BBM401
Automata Theory and
Formal Languages
Introduction to Automata Theory

• What is Automata Theory?
• Central Concepts of Automata Theory
• Formal Proofs
What is Automata Theory?
Automata Theory

• **Automata theory** is the study of abstract *computing devices* (*machines*).

• In 1930s, **Turing** studied an abstract machine (**Turing machine**) that had all the capabilities of today’s computers.
 – Turing’s goal was to describe precisely the boundary between what a *computing machine* could do and what it could not do.

• In 1940s and 1950s, simpler kinds of machines (**finite automata**) were studied.
 – **Chomsky** began the study of **formal grammars** that have close relationships to abstract automata and serve today as the basis of some important software components.
Why Study Automata?

• **Automata theory** is the *core of computer science*.

• Automata theory presents *many useful models for software and hardware*.
 – In compilers we use finite automata for lexical analyzers, and push down automatons for parsers.
 – In search engines, we use finite automata to determine tokens in web pages.
 – Finite automata model protocols, electronic circuits.
 – Context-free grammars are used to describe the syntax of essentially every programming language.
 – Automata theory offers many useful models for natural language processing.

• When developing solutions to real problems, we often confront the *limitations of what software can do*.
 – **Undecidable** things – *no program whatever can do it*.
 – **Intractable** things – *there are programs, but no fast programs*.
Automata, Computability and Complexity

• **Automata, Computability** and **Complexity** are linked by the question:
 – “What are the fundamental capabilities and limitations of computers?”

• In **complexity theory**, the objective is to classify problems as *easy problems* and *hard problems*.

• In **computability theory**, the objective is to classify problems as *solvable problems* and non-solvable problems.
 – Computability theory introduces several of the concepts used in complexity theory.

• **Automata theory** deals with the definitions and properties of mathematical models of computation.
 – Finite automata are used in text processing, compilers, and hardware design.
 – Context-free grammars are used in programming languages and artificial intelligence.
 – Turing machines represent computable functions.
Central Concepts of Automata Theory
Central Concepts of Automata Theory - Alphabets

- An **alphabet** is a finite, non empty set of symbols.
- We use the symbol Σ for an alphabet.

 - $\Sigma = \{0,1\}$ - binary alphabet
 - $\Sigma = \{a,b,c,\ldots,z\}$ - lowercase letters
 - The set of ASCII characters is an alphabet.
Central Concepts of Automata Theory - Strings

• A **string** is a sequence of symbols chosen from some alphabet.
• A string sometimes is called as **word**.

• 01101 is a string from the alphabet $\Sigma = \{0,1\}$.
 – Some other strings: 11, 010, 1, 0

• The **empty string**, denoted as ϵ, is a string of zero occurrences of symbols.

• **Length of string**: number of symbols in the string
 – $|ab| = 2$ $|b| = 1$ $|\epsilon| = 0$
Central Concepts of Automata Theory - Strings

Powers of an alphabet:

• If Σ is an alphabet, the set of all strings of a certain length from the alphabet by using an exponential notation.

• Σ^k is the set of strings of length k from Σ.

• Let $\Sigma = \{0,1\}$. $\Sigma^0 = \{\varepsilon\} \quad \Sigma^1 = \{0,1\} \quad \Sigma^2 = \{00,01,10,11\}$

• The set of all strings over an alphabet is denoted by Σ^*.
 $$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots$$
 $$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \ldots$$
 - set of nonempty strings

Concatenation of strings

• If x and y are strings xy represents their concatenations.

• If $x = abc$ and $y = de$ then $xy = abcde$
Central Concepts of Automata Theory – (Formal) Languages

- A set of strings that are chosen from \(\Sigma^* \) is called as a language.
- If \(\Sigma \) is an alphabet, and \(L \subseteq \Sigma^* \), then \(L \) is a language over \(\Sigma \).

- A language over \(\Sigma \) may not include strings with all symbols of \(\Sigma \).

- Some Languages:
 - The language of all strings consisting of \(n \) 0’s followed by \(n \) 1’ for some \(n \geq 0 \) : \{ \epsilon, 01, 0011, 000111, \ldots \}
 - \(\Sigma^* \) is a language
 - Empty set is a language. The empty language is denoted by \(\Phi \).
 - The set \{ \epsilon \} is a language, \{ \epsilon \} is not equal to the empty language.
 - The set of all identifiers in a programming language is a language.
 - The set of all syntactically correct C programs is a language.
 - Turkish, English are languages.
Set-Formers to Define Languages

- A set-former is a common way to define a language

 Set-former: \{w \mid \text{something about } w\}

\{w \mid w \text{ consists of equal number of 0’s and 1’s}\}
\{w \mid w \text{ is a binary integer that is prime}\}

Sometimes we replace w with an expression

\{0^n1^n \mid n \geq 1\}
\{0^i1^j \mid 0 \leq i \leq j\}
In automata theory, a decision problem is the question of deciding whether a given string is a member of a particular language.

If Σ is an alphabet, and L is a language over Σ, then the decision problem is:

Given a string w in Σ^*, decide whether or not w is in L.

In order to make decision requires some computational resources.

- Deciding whether a given string is a correct C identifier
- Deciding whether a given string is a syntactically correct C program.

Some decision problems are simple, some others are harder.

A decision question may **require exponential resources in the size of its input.**

A decision question may be **unsolvable.**
Automata

- **Automata** (singular **Automaton**) are abstract mathematical devices that can
 - Determine membership in a language (set of strings)
 - Transduce strings from one set to another

- They have all the aspects of a computer
 - input and output
 - memory
 - ability to make decisions
 - transform input to output

- Memory is crucial:
 - Finite Memory
 - Infinite Memory
Automata

• We have different types of automata for different classes of languages.
 – **Finite State Automata** (for *regular languages*)
 – **Pushdown Automata** (for *context-free languages*)
 – **Turing Machines** (for *Turing recognizable languages - recursively enumerable languages*)
 • Decision problem for Turing recognizable languages are solvable.
 • There are languages that are not Turing recognizable, and the decision problem for them is unsolvable.

• Automata differ in
 – the amount of memory they have (finite vs infinite)
 – what kind of access to the memory they allow.

• Automata can behave **deterministically** or **non-deterministically**
 – For a **deterministic automaton**, there is only one possible alternative at any point, and it can only pick that one and proceed.
 – A **non-deterministic automaton** can at any point, among possible next steps, pick one step and proceed.
Finite Automata

- **Finite automata** are *finite collections of states with transition rules* that take you from one state to another.

- A **finite automaton** has **finite number of states**.

- The *purpose of a state* is to remember the relevant portion of the history.
 - Since there are only a *finite number of states*, the entire history cannot be remembered.
 - So the system must be designed carefully to remember what is important and forget what is not.
 - The advantage of having only a finite number of states is that we can implement the system with a fixed set of resources.
In a finite automaton:

- **States** are represented by circles.
- **Accepting (final) states** are represented by double circles.
- One of the states is a **starting state**.
- **Arcs** represent **state transitions** and **labels on arcs** represent **inputs** (external influences) causing transitions.

- The on/off switch remembers whether it is in the on-state or the off-state.
 - It allows the user to press a button whose effect is different depending on the state of the switch.
A Simple Finite Automaton – Recognizing A Word

- A simple finite automaton to recognize the string “ilyas”

- The language of this finite state automaton is \{ilyas\}
A Simple Finite Automaton – Recognizing Strings Ending in “ing”

- The language of this automaton is the set of all strings ending in “ing”.
 - i.e. \{ing, aing, bing, going, coming, inging, …\}
Formal Proofs
Formal Proofs

• When we study automata theory, we encounter theorems that we have to prove.

• There are different forms of proofs:
 – Deductive Proofs
 – Inductive Proofs
 – Proof by Contradiction
 – Proof by a counter example (disproof)

• To create a proof may NOT be so easy.
Deductive Proofs

- A **deductive proof** consists of a sequence of statement whose truth leads us from some *initial statement* (hypothesis or given statements) to a *conclusion statement*.

- Each step of a deductive proof MUST follow from a given fact or previous statements (or their combinations) by an accepted **logical principle**.

- The theorem that is proved when we go from a hypothesis H to a conclusion C is the statement **”if H then C”**. We say that C is deduced from H.
Deductive Proofs

Example: Proof of a Theorem

• Assume that the following theorem (initial statement) is given:
 – Given Thm. (initial statement): If \(x \geq 4 \), then \(2^x \geq x^2 \)
 – We are not going to prove this theorem, we assume that it is true.
 • If we want we can prove this theorem using proof by induction.

• Theorem to be proved:

 If \(x \) is the sum of the squares of four positive integers, then \(2^x \geq x^2 \)

Hypothesis

Conclusion
Deductive Proofs
Example: Proof of a Theorem

Proof of
If \(x \) is the sum of the squares of four positive integers, then \(2^x \geq x^2 \)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. If (x \geq 4), then (2^x \geq x^2)</td>
<td>Given theorem</td>
</tr>
<tr>
<td>2. (x = a^2 + b^2 + c^2 + d^2)</td>
<td>Given</td>
</tr>
<tr>
<td>3. (a \geq 1 \quad b \geq 1 \quad c \geq 1 \quad d \geq 1)</td>
<td>Given</td>
</tr>
<tr>
<td>4. (a^2 \geq 1 \quad b^2 \geq 1 \quad c^2 \geq 1 \quad d^2 \geq 1)</td>
<td>From (3) and principle of arithmetic</td>
</tr>
<tr>
<td>5. (x \geq 4)</td>
<td>From (2), (4) and principle of arithmetic</td>
</tr>
<tr>
<td>6. (2^x \geq x^2)</td>
<td>From (1) and (5)</td>
</tr>
</tbody>
</table>
If-And-Only-If Statements

• Some times theorems contain **if-and-only-if** statements.
 – A if and only if B
 – A iff B
 – A is equivalent to B

• In this case we have to prove in both directions. In order to prove A **if and only if** B, we have to prove the following two statements:

 1. **If-Part:** if B then A
 2. **Only-If-Part:** if A then B

A Sample iff Theorem:

Let x be a real number. Then \(\lfloor x \rfloor = \lceil x \rceil \) if and only if x is an integer.

Remember: \(\lfloor x \rfloor \) is the *floor* of real number x is the greatest integer equal to or less than x

\(\lceil x \rceil \) is the *ceiling* of real number x is the least integer equal to or greater than x
Proof of an iff Theorem

Let \(x \) be a real number. Then \(\lfloor x \rfloor = \lceil x \rceil \) if and only if \(x \) is an integer.

If-Part:

- Given that \(x \) is an integer.
- By definitions of ceiling and floor operations. \(\lfloor x \rfloor = x \) and \(\lceil x \rceil = x \)
- Thus, \(\lfloor x \rfloor = \lceil x \rceil \).

Only-If-Part:

- Given that \(\lfloor x \rfloor = \lceil x \rceil \)
- By definitions of ceiling and floor operations. \(\lfloor x \rfloor \leq x \) and \(\lceil x \rceil \geq x \)
- Since given that \(\lfloor x \rfloor = \lceil x \rceil \), \(\lfloor x \rfloor \leq x \) and \(\lceil x \rceil \geq x \)
- By the properties of arithmetic inequalities, \(\lceil x \rceil = x \)
- Since \(\lceil x \rceil \) is always an integer, \(x \) MUST be integer too. \(\square \)
Inductive Proofs

• An **inductive proof** has three parts:
 – Basis
 – Inductive Hypothesis
 – Inductive Step (induction)

• Basis can be one case or more than one case.
Inductive Proofs -- Theorem: \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) for all \(n \geq 1 \)

Proof: (by induction on \(n \))

Basis: \(n = 1 \) \(\sum_{i=1}^{1} i = \frac{1(1+1)}{2} = 1 \)

Inductive Hypothesis: Suppose that \(\sum_{i=1}^{k} i = \frac{k(k+1)}{2} \) for some \(k \geq 1 \).

Inductive Step (Induction): We have to show that \(\sum_{i=1}^{k+1} i = \frac{(k+1)(k+2)}{2} \)

\[
\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k + 1)
\]

\[
= \frac{k(k+1)}{2} + (k + 1)
\]

by the inductive hypothesis

\[
= \frac{k(k+1) + 2(k+1)}{2}
\]

\[
= \frac{(k+1)(k+2)}{2}
\]

It follows that \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \) for all \(n \geq 1 \). \(\Box \)
Structural Inductions

- We need to prove statements about \textit{recursively defined structures}.
- Like \textit{inductions} all \textbf{recursive definitions} have
 - A basis case: one or more elementary structures are defined
 - An inductive step: complex structures are defined in terms of previously defined structures.

A \textit{recursive definition of a non-empty tree}:

- A single node is a non-empty tree and that node is the root of that tree.
- If T_1, T_2, \ldots, T_k are non-empty trees ($k \geq 1$) and N is a new node, the a new non-empty tree T can be created using new node N, new k edges and T_1, T_2, \ldots, T_k as follows:

where N is the root of the tree
Let $|V|$ be the number of nodes and $|E|$ be the number of edges of a non-empty tree T.

Theorem: For a non-empty tree T, $|V| = |E| + 1$.

Proof: Structural induction on number of nodes.

Basis: $|V|=1$ The tree contains only one node and no edges ($|E|=0$). Thus $1=0+1$.

Inductive Hypothesis: Suppose that for a non-empty tree T with m nodes where $1 \leq m \leq n$, $|V|=|E|+1$

Induction: Let T be a non-empty tree with $n+1$ nodes. T must be created as follows:

Each of trees T_1, \ldots, T_k must contain nodes less than or equal to n.

So, we can apply IH to each of trees T_1, \ldots, T_k. Thus, $|V_1|=|E_1|+1 \ldots |V_k|=|E_k|+1$

For T, $|V| = |V_1|+\ldots+|V_k|+1$ \hspace{1cm} $|E| = |E_1|+\ldots+|E_k|+k$

$|V| = |V_1|+\ldots+|V_k|+1 = |E_1|+1+\ldots+|E_k|+1+1$ by IH

$= |E_1|+\ldots+|E_k|+k+1 = |E| + 1$ \hspace{1cm} \square

Proving Equivalences about Sets

- In order to prove two sets are equal \((S = T)\), we have to prove that
 1. If \(x \) is a member of \(S \), then \(x \) is also a member of \(T \) \((S \subseteq T)\), and
 2. If \(x \) is a member of \(T \), then \(x \) is also a member of \(S \) \((T \subseteq S)\),

Theorem: \(R \cup (S \cap T) = (R \cup S) \cap (R \cup T) \)

We have to show that

1. If \(x \) is in \(R \cup (S \cap T) \), than \(x \) is in \((R \cup S) \cap (R \cup T) \), and
2. If \(x \) is in \((R \cup S) \cap (R \cup T) \), than \(x \) is in \(R \cup (S \cap T) \)
Proof of \(R \cup (S \cap T) = (R \cup S) \cap (R \cup T) \)

Proof of **If-Part:**

<table>
<thead>
<tr>
<th>Statement</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (x \text{ is in } R \cup (S \cap T))</td>
<td>Given</td>
</tr>
<tr>
<td>2. (x \text{ is in } R \text{ or } x \text{ is in } S \cap T)</td>
<td>(1) and definition of union</td>
</tr>
<tr>
<td>3. (x \text{ is in } R \text{ or } x \text{ is in both } S \text{ and } T)</td>
<td>(2) and definition of intersection</td>
</tr>
<tr>
<td>4. (x \text{ is in } R \cup S)</td>
<td>(3) and definition of union</td>
</tr>
<tr>
<td>5. (x \text{ is in } R \cup T)</td>
<td>(3) and definition of union</td>
</tr>
<tr>
<td>6. (x \text{ is in } (R \cup S) \cap (R \cup T))</td>
<td>(4), (5), and definition of intersection</td>
</tr>
</tbody>
</table>
Proof of $R \cup (S \cap T) = (R \cup S) \cap (R \cup T)$

- **Proof of Only-If-Part:**

<table>
<thead>
<tr>
<th>Statement</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. x is in $(R \cup S) \cap (R \cup T)$</td>
<td>Given</td>
</tr>
<tr>
<td>2. x is in $R \cup S$</td>
<td>(1) and definition of intersection</td>
</tr>
<tr>
<td>3. x is in $R \cup T$</td>
<td>(1) and definition of intersection</td>
</tr>
<tr>
<td>4. x is in R or x is in both S and T</td>
<td>(2), (3), and reasoning about unions</td>
</tr>
<tr>
<td>5. x is in R or x is in $S \cap T$</td>
<td>(4) and definition of intersection</td>
</tr>
<tr>
<td>6. x is in $R \cup (S \cap T)$</td>
<td>(5) and definition of union</td>
</tr>
</tbody>
</table>
Proof by Contradiction

• Another way to prove a statement of the form “if H then C” is to prove the statement.
 “H and not C implies falsehood”

• In order create the proof:
 – Start by assuming both the hypothesis H and the negation of the conclusion C.
 – Complete the proof by showing that something known to be false follows logically
 from H and not C

• This form of proof is called proof by contradiction.