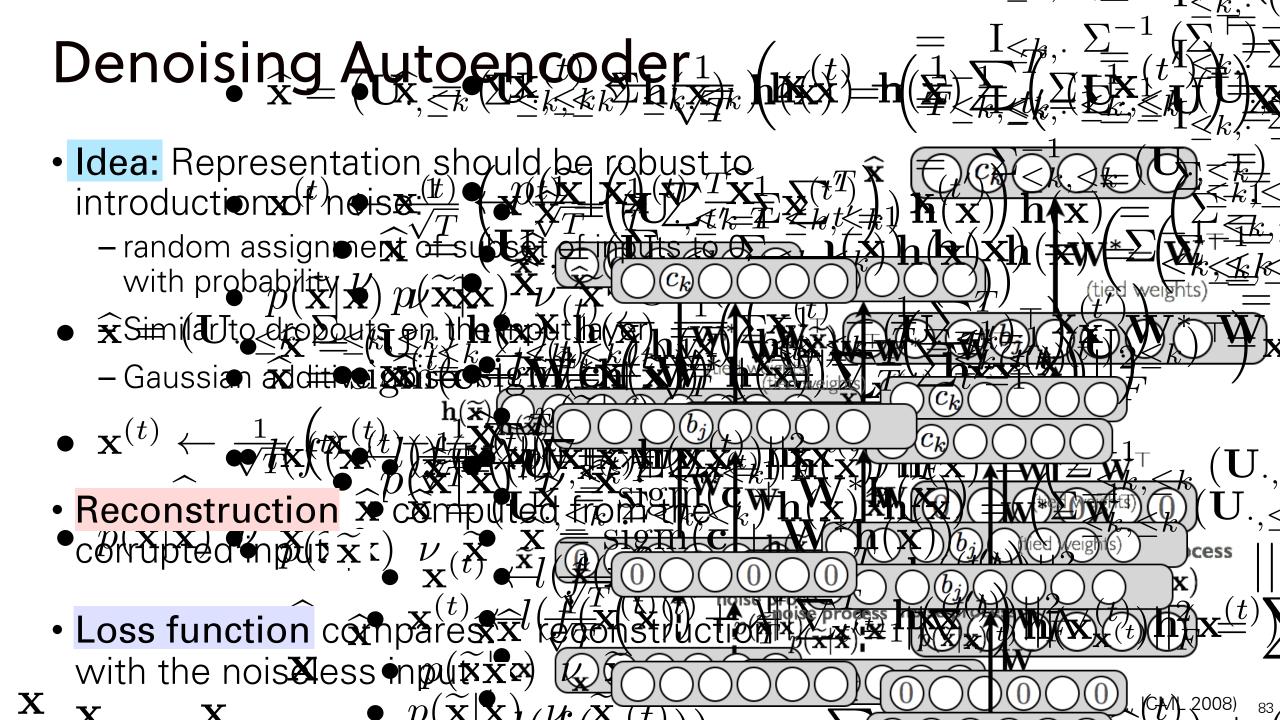
$$\mathbf{a}(\mathbf{x}(\mathbf{x}^{(t)})) \iff \mathbf{b} + \mathbf{W}(\mathbf{x}^{(t)})$$

$$\mathbf{b}(\mathbf{x}^{(t)}(t)) \iff \mathbf{sign}(\mathbf{x}^{(t)}(t))$$

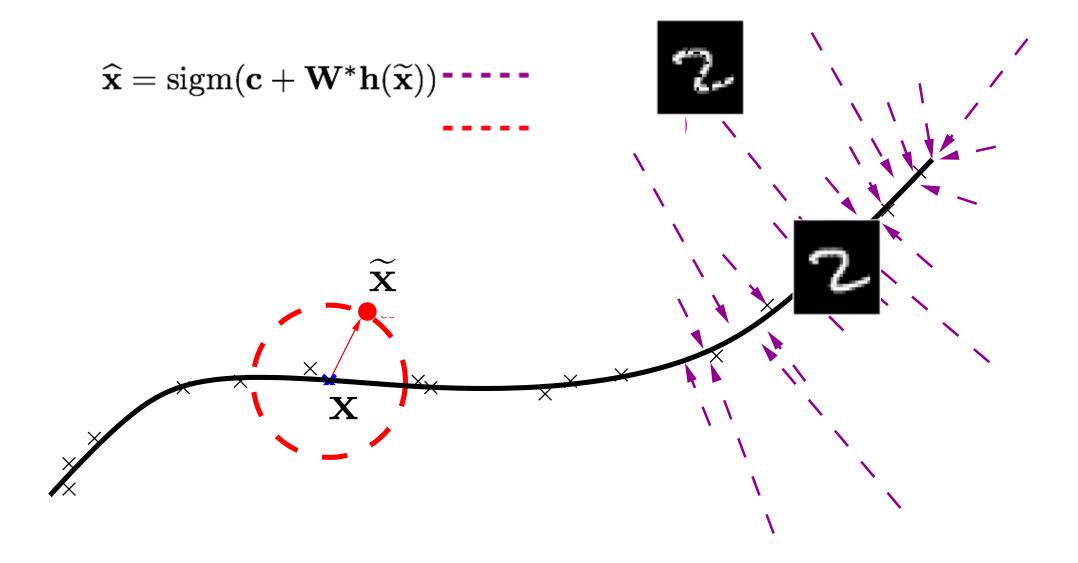


- If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the squared error.
- The K hidden units will span the same space as the first k principal components. The weight vectors may not be orthogonal.

With nonlinear hidden units, we have a nonlinear generalization of PCA.



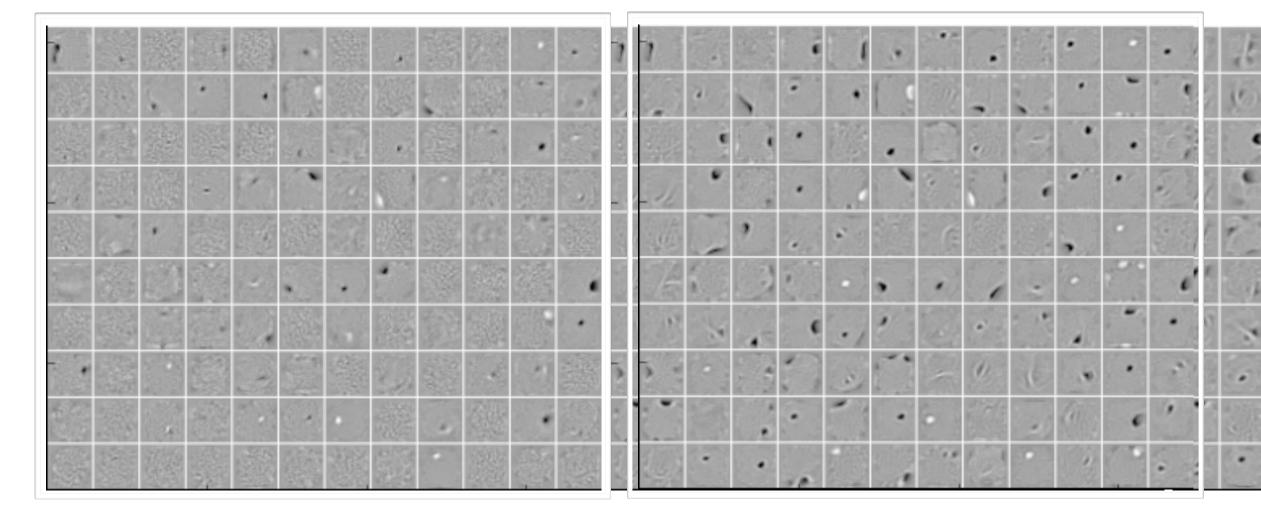
Denoising Autoencoder



Learned Filters

Non-corrupted

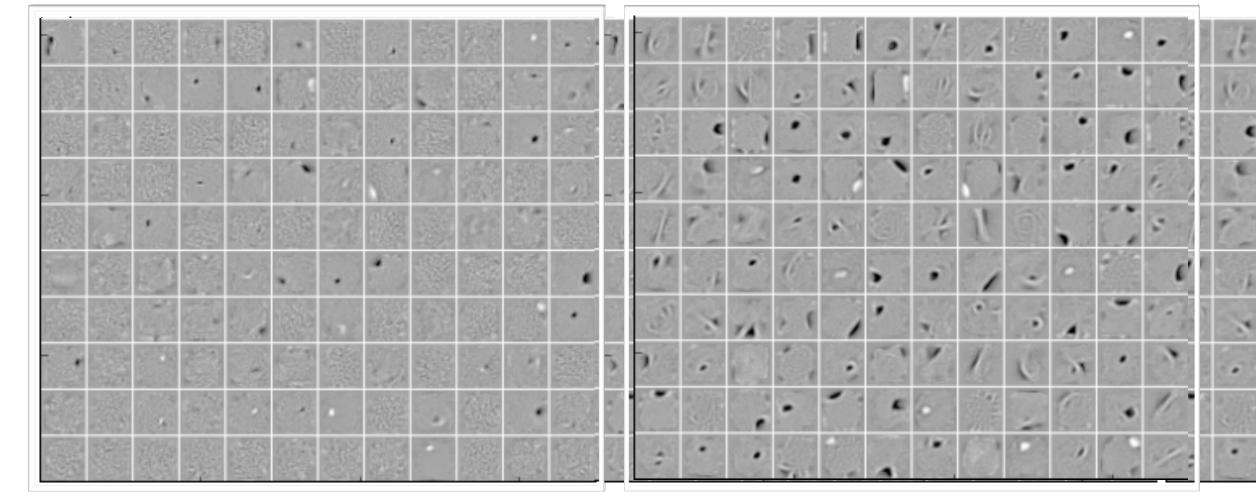
25% corrupted input



Learned Filters

Non-corrupted

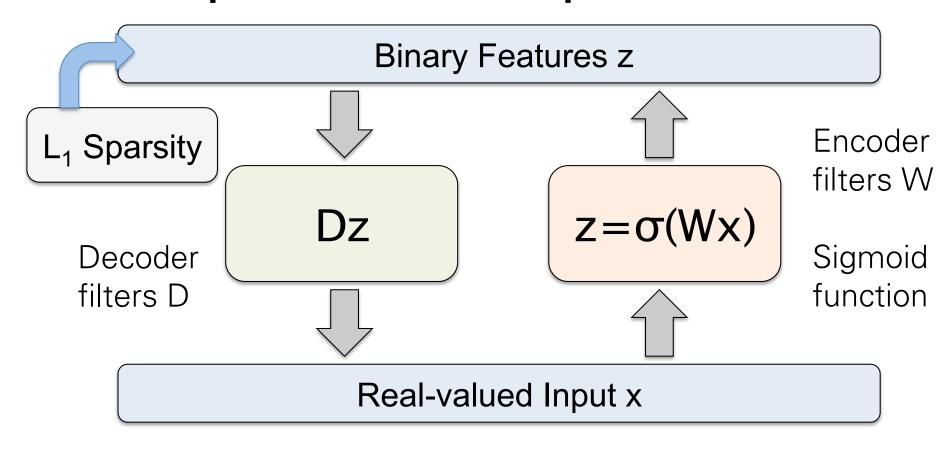
50% corrupted input



(a) a) does test y eye in jumps to

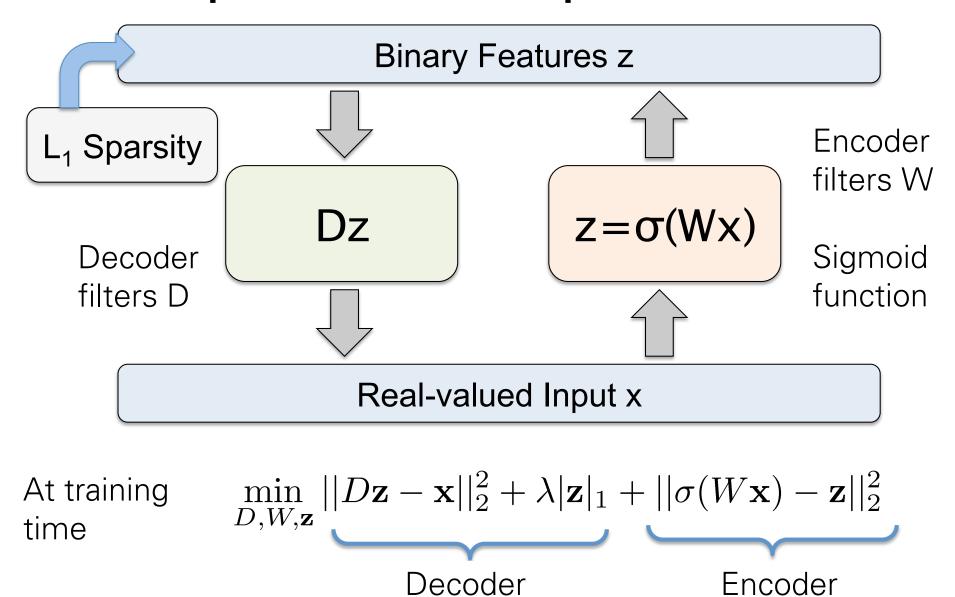
(b) b2525 Westertiction

Predictive Sparse Decomposition

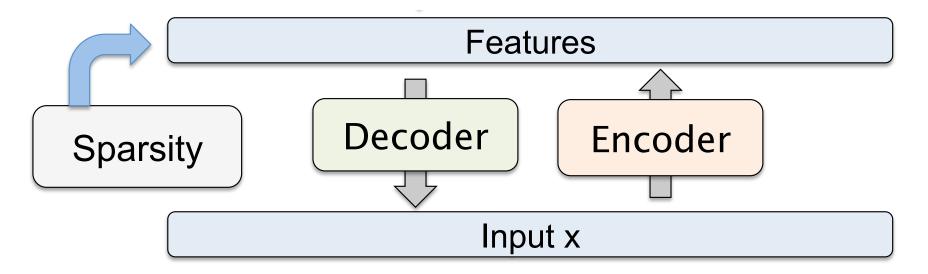


$$\min_{D,W,\mathbf{z}} ||D\mathbf{z} - \mathbf{x}||_2^2 + \lambda |\mathbf{z}|_1 + ||\sigma(W\mathbf{x}) - \mathbf{z}||_2^2$$

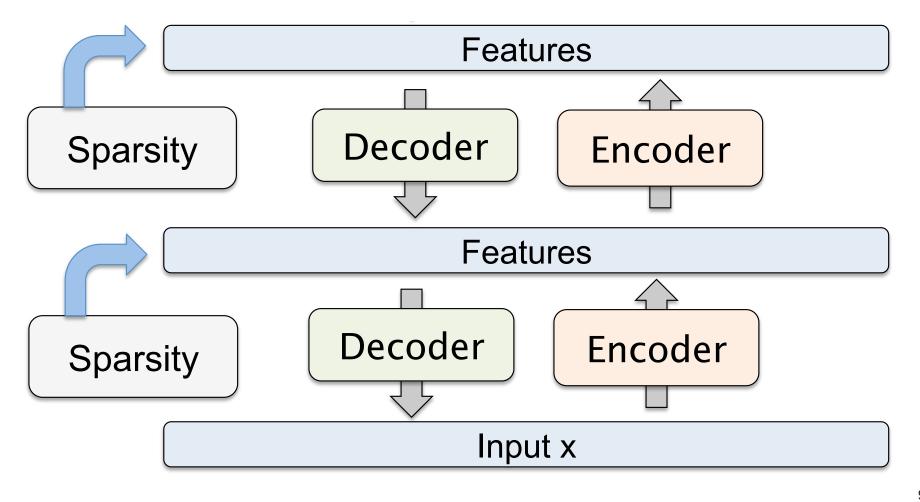
Predictive Sparse Decomposition



Stacked Autoencoders



Stacked Autoencoders

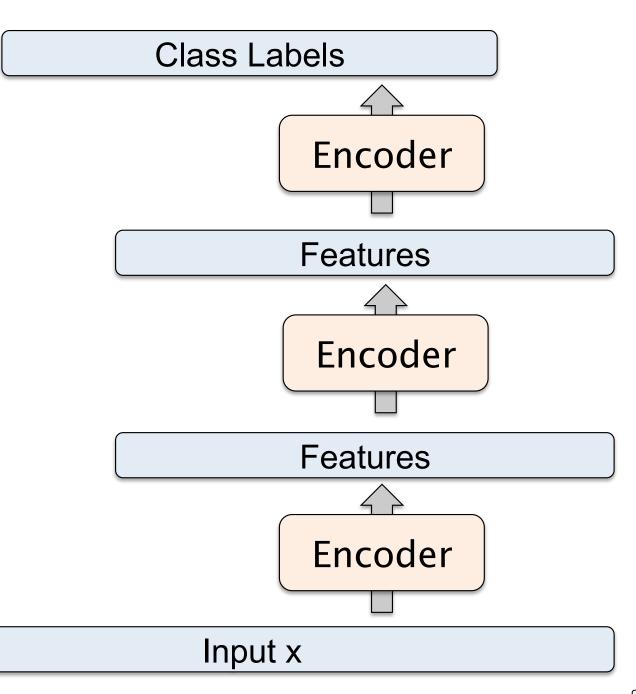


Stacked Class Labels Autoencoders Decoder Encoder **Features** Decoder Encoder **Sparsity Features** Decoder Encoder Sparsity Input x

Stacked Class Labels Autoencoders Decoder Encoder **Features** Decoder Encoder Sparsity Greedy Layer-wise Learning Input x

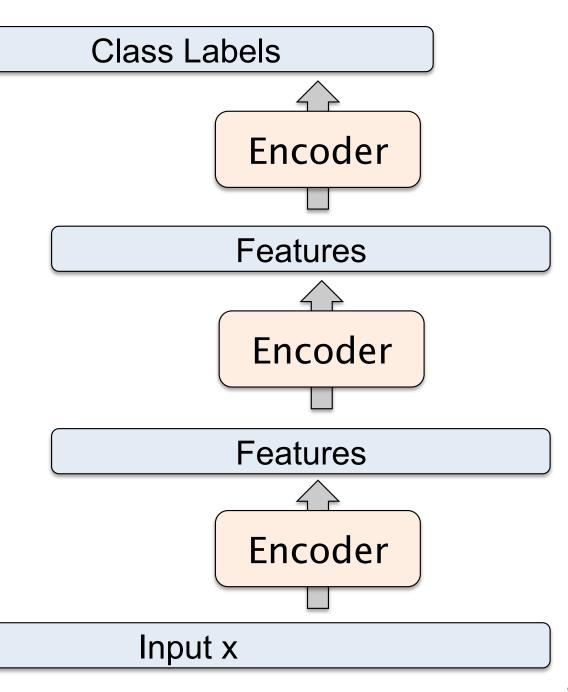
Stacked Autoencoders

 Remove decoders and use feed-forward part.

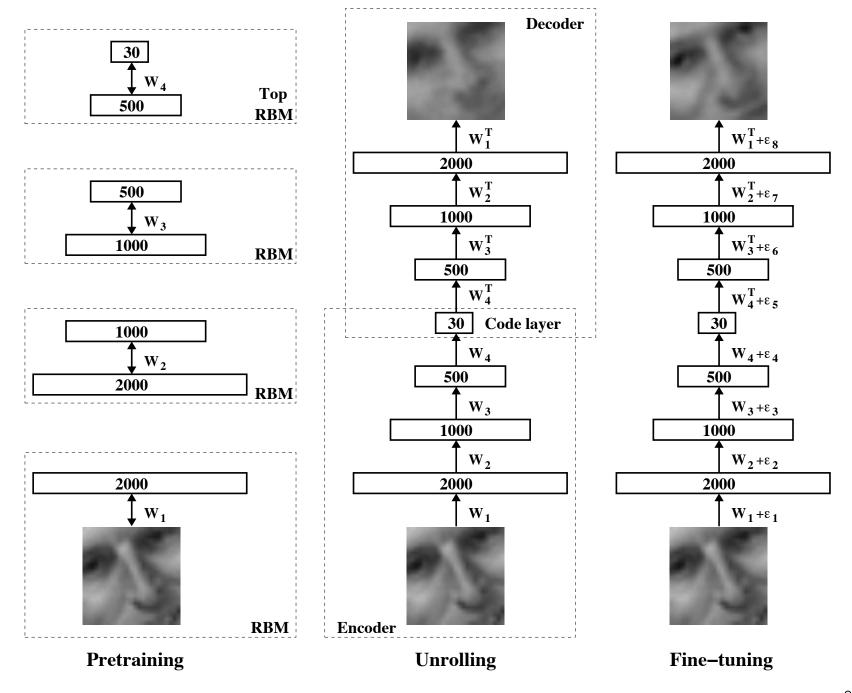


Stacked Autoencoders

- Remove decoders and use feed-forward part.
- Standard, or convolutional neural network architecture.
- Parameters can be fine-tuned using backpropagation.

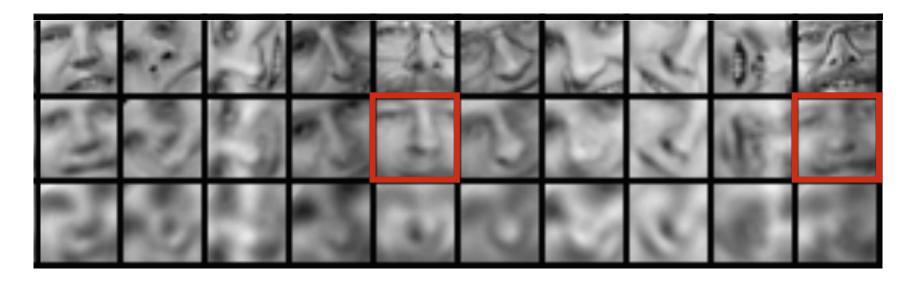


Deep Autoencoder



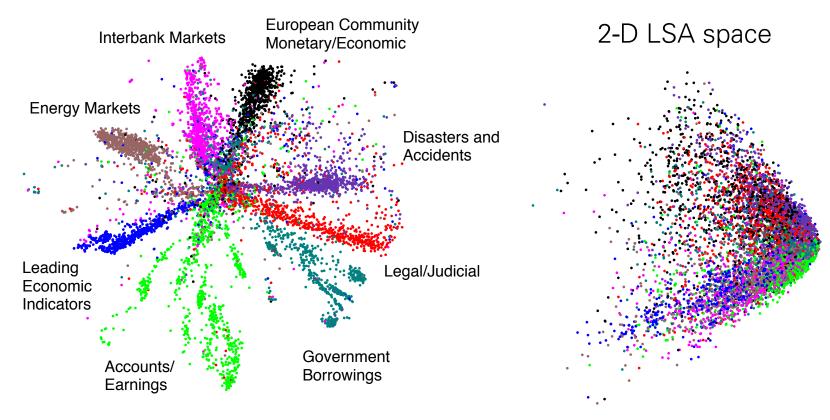
Deep Autoencoders

• 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D realvalued codes for Oliver face patches.



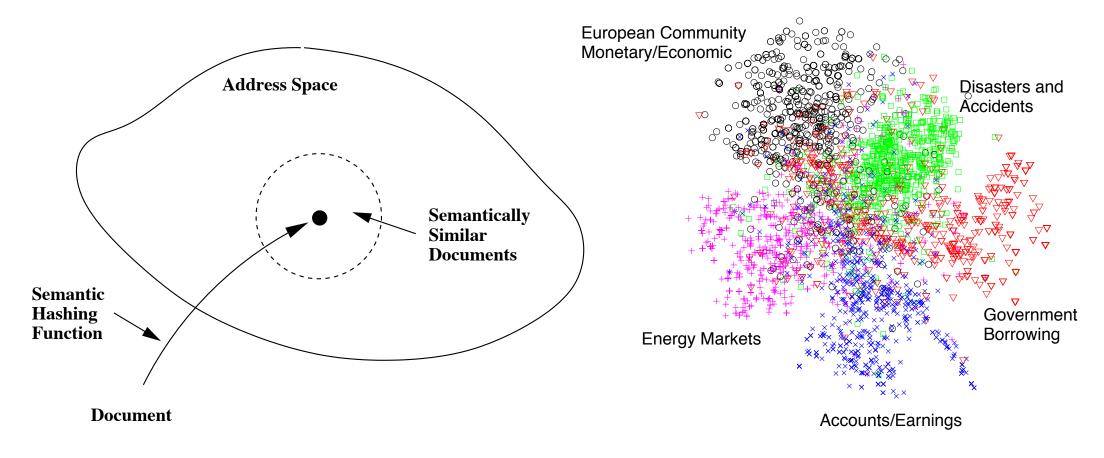
- **Top:** Random samples from the test dataset.
- Middle: Reconstructions by the 30-dimensional deep autoencoder.
- **Bottom**: Reconstructions by the 30-dimensional PCA.

Information Retrieval



- The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into 402,207 training and 402,207 test).
- "Bag-of-words" representation: each article is represented as a vector containing the counts of the most frequently used 2000 words in the training set.

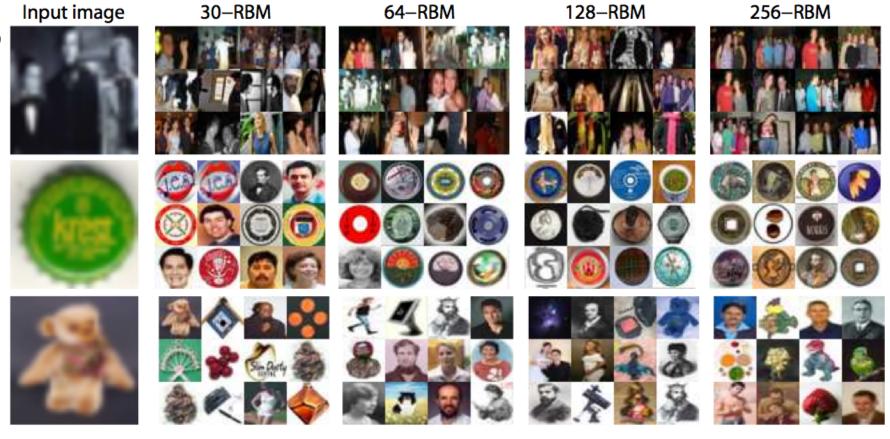
Semantic Hashing



- Learn to map documents into semantic 20-D binary codes.
- Retrieve similar documents stored at the nearby addresses with no search at all.

Searching Large Image Database using Binary Codes

 Map images into binary codes for fast retrieval.



- Small Codes, Torralba, Fergus, Weiss, CVPR 2008
- Spectral Hashing, Y. Weiss, A. Torralba, R. Fergus, NIPS 2008
- Kulis and Darrell, NIPS 2009, Gong and Lazebnik, CVPR 2011
- Norouzi and Fleet, ICML 2011

Unsupervised Learning

Non-probabilistic Models

- Sparse Coding
- Autoencoders
- Others (e.g. k-means)

Probabilistic (Generative) Models

Tractable Models

- Fully observed
 Belief Nets
- NADE
- PixelRNN

Non-Tractable Models

- BoltzmannMachines
- Variational Autoencoders
- Helmholtz Machines
- Many others...

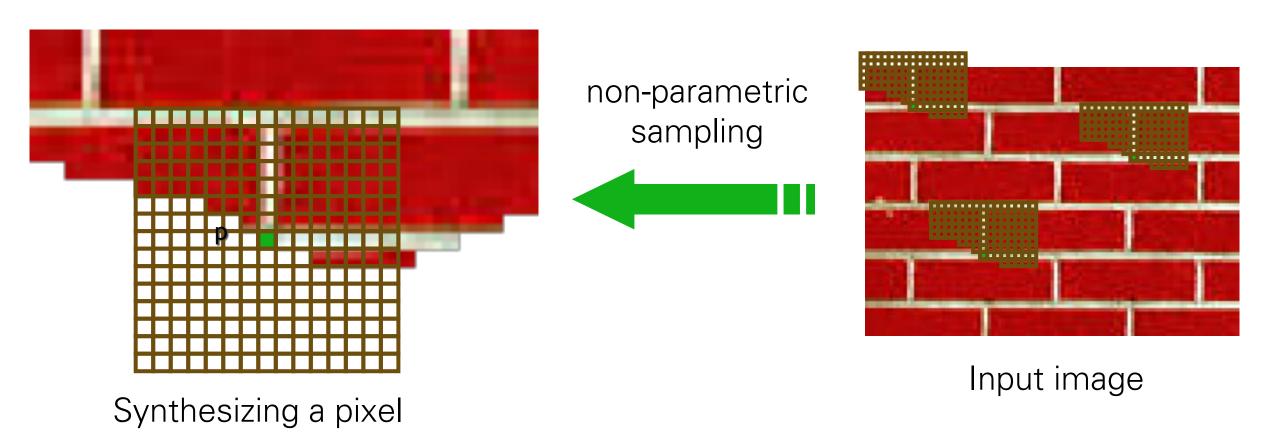
- Generative
 - Adversarial
 - Networks
- Moment
 - Matching
 - Networks

Explicit Density p(x)

Implicit Density

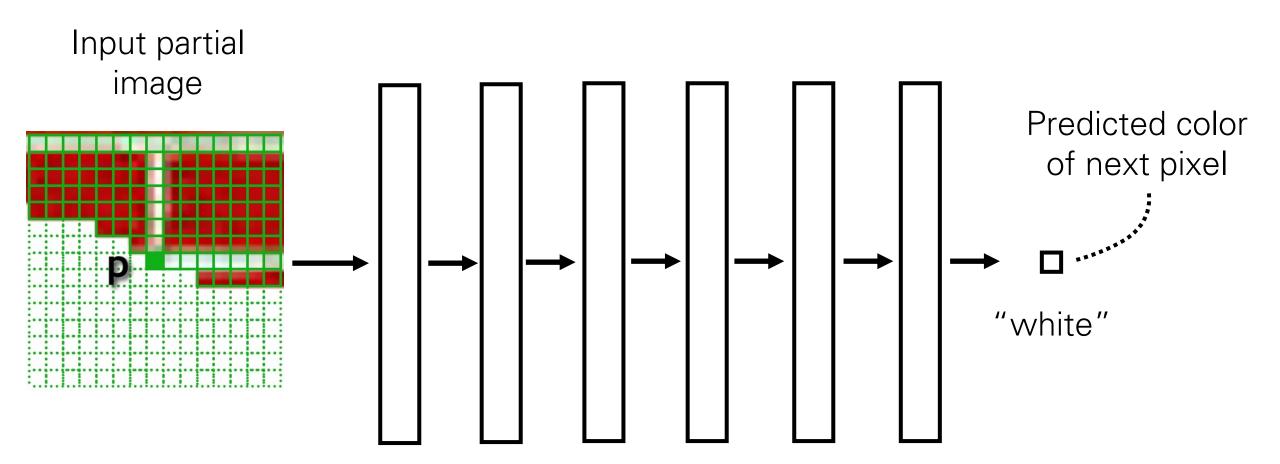
Autoregressive Generative Models

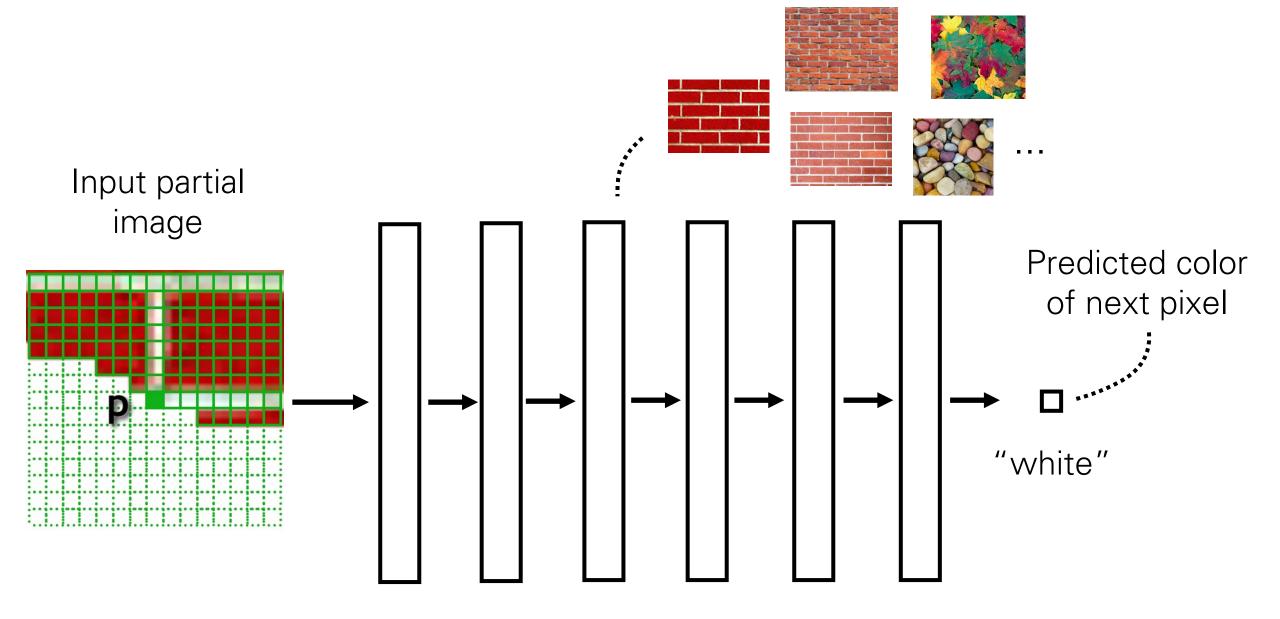
Texture synthesis by non-parametric sampling



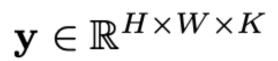
Models P(p|N(p))

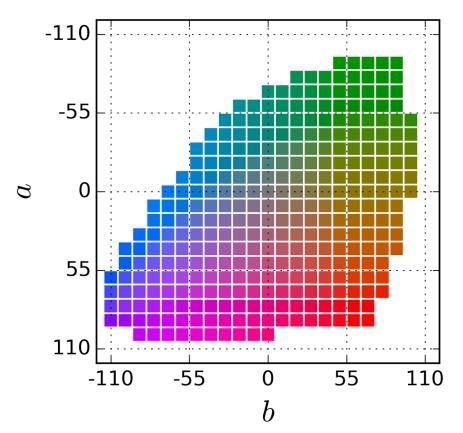
Texture synthesis with a deep net



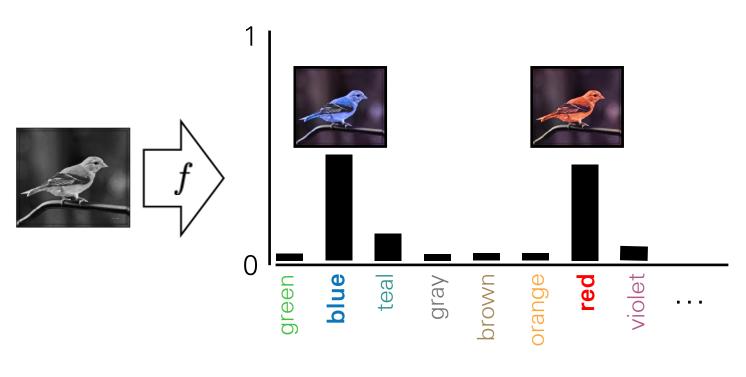


Idea: We can represent colors as discrete classes





Prediction for a single pixel i,j



$$\mathcal{L}(\mathbf{y}, f_{ heta}(\mathbf{x})) = H(\mathbf{y}, \mathtt{softmax}(f_{ heta}(\mathbf{x})))$$

And we can interpret the learner as modeling P(next pixel | previous pixels):

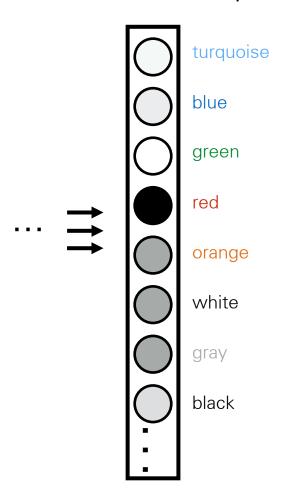
Softmax regression (a.k.a. multinomial logistic regression)

$$\hat{\mathbf{y}} \equiv [P_{\theta}(Y=1|X=\mathbf{x}),\dots,P_{\theta}(Y=K|X=\mathbf{x})]$$
 redicted probability of each class given input \mathbf{x}

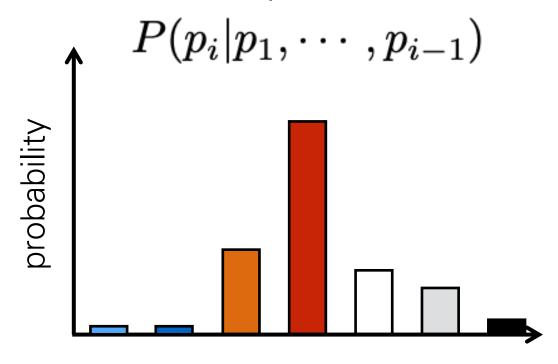
$$H(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{k=1}^K y_k \log \hat{y}_k$$
 \longrightarrow picks out the -log likelihood of the ground truth class \mathbf{y} under the model prediction $\hat{\mathbf{y}}$

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^N H(\mathbf{y}_i, \hat{\mathbf{y}}_i) \longleftarrow \max \text{ likelihood learner!}$$

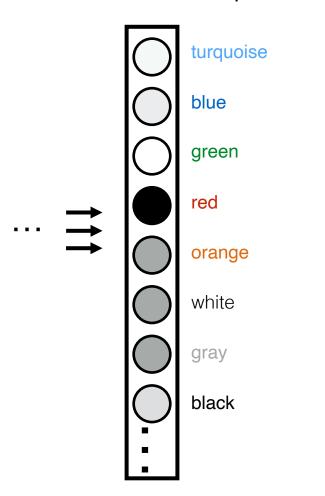
Network output

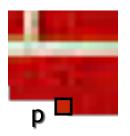


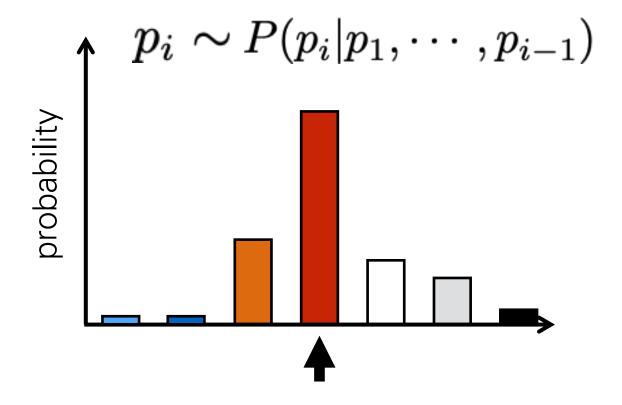
P(next pixel | previous pixels)



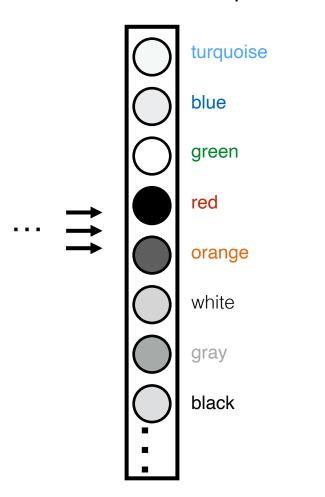
Network output



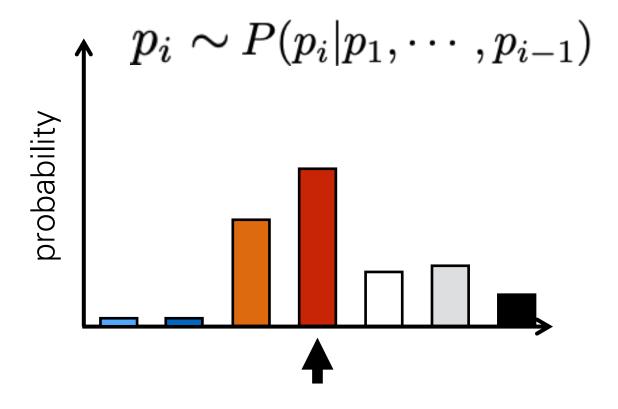




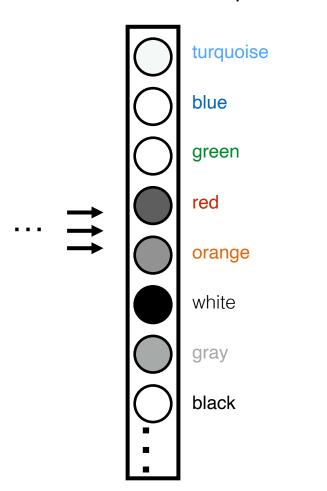
Network output

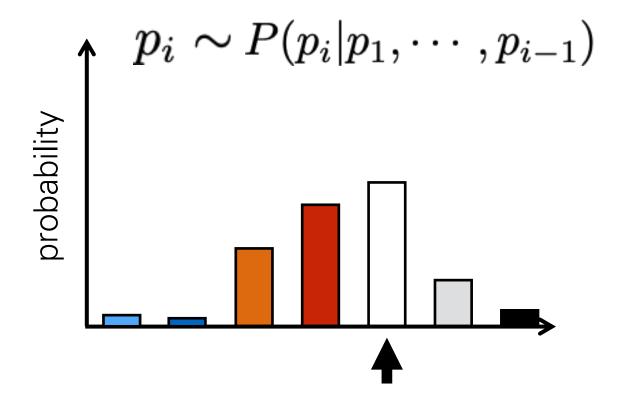




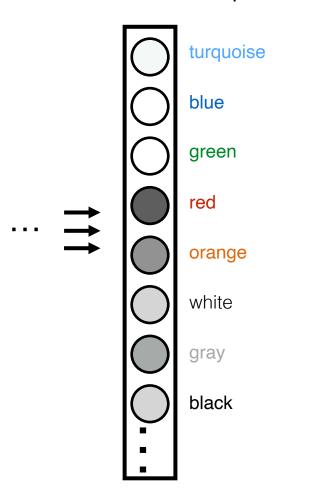


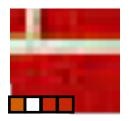
Network output

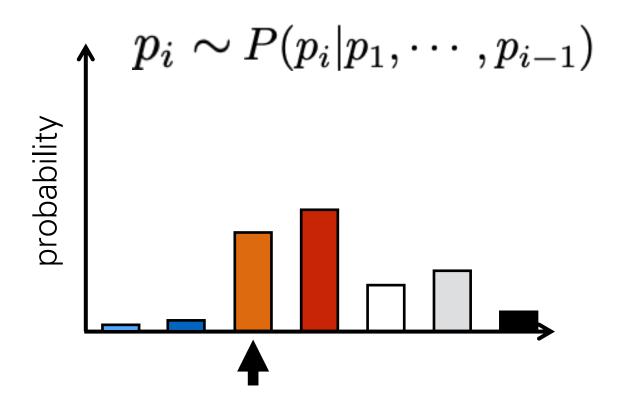




Network output







$$p_1 \sim P(p_1)$$

$$p_2 \sim P(p_2|p_1)$$

$$p_3 \sim P(p_3|p_1,p_2)$$

$$p_4 \sim P(p_4|p_1, p_2, p_3)$$

$$p_3 p_4 p_2 p_1$$

$$\{p_1, p_2, p_3, p_4\} \sim P(p_4|p_1, p_2, p_3)P(p_3|p_1, p_2)P(p_2|p_1)P(p_1)$$

$$p_i \sim P(p_i|p_1,\ldots,p_{i-1})$$

$$\mathbf{p} \sim \prod_{i=1}^N P(p_i|p_1,\ldots,p_{i-1})$$

Autoregressive probability model

$$\mathbf{p} \sim \prod_{i=1}^N P(p_i|p_1,\ldots,p_{i-1})$$

The sampling procedure we defined above takes exact samples from the learned probability distribution (pmf).

Multiplying all conditionals evaluates the probability of a full joint configuration of pixels.

Learning the Distribution of Natural Data

$$p(\mathbf{x}) = \prod_i p(x_i | \mathbf{x}_{<}) \qquad p(\mathbf{x}) = \prod_j \prod_i p(x_{i,j} | \mathbf{x}_{<}) \qquad p(\mathbf{x}) = \prod_k \prod_j \prod_i p(x_{i,j,k} | \mathbf{x}_{<})$$
1D sequences such as text or sound 2D tensors such as images 3D tensors such as videos

- Fully visible belief networks
- NADE/MADE
- PixelRNN/PixelCNN (Images)
- Video Pixel Nets (Videos)
- ByteNet (Language/seq2seq)
- WaveNet (Audio)

[Frey et al.,1996] [Frey, 1998]

[Larochelle and Murray, 2011] [Germain et al., 2015]

[van den Oord, Kalchbrenner, Kavukcuoglu, 2016] [van den Oord, Kalchbrenner, Vinyals, et al., 2016]

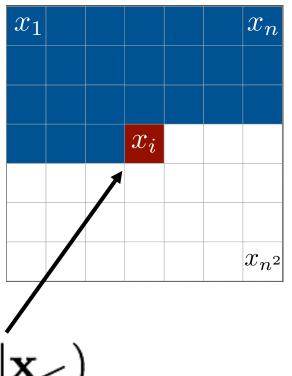
[Kalchbrenner, van den Oord, Simonyan, et al., 2016]

[Kalchbrenner, Espeholt, Simonyan, et al., 2016]

[van den Oord, Dieleman, Zen, et al., 2016]

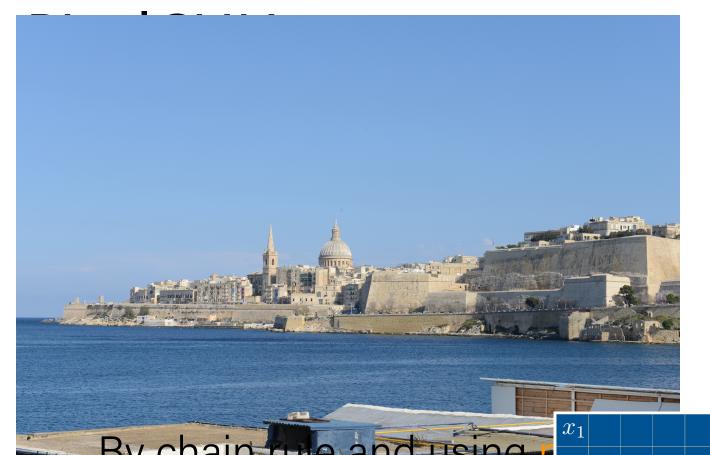
114

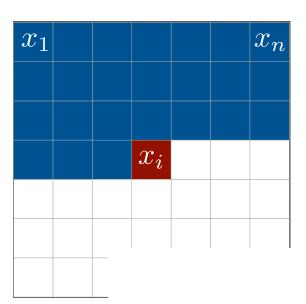
- approach the generation process as sequence modeling problem
- an explicit density model



 $p(x_i|\mathbf{x}_<)$

Slide adapted from Nal Kalchbrenner





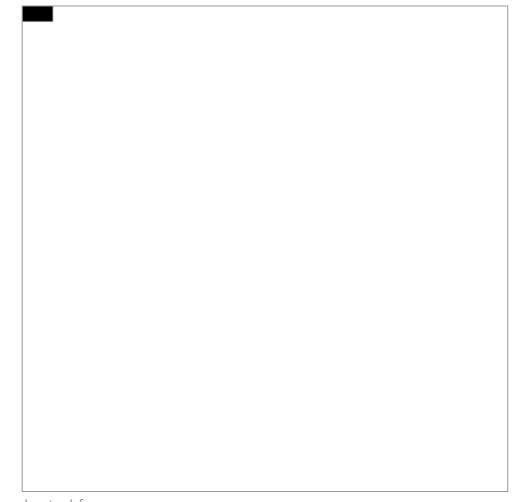
By chain rule and using

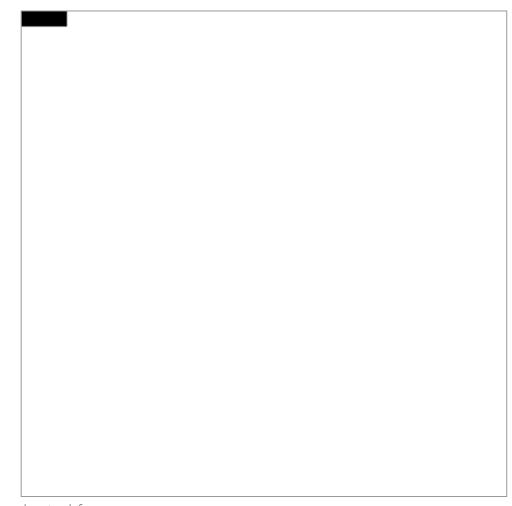
 $, x_{2})$

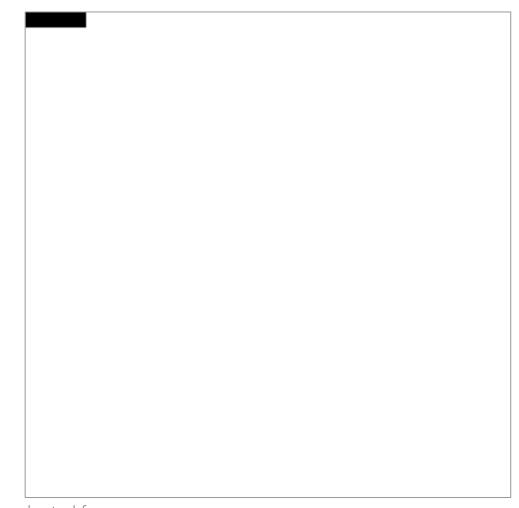
 x_{n^2}

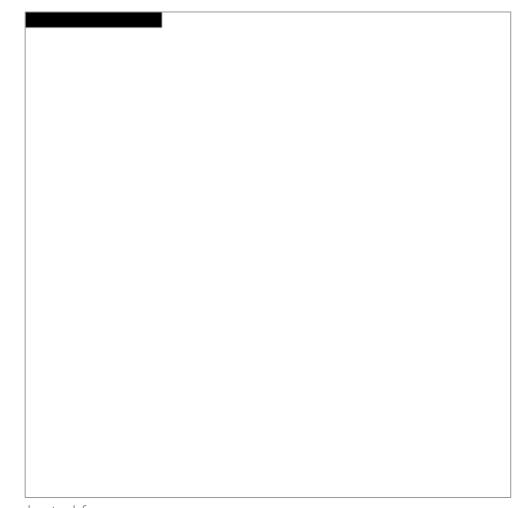
ables,

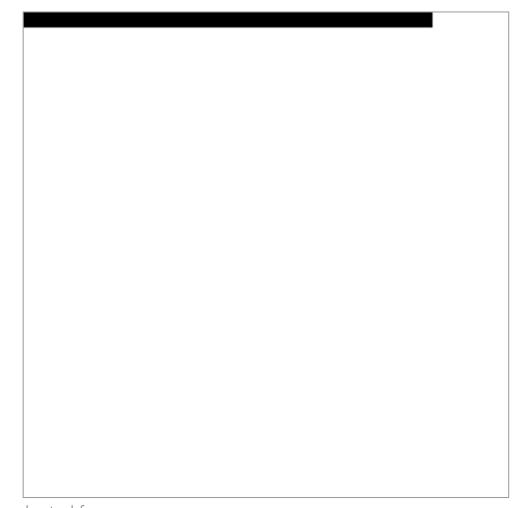


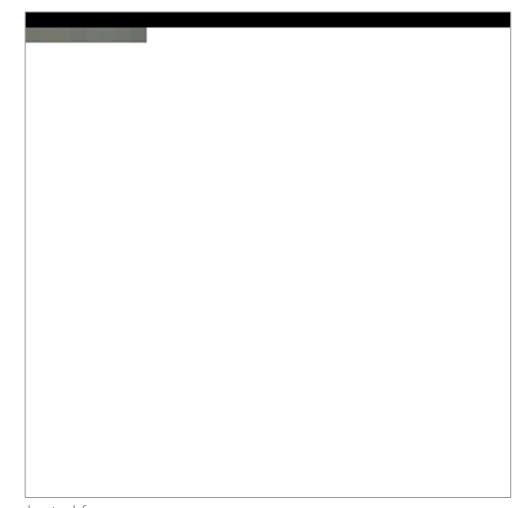


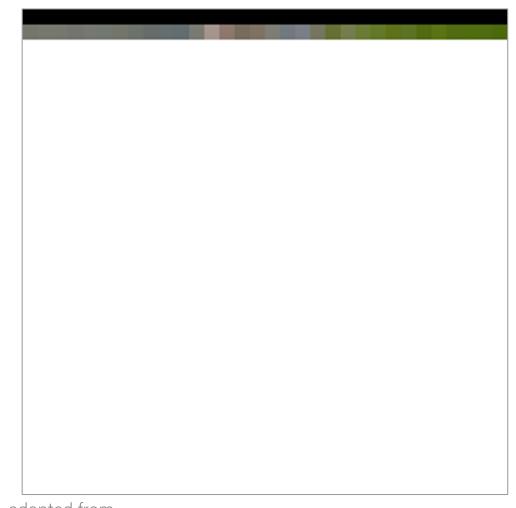


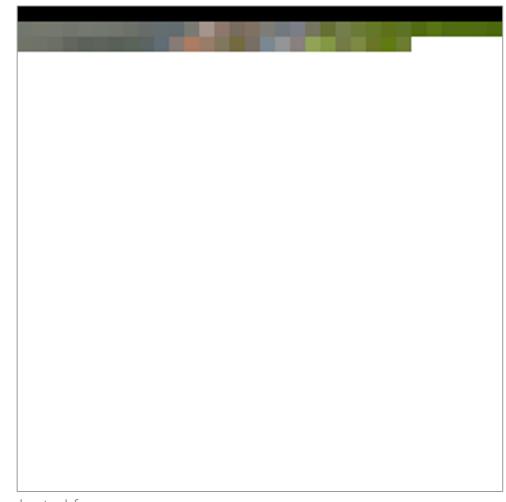


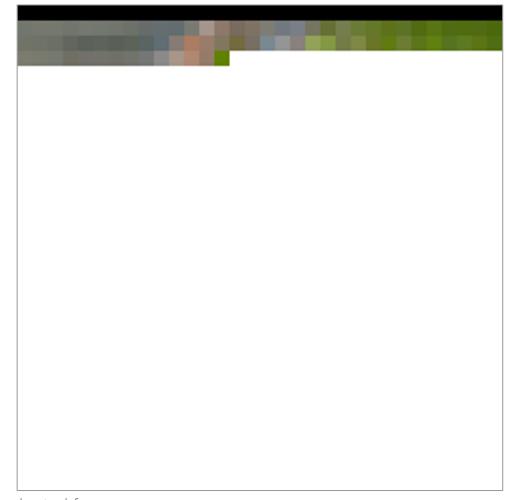




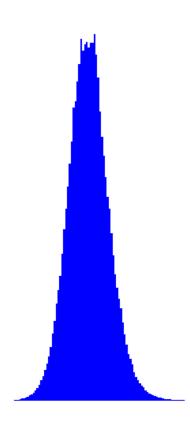




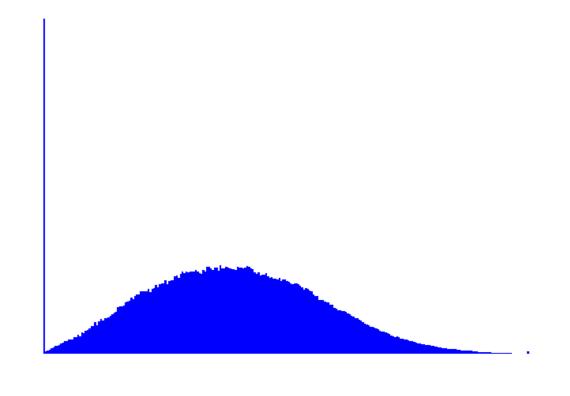




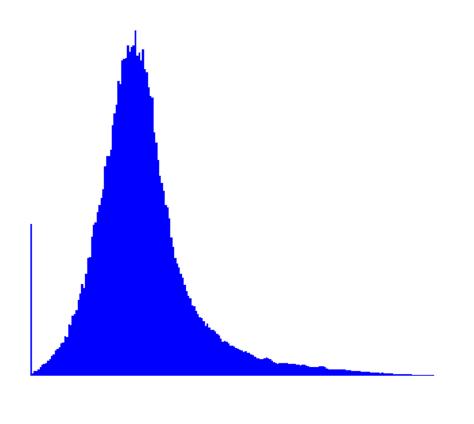
PixelCNN – Softmax Sampling



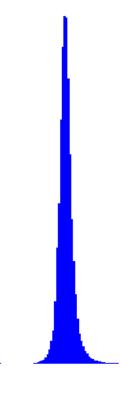
PixelCNN – Softmax Sampling



PixelCNN - Softmax Sampling

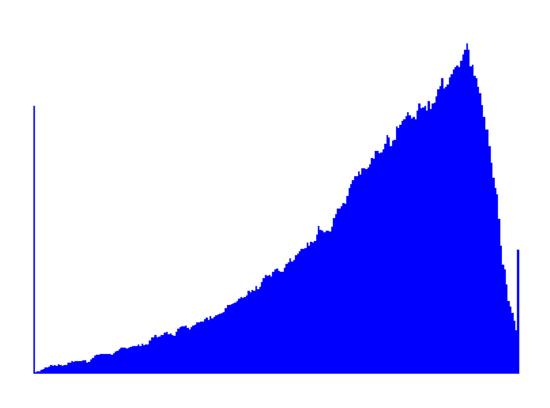


PixelCNN – Softmax Sampling

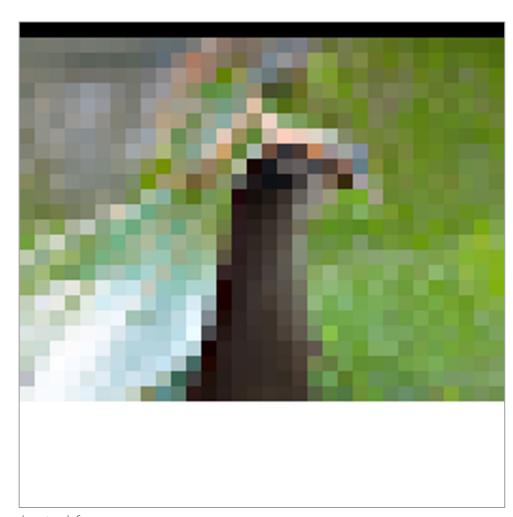


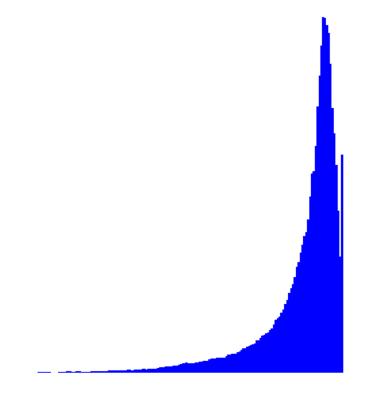
PixelCNN - Softmax Sampling





PixelCNN – Softmax Sampling



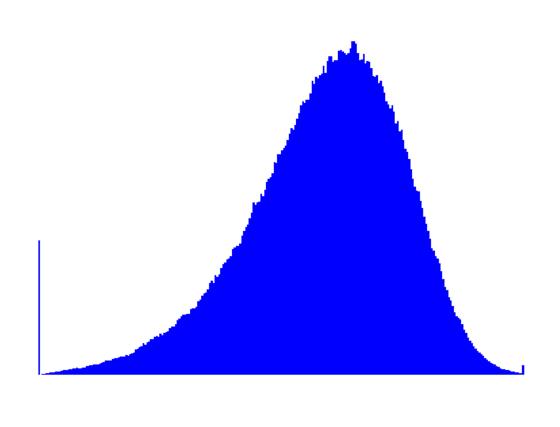


PixelCNN - Softmax Sampling



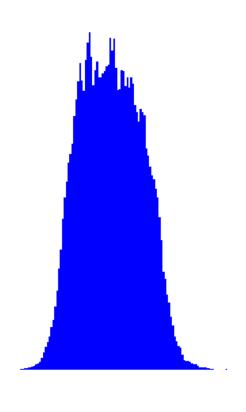
PixelCNN – Softmax Sampling

PixelCNN - Softmax Sampling

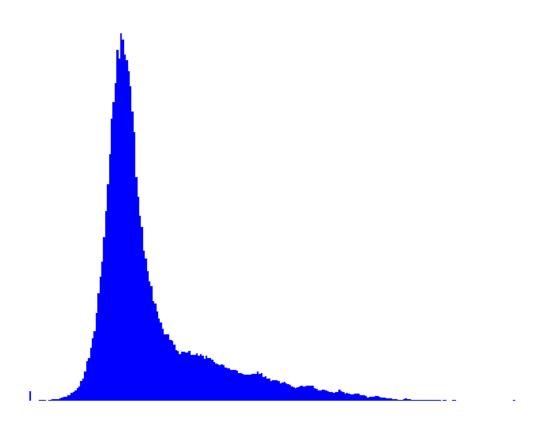


Slide adapted from Oriol Vinyals and Navdeep Jaitly

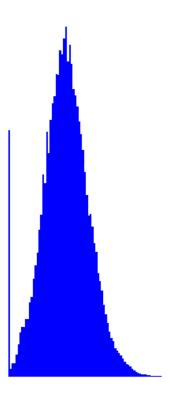
PixelCNN – Softmax Sampling

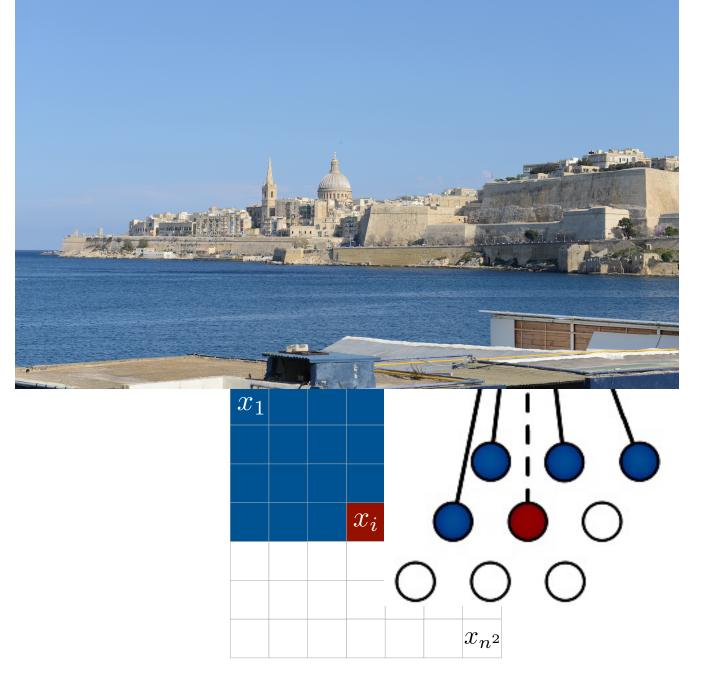


PixelCNN - Softmax Sampling



PixelCNN - Softmax Sampling



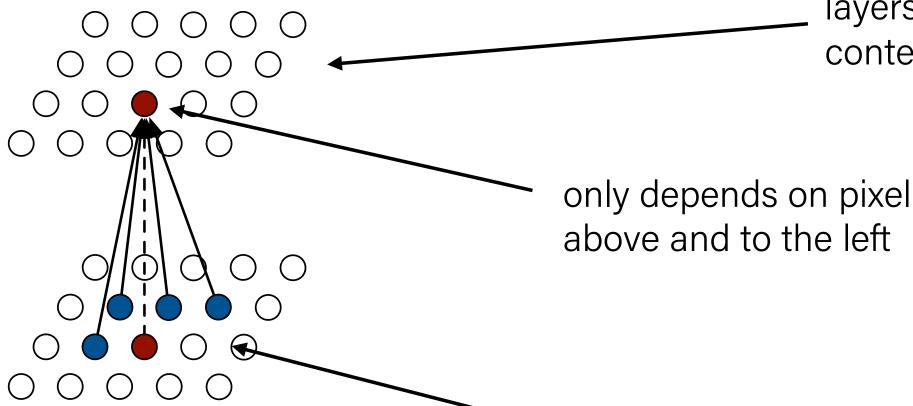


x_1				$ x_n $
		x_i		
				$ x_{n^2} $

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

```
e interval [0, 1]), then the
nd discrete models are di-
 215). In our case, we can
listribution as a piecewise-
 t has a constant value for
 ....256. This correspond-
ne log-likelihood (on data
If discrete distribution (on \mathbf{X} = \mathcal{X} = \mathcal{X} = \mathcal{X}
live log-likelihood in nats
ature. For CIFAR-10 and
Aikelihoods in bits per di-
ikelihood is normalized by
        32 \times 32 \times 3 = 3072
activations prevablehas the
olor catternations adout this
ors, the disatibutions);
Landachduse on arithmetic
Also not project values
bability as they are
he discrete distribu-
s of the distribution box.
In channels
dans interpretations
distributions. I for all ex-
,G, \mathbf{X} < i anually set
alues that allowed fast con-142
```

Multiple layers of masked convolutions



composing multiple layers increases the context size

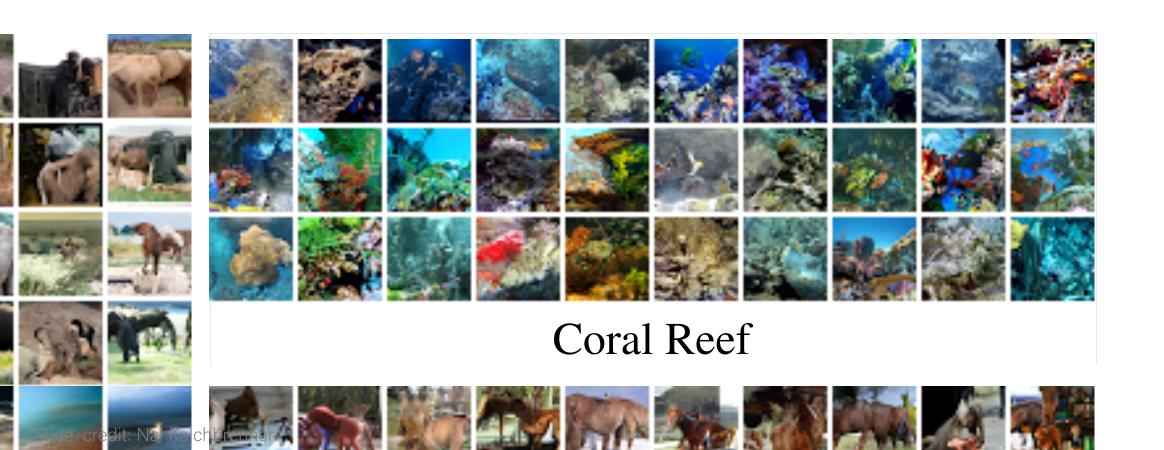
masked convolution

Samples from PixelCNN

Topics: CIFAR-10

Conditional Image Generation with PixelC van den Oord, Kalchbrenner, Vinyals, Espeholt, Graves, K

Samples from a class-conditioned PixelCNN



Samples from PixelCNN

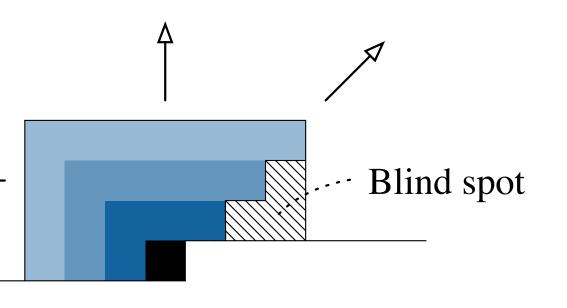
Topics: CIFAR-10

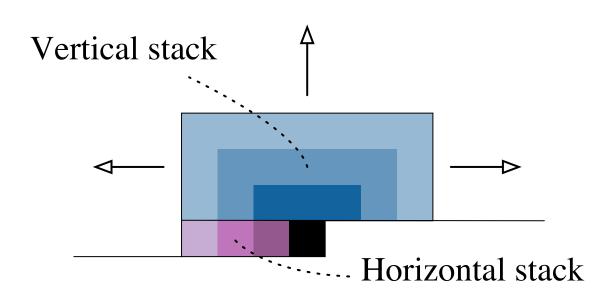
Samples from a class-conditioned PixelCNN

Sorrel horse

Slide credit: Nal Kalchbrenner

Samp Topics: C • Samples Sandbar Slide credit: Nal Kalch

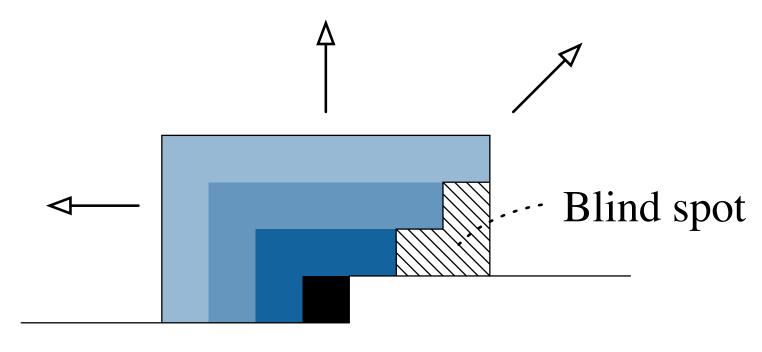




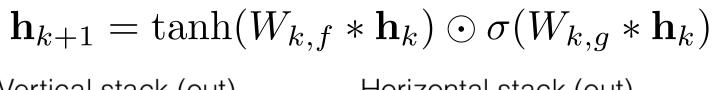
Improving PixelCNN I

There is a problem with this form of masked convolution.

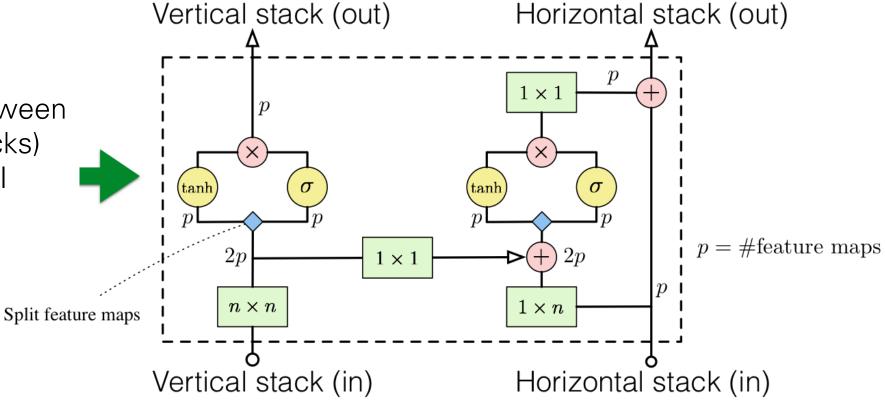
1	1	1	1	1	
1	1	1	1	1	
1	1	0	0	0	
0	0	0	0	0	
0	0	0	0	0	



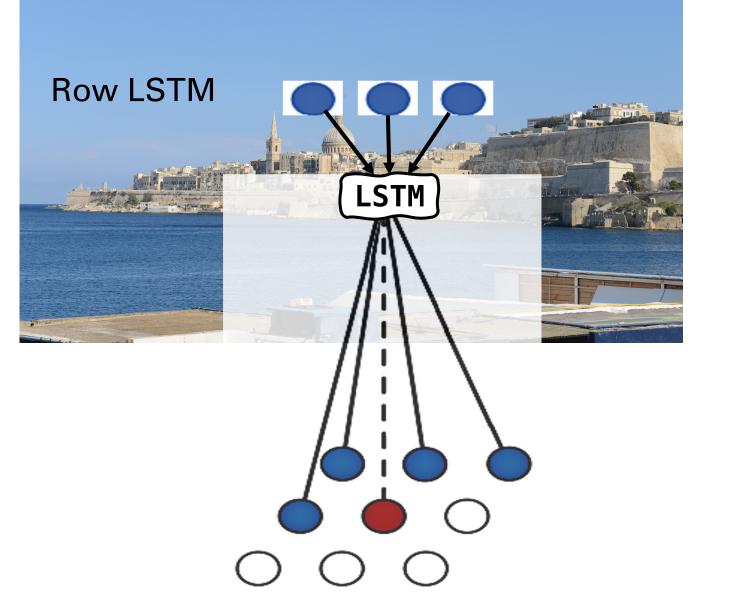
Stacking layers of masked convolution creates a blindspot

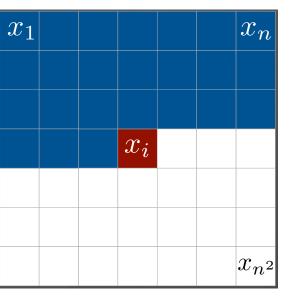


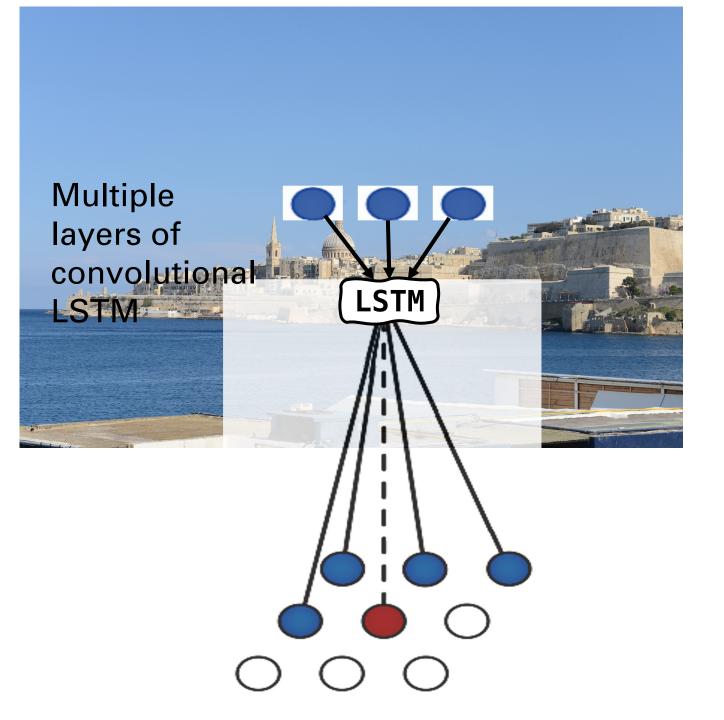
This information flow (between vertical and horizontal stacks) preserves the correct pixel dependencies

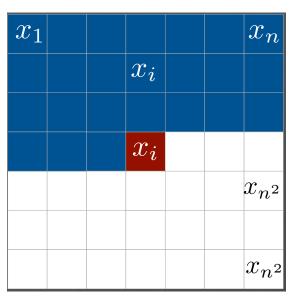


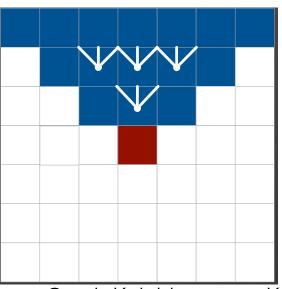
ort-Term Memory





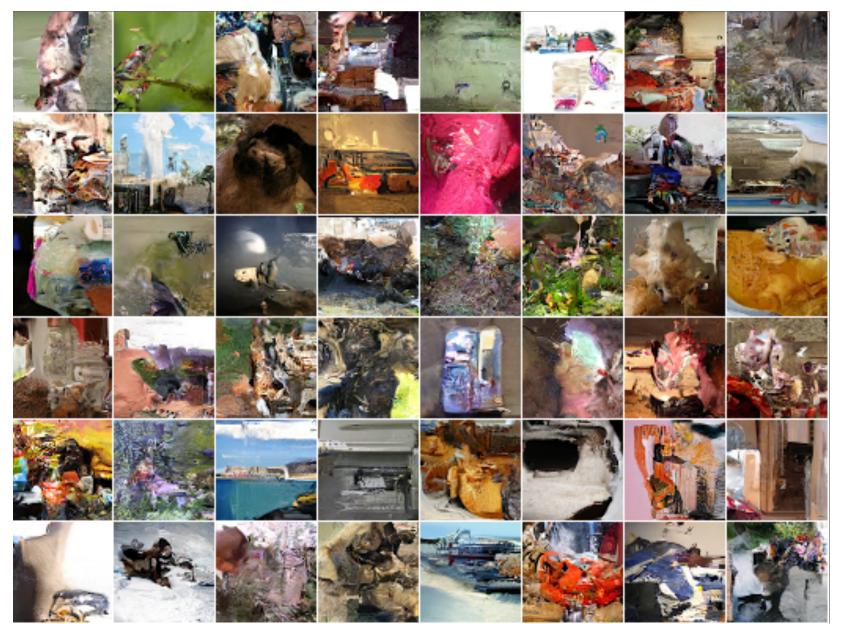






Oord, Kalchbrenner, Kavukcuoglu, 2016

Samples from PixelRNN



Samples from PixelRNN

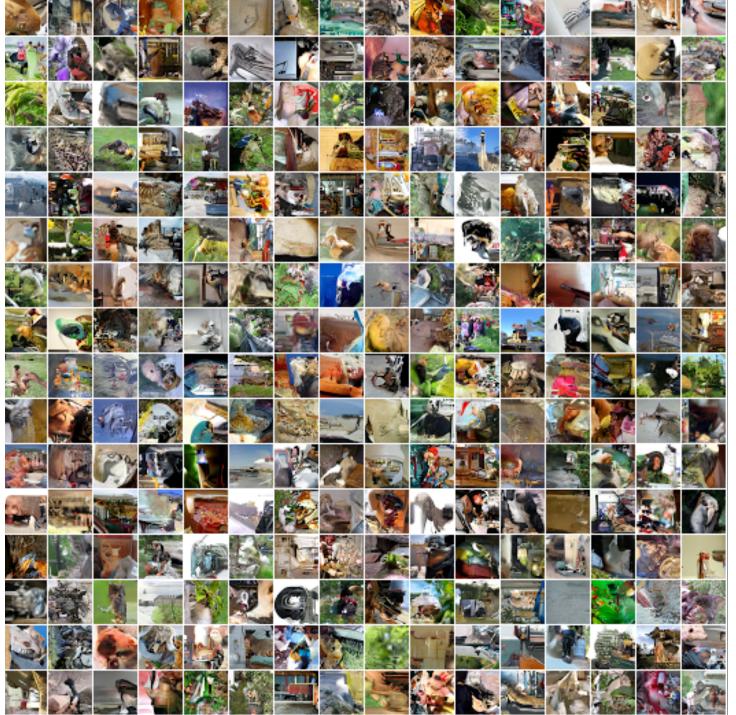


Image completions (conditional samples) from PixelRNN

occluded original completions

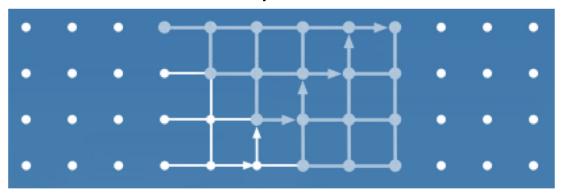
[PixelRNN, van der Oord et al. 2016]

Modeling Audio

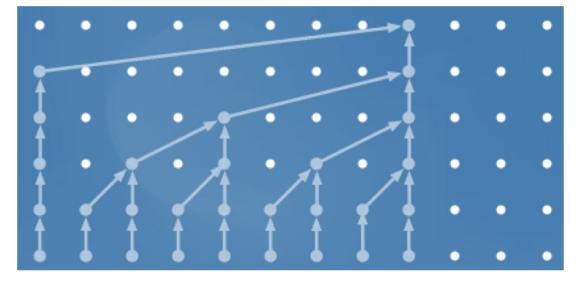
1 Second

Architecture for 1D sequences (Bytenet / Wavenet)

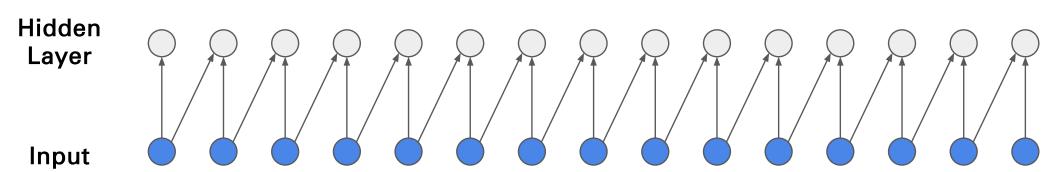
Deep RNN



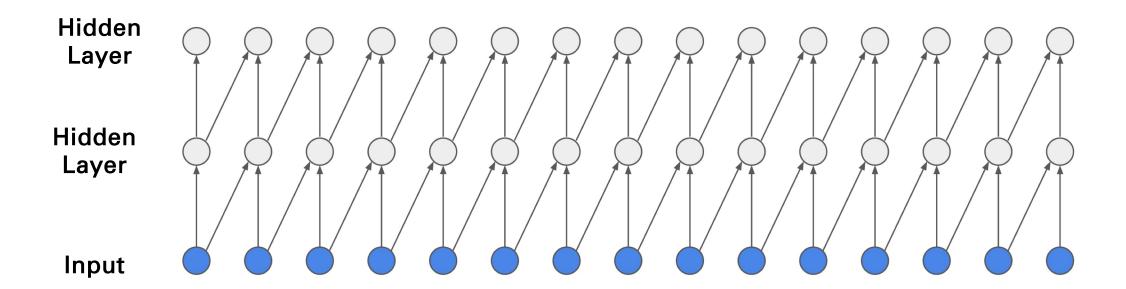
Bytenet decoder

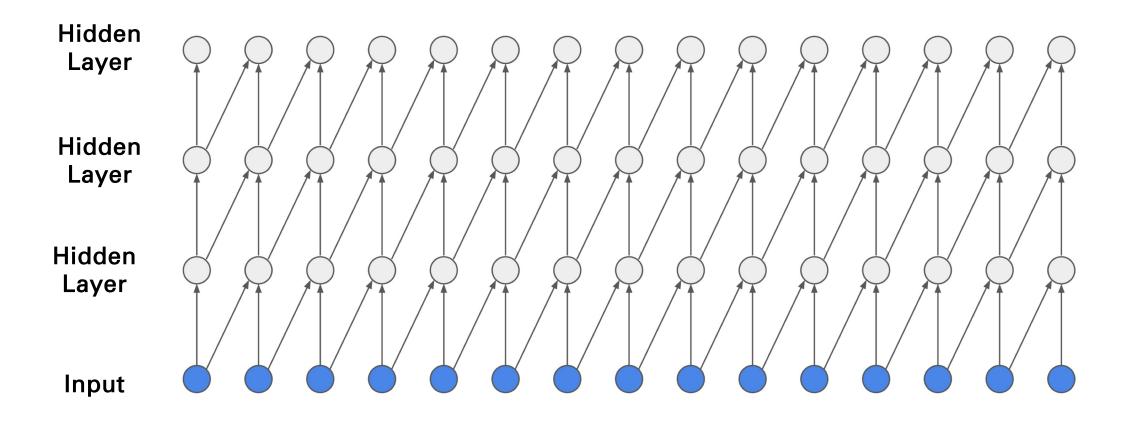


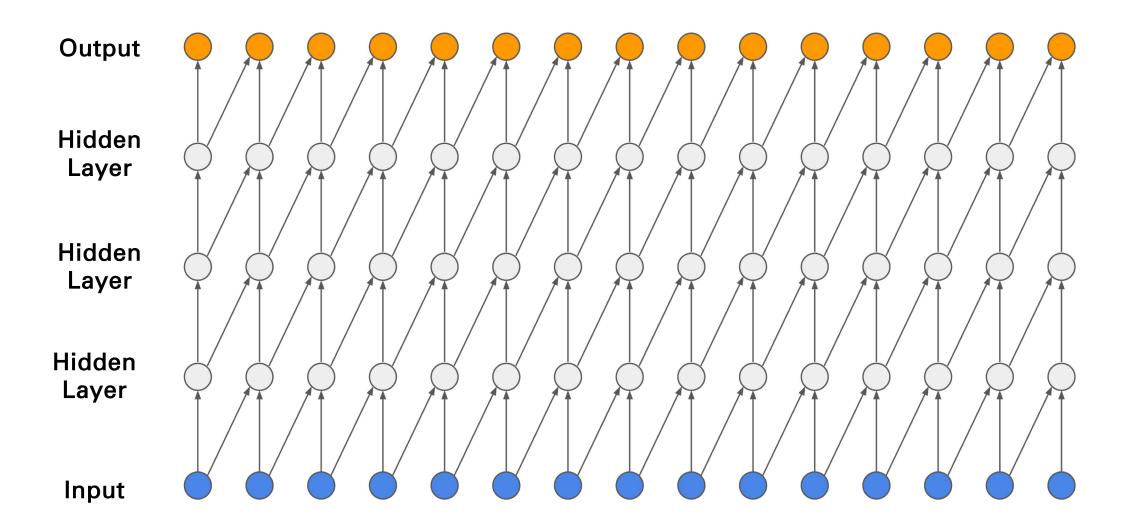
- Stack of dilated, masked 1-D convolutions in the decoder
- The architecture is parallelizable along the time dimension (during training or scoring)
- Easy access to many states from the past

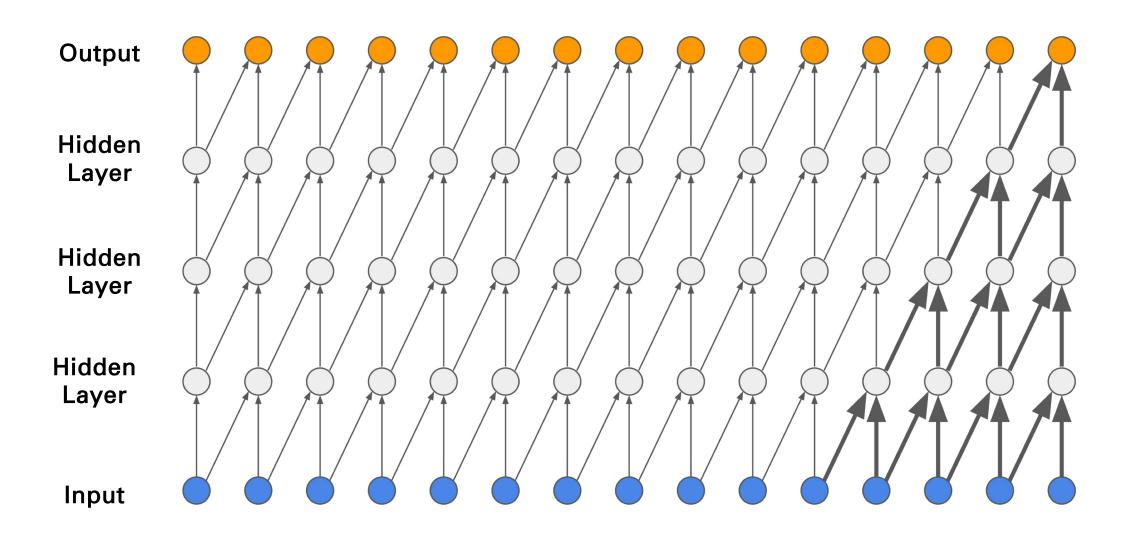


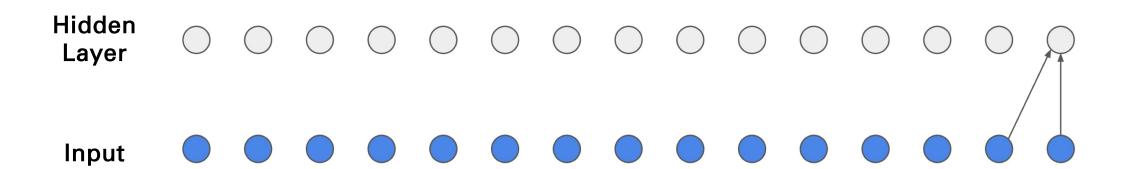
Google DeepMind 57

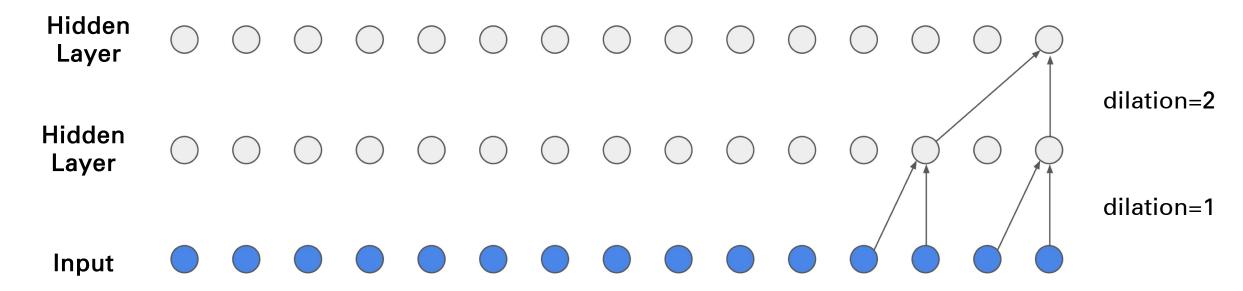


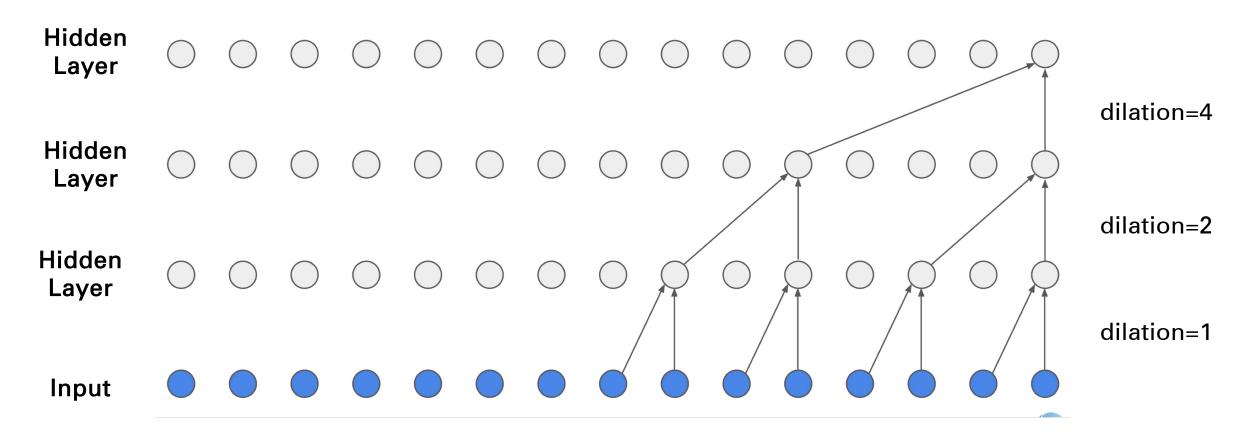


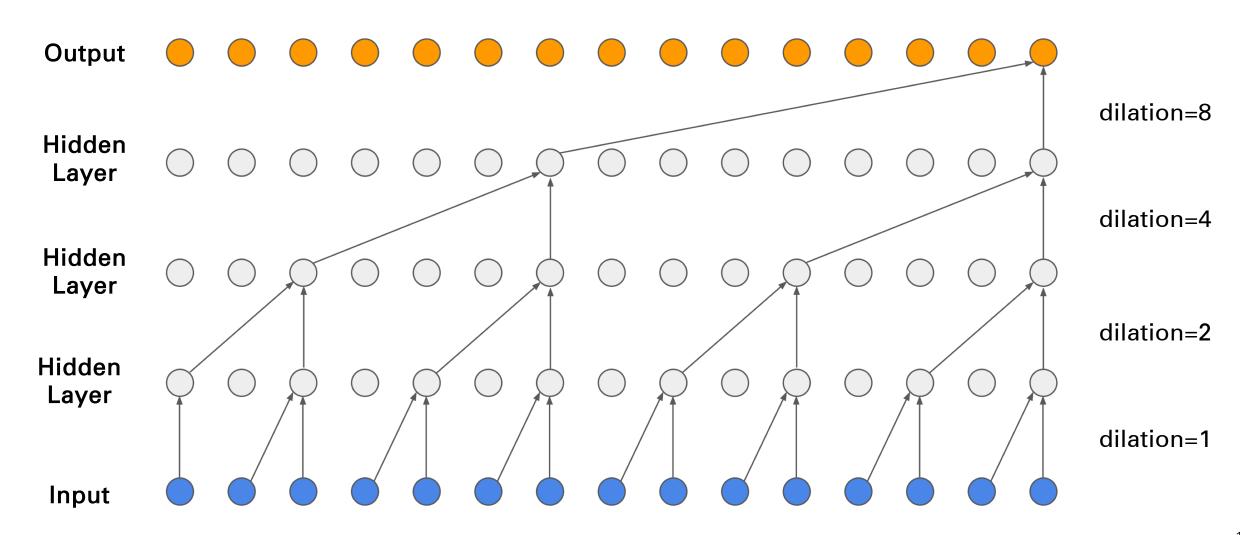


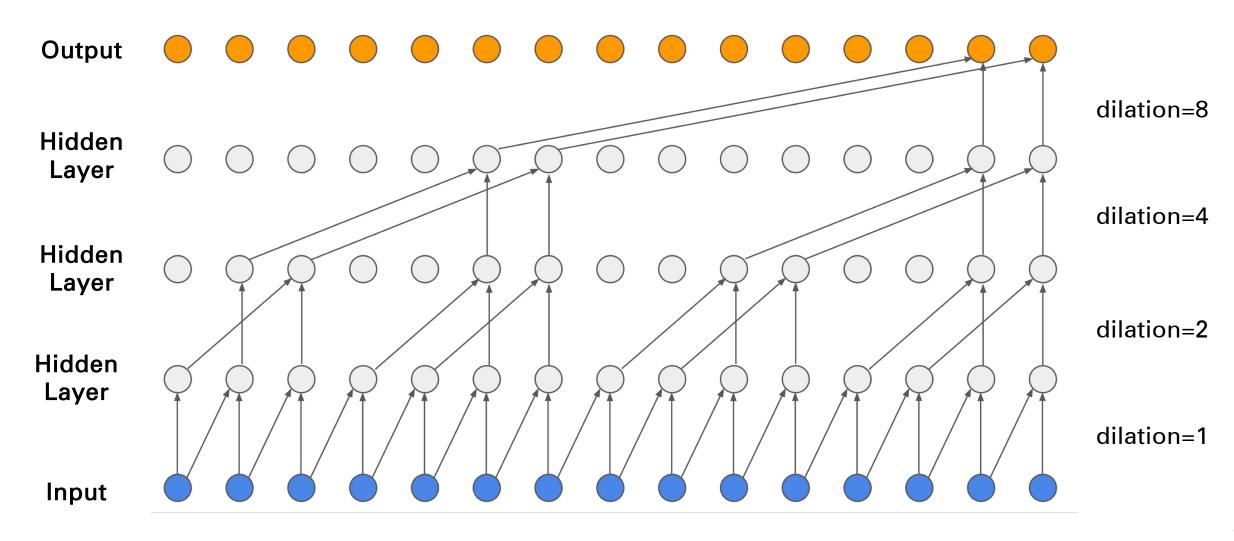






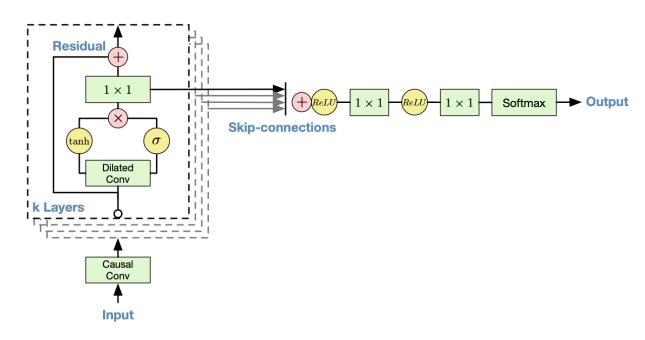


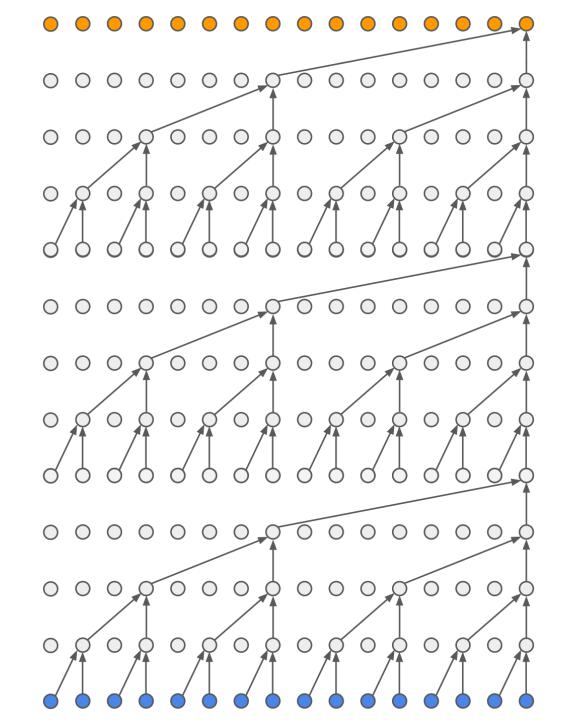




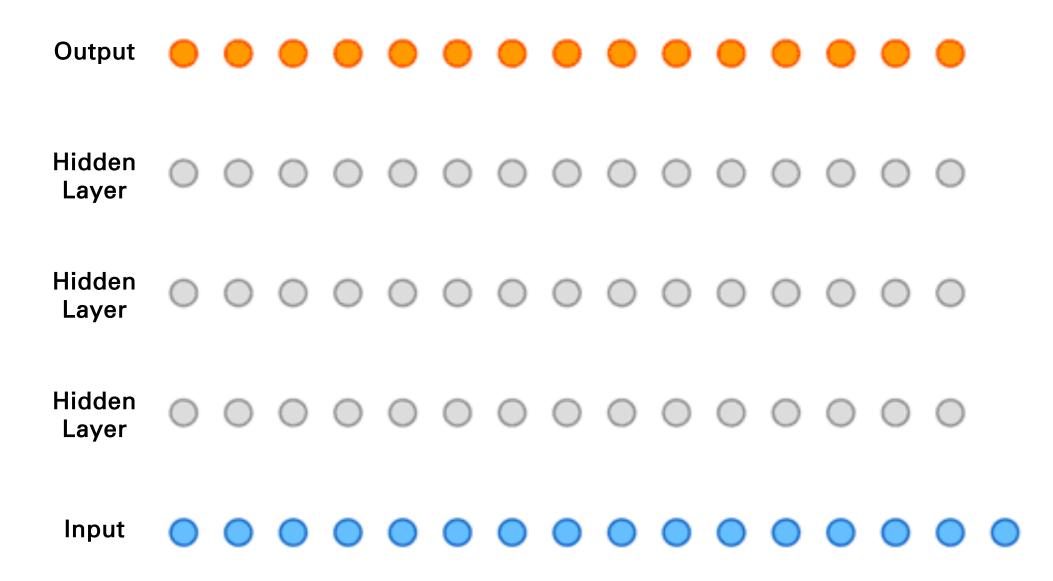
Multiple Stacks

- Improved receptive field with dilated convolutions
- Gated Residual block with skip connections





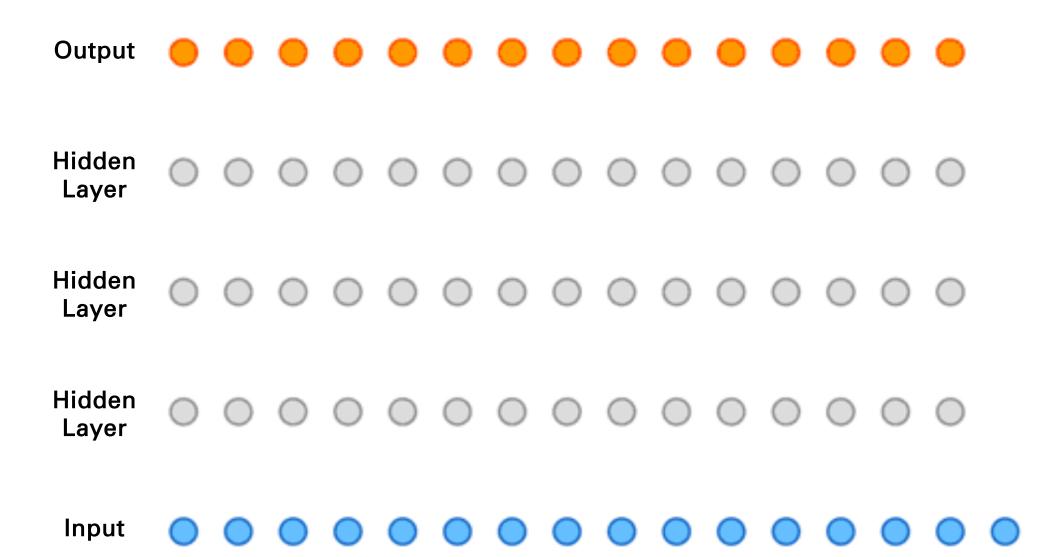
Sampling



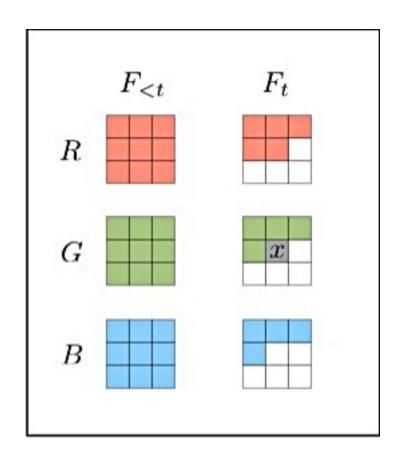
Sampling

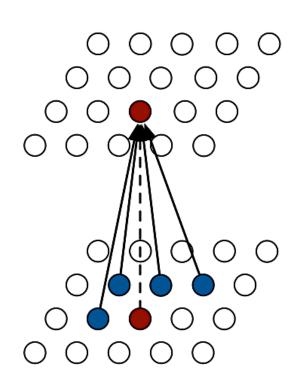
sample speech

sample music

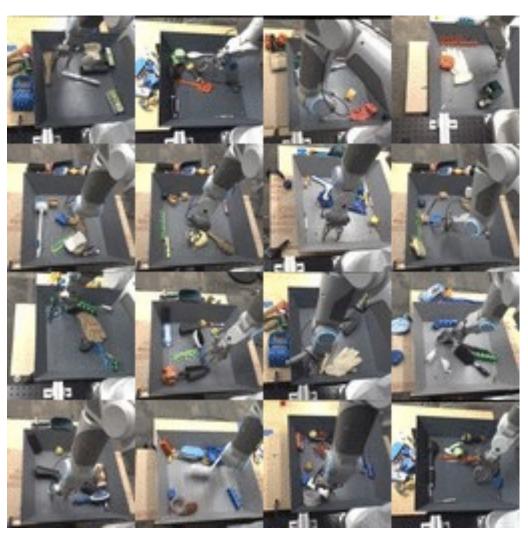


Video Pixel Net (VPN)



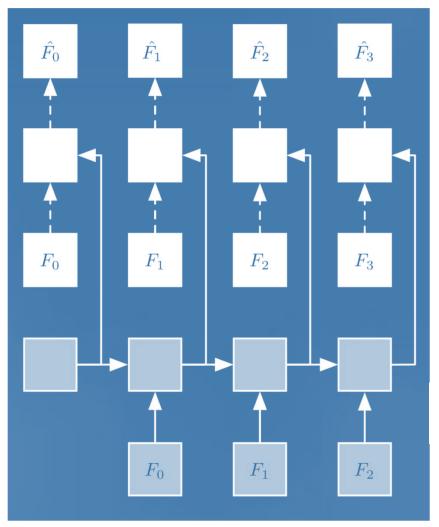


masked convolution



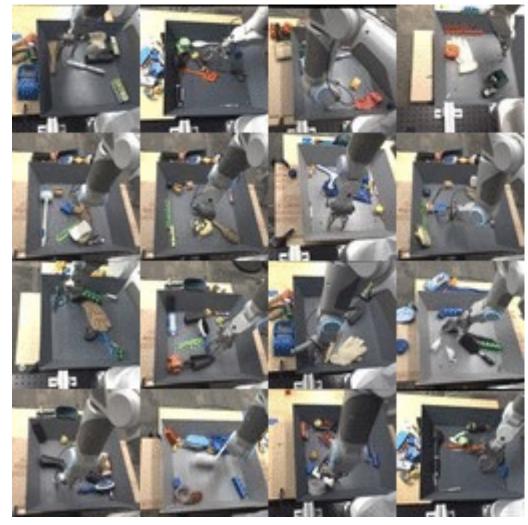
VPN Samples for Robotic Pushing

Video Pixel Net (VPN)



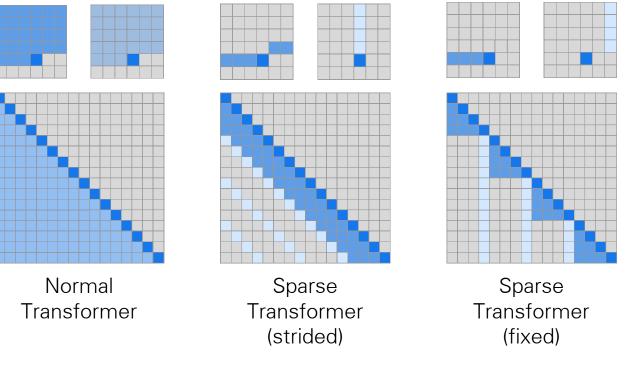
PixelCNN Decoders

Resolution Preserving CNN Encoders



VPN Samples for Robotic Pushing

Sparse Transformers



- Strided attention is roughly equivalent to each position attending to its row and its column
- Fixed attention attends to a fixed column and the elements after the latest column element (especially used for text).

[Child, Gray, Radford, Sutskever, 2019] ₁₇₃

Autoregressi

Explicitly model

$$p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}(\boldsymbol{x}_{1})} \mathbf{1} \mathbf{1} p_{\text{model}(\boldsymbol{x}_{1})}$$

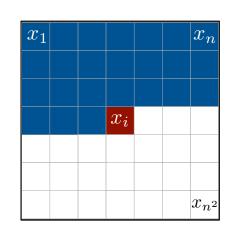
$$i=2$$

Advantages:

• $p_{\mathrm{model}}(x)$ is tractable (easy to train and sampl)

Disadvantages:

- Generation can be too costly
- Generation can not be controlled by a latent code



$$x_1,\ldots,x_{i-1}$$

Each conditional can be a complicated neural net

PixelCNN elephants (van den Ord et al. 2016)

Next Lecture: Deep Generative Models Part 2