Finite Automata
Deterministic Finite Automata (DFA)

- A Deterministic Finite Automata (DFA) is a quintuple
 \[A = (Q, \Sigma, \delta, q_0, F) \]
 1. \(Q \) is a finite set of states
 2. \(\Sigma \) is a finite set of symbols (alphabet)
 3. \(\delta \) is a transition function \((q, a) \rightarrow p\)
 4. \(q_0 \) is the start state \((q_0 \in Q)\)
 5. \(F \) is a set of final (accepting) states \((F \subseteq Q)\)

- Transition function takes two arguments: a state and an input symbol.
- \(\delta(q, a) \) = the state that the DFA goes to when it is in state \(q \) and input \(a \) is received.
Graph Representation of DFA’s

- Nodes = states.
- Arcs represent transition function.
- Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
- Arrow labeled “Start” to the start state.
- Final states indicated by double circles.
Alternative Representation: Transition Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Final states starred

Columns = input symbols

Rows = states
Strings Accepted By A DFA

• An DFA accepts a string $w = a_1a_2 \ldots a_n$ if its path in the transition diagram that
 1. Begins at the start state
 2. Ends at an accepting state

• This DFA accepts
 input: 010001

• This DFA rejects
 input: 011001
Extended Delta Function – Delta Hat

• The transition function δ can be extended to $\hat{\delta}$ that operates on states and strings (as opposed to states and symbols)

\[
\hat{\delta}(q, \varepsilon) = q
\]

\[
\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)
\]
Language Accepted by a DFA

- Formally, the language accepted by a DFA A is

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

- Languages accepted by DFAs are called as **regular languages**.
 - Every DFA accepts a regular language, and
 - For every regular language there is a DFA accepts it
Language Accepted by a DFA

- This DFA accepts all strings of 0’s and 1’s without two consecutive 1’s.
- Formally,
 \[L(A) = \{ w \mid w \text{ is in } \{0,1\}^* \text{ and } w \text{ does not have two consecutive } 1's \} \]
DFA Example

- A DFA accepting all and only strings with an even number of 0's and an even number of 1's

Tabular representation of the DFA
Proofs of Set Equivalence

• We need to prove that two descriptions of sets are in fact the same set.
• Here, one set is “the language of this DFA,” and the other is “the set of strings of 0’s and 1’s with no consecutive 1’s.”
• In general, to prove $S = T$, we need to prove two parts:
 $S \subseteq T$ and $T \subseteq S$. That is:
 1. If w is in S, then w is in T.
 2. If w is in T, then w is in S.
• As an example, let $S =$ the language of our running DFA, and $T =$ “no consecutive 1’s.”

![DFA Diagram]

BBM 401 - Automata Theory and Formal Languages

10
Proof Part 1: \(S \subseteq T \)

- **To prove**: if \(w \) is accepted by our DFA then \(w \) has no consecutive 1’s.

- Proof is an induction on length of \(w \).

- **Important trick**: Expand the inductive hypothesis to be more detailed than you need.
The Inductive Hypothesis

1. If \(\delta(A, w) = A \), then \(w \) has no consecutive 1’s and does not end in 1.
2. If \(\delta(A, w) = B \), then \(w \) has no consecutive 1’s and ends in a single 1.

- **Basis:** \(|w| = 0 \); i.e., \(w = \epsilon \).
 - (1) holds since \(\epsilon \) has no 1’s at all.
 - (2) holds *vacuously*, since \(\delta(A, \epsilon) \) is not B.

Important concept: If the “if” part of “if..then” is false, the statement is true.
Inductive Step

- Need to prove (1) and (2) for \(w = xa \).

- (1) for \(w \) is: If \(\hat{\delta}(A, w) = A \), then \(w \) has no consecutive 1’s and does not end in 1.

- Since \(\hat{\delta}(A, w) = A \), \(\hat{\delta}(A, x) \) must be A or B, and \(a \) must be 0 (look at the DFA).

- By the IH, \(x \) has no 11’s.

- Thus, \(w \) has no 11’s and does not end in 1.
Inductive Step

• Now, prove (2) for $w = xa$: If $\hat{\delta}(A, w) = B$, then w has no 11’s and ends in 1.

• Since $\hat{\delta}(A, w) = B$, $\hat{\delta}(A, x)$ must be A, and a must be 1 (look at the DFA).

• By the IH, x has no 11’s and does not end in 1.

• Thus, w has no 11’s and ends in 1.
Proof Part 1 : \(T \subseteq S \)

- Now, we must prove:

 if w has no 11’s, then w is accepted by our DFA

- **Contrapositive**: If w is not accepted by our DFA then w has 11.

 Key idea: contrapositive of “if X then Y” is the equivalent statement “if not Y then not X.”
Using the Contrapositive

• Every w gets the DFA to exactly one state.
 – Simple inductive proof based on:
 • Every state has exactly one transition on 1, one transition on 0.
• The only way w is not accepted is if it gets to C.
• The only way to get to C [formally: \(\hat{\delta}(A,w) = C \)] is if w = x1y, x gets to B, and y is the tail of w that follows what gets to C for the first time.
• If \(\hat{\delta}(A,x) = B \) then surely x = z1 for some z.
• Thus, w = z11y and has 11.
Nondeterministic Finite Automata (NFA)

- A NFA can be in several states at once, or, it can "guess" which state to go to next.
- A NFA state can have more than one arc leaving from that state with a same symbol.

Example: An automaton that accepts all and only strings ending in 01.

- State q_0 can go to q_0 or q_1 with the symbol 0.
NFA – Example

• What happens when the NFA processes the input 00101

• In fact, all missing arcs go to a death state, the death state goes to itself for all symbols, and the death state is a non-accepting state.
Definition of Nondeterministic Finite Automata

• Formally, a Nondeterministic Finite Automata (NFA) is a quintuple
 \(A = (Q, \Sigma, \delta, q_0, F) \)
1. \(Q \) is a finite set of states
2. \(\Sigma \) is a finite set of symbols (alphabet)
3. \(\Delta (\delta) \) is a transition function from \(Q \times \Sigma \) to the powerset of \(Q \).
4. \(q_0 \) is the start state \((q_0 \in Q) \)
5. \(F \) is a set of final (accepting) states \((F \subseteq Q) \)

• Transition function takes two arguments: a state and an input symbol.
• \(\delta(q, a) = \) the set of the states that the DFA goes to when it is in state \(q \) and input \(a \) is received.
The table representation of this NFA is as follows.

NFA is \((\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})\)

its transition function is

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rightarrow q_0</td>
<td>{q_0, q_1}</td>
<td>{q_0}</td>
</tr>
<tr>
<td>q_1</td>
<td>\emptyset</td>
<td>{q_2}</td>
</tr>
<tr>
<td>\star q_2</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Extended Transition Function for NFA – Delta Hat

- The transition function \(\delta \) can be extended to \(\hat{\delta} \) that operates on states and strings (as opposed to states and symbols)

Basis: \(\hat{\delta}(q, \varepsilon) = q \)

Induction: If \(\hat{\delta}(q, x) = \{p_1, p_2, \ldots, p_k\} \) for a string \(x \), then

\[
\hat{\delta}(q, xa) = \bigcup_{i=1}^{k} \delta(p_i, a)
\]

For the string \(w = xa \), we compute \(\hat{\delta}(q, x) \) first, then we follow any transition from any of the states with the symbol \(a \).
Language of a NFA

• The language accepted by a NFA A is

$$L(A) = \{ w : \tilde{\delta}(q_0, w) \cap F \neq \emptyset \}$$

• i.e. a string w is accepted by a NFA A iff the states that are reachable from the starting state by consuming w contain at least one final state.
Language of a NFA - Example

• Let's prove formally that the NFA

accepts the language \(\{x01 : x \in \Sigma^* \} \). We'll do a mutual induction on the following three statements,

\[
\begin{align*}
 w \in \Sigma^* & \Rightarrow q_0 \in \tilde{\delta}(q_0, w) \\
 q_1 \in \tilde{\delta}(q_0, w) & \iff w = x0 \\
 q_2 \in \tilde{\delta}(q_0, w) & \iff w = x01
\end{align*}
\]
Proof

BASIS: If $|w| = 0$, then $w = \varepsilon$. Statement (1) says that $\hat{\delta}(q_0, \varepsilon)$ contains q_0, which it does by the basis part of the definition of $\hat{\delta}$. For statement (2), we know that ε does not end in 0, and we also know that $\hat{\delta}(q_0, \varepsilon)$ does not contain q_1, again by the basis part of the definition of $\hat{\delta}$. Thus, the hypotheses of both directions of the if-and-only-if statement are false, and therefore both directions of the statement are true. The proof of statement (3) for $w = \varepsilon$ is essentially the same as the above proof for statement (2).

INDUCTION: Assume that $w = xa$, where a is a symbol, either 0 or 1. We may assume statements (1) through (3) hold for x, and we need to prove them for w. That is, we assume $|w| = n + 1$, so $|x| = n$. We assume the inductive hypothesis for n and prove it for $n + 1$.
1. We know that \(\delta(q_0, x) \) contains \(q_0 \). Since there are transitions on both 0 and 1 from \(q_0 \) to itself, it follows that \(\delta(q_0, w) \) also contains \(q_0 \), so statement (1) is proved for \(w \).

2. (If) Assume that \(w \) ends in 0; i.e., \(a = 0 \). By statement (1) applied to \(x \), we know that \(\delta(q_0, x) \) contains \(q_0 \). Since there is a transition from \(q_0 \) to \(q_1 \) on input 0, we conclude that \(\delta(q_0, w) \) contains \(q_1 \).

(Only-if) Suppose \(\delta(q_0, w) \) contains \(q_1 \). If we look at the diagram of Fig. 2.9, we see that the only way to get into state \(q_1 \) is if the input sequence \(w \) is of the form \(x0 \). That is enough to prove the "only-if" portion of statement (2).

3. (If) Assume that \(w \) ends in 01. Then if \(w = xa \), we know that \(a = 1 \) and \(x \) ends in 0. By statement (2) applied to \(x \), we know that \(\delta(q_0, x) \) contains \(q_1 \). Since there is a transition from \(q_1 \) to \(q_2 \) on input 1, we conclude that \(\delta(q_0, w) \) contains \(q_2 \).

(Only-if) Suppose \(\delta(q_0, w) \) contains \(q_2 \). Looking at the diagram of Fig. 2.9, we discover that the only way to get to state \(q_2 \) is for \(w \) to be of the form \(x1 \), where \(\delta(q_0, x) \) contains \(q_1 \). By statement (2) applied to \(x \), we know that \(x \) ends in 0. Thus, \(w \) ends in 01, and we have proved statement (3).
Equivalence of DFA and NFA

- NFA's are usually easier to construct.
- Surprisingly, for any NFA N there is a DFA D, such that $L(D) = L(N)$, and vice versa.
- This involves the subset construction, an important example how an automaton B can be generically constructed from another automaton A.
- Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

such that $L(D) = L(N)$
Subset Construction

- \(Q_D = \{S : S \subseteq Q_N\} \).

Note: \(|Q_D| = 2^{|Q_N|}\), although most states in \(Q_D \) are likely to be garbage.

- \(F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\} \)

- For every \(S \subseteq Q_N \) and \(a \in \Sigma \),

 \[
 \delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)
 \]
Subset Construction - Example

![Subset Construction Diagram]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\rightarrow {q_0}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>${q_1}$</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>$\star{q_2}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${q_0, q_1}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
<tr>
<td>$\star{q_0, q_2}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0}$</td>
</tr>
<tr>
<td>$\star{q_1, q_2}$</td>
<td>\emptyset</td>
<td>${q_2}$</td>
</tr>
<tr>
<td>$\star{q_0, q_1, q_2}$</td>
<td>${q_0, q_1}$</td>
<td>${q_0, q_2}$</td>
</tr>
</tbody>
</table>
Subset Construction – Accessible States

- We can often avoid the exponential blow-up by constructing the transition table for D only for accessible states S as follows:

Basis: $S = \{q_0\}$ is accessible in D

Induction: If state S is accessible, so are the states in $\bigcup_{a \in \Sigma} \delta_D(S, a)$.
Subset Construction – Accessible States (example)

NFA

DFA
Theorem: Let D be the subset DFA of an NFA N. Then \(L(D) = L(N) \).

Proof: We show on an induction on \(|w|\) that
\[
\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)
\]

Basis: \(w = \varepsilon \). The claim follows from definition.

Induction: \(\hat{\delta}_D(\{q_0\}, xa) \overset{\text{def}}{=} \delta_D(\hat{\delta}_D(\{q_0\}, x), a) \)

\[
\overset{\text{i.h.}}{=} \delta_D(\hat{\delta}_N(q_0, x), a)
\]

\[
\overset{\text{cst}}{=} \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a)
\]

\[
\overset{\text{def}}{=} \hat{\delta}_N(q_0, xa)
\]

So, \(L(D) = L(N) \)
Equivalence of DFA and NFA – Theorem 2

Theorem: A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The if-part is proved by the previous theorem.

For the only-if-part, we note that any DFA can be converted to an equivalent NFA by modifying the δ_D to δ_N by the rule

\[
\text{If } \delta_D(q, a) = p, \text{ then } \delta_N(q, a) = \{p\}.
\]

By induction on $|w|$ it will be shown in the tutorial that if $\hat{\delta}_D(q_0, w) = p$, then $\hat{\delta}_N(q_0, w) = \{p\}$.

32
A Bad Case for Subset Construction - Exponential Blow-Up

• There is an NFA N with $n+1$ states that has no equivalent DFA with fewer than 2^n states

$L(N) = \{ x_1c_2c_3\ldots c_n : x \in \{0, 1\}^*, c_i \in \{0, 1\} \}$
A NFA for Text Search

- NFA accepting the set of keywords \{ebay, web\}
Corresponding DFA for Text Search
NFA with Epsilon Transitions - ε-NFA

- ε-NFA’s allow transitions with ε label.

- Formally, ε-NFA is a quintuple

\[
A = (Q, \Sigma, \delta, q_0, F)
\]

1. Q is a finite set of states
2. Σ is a finite set of symbols (alphabet)
3. δ is a transition function from $Q \times \Sigma \cup \{\varepsilon\}$ to the powerset of Q.
4. q_0 is the start state ($q_0 \in Q$)
5. F is a set of final (accepting) states ($F \subseteq Q$)
ε-NFA Example

- An ε-NFA accepting decimal numbers consisting of:
 1. An optional + or - sign
 2. A string of digits
 3. a decimal point
 4. another string of digits
- One of the strings in (2) and (4) are optional
\(\varepsilon\)-NFA Example - Transition Table

Transition Table

\[E = (\{q_0, q_1, \ldots, q_5\}, \{., +, -, 0, 1, \ldots, 9\}, \delta, q_0, \{q_5\}) \]

<table>
<thead>
<tr>
<th>(\rightarrow)</th>
<th>(\varepsilon)</th>
<th>(+,-)</th>
<th>(\cdot)</th>
<th>(0, \ldots, 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>{q_1}</td>
<td>{q_1}</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{q_2}</td>
<td>{q_1, q_4}</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{q_3}</td>
</tr>
<tr>
<td>(q_3)</td>
<td>{q_5}</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{q_3}</td>
</tr>
<tr>
<td>(q_4)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>{q_3}</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(q_5)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>
Epsilon Closure

- We close a state by adding all states reachable by a sequence $\varepsilon \varepsilon \ldots \varepsilon$

- **Inductive definition of** $E\text{CLOSE}(q)$

 Basis: $q \in E\text{CLOSE}(q)$

 Induction: $p \in E\text{CLOSE}(q)$ and $r \in \delta(p, \varepsilon) \Rightarrow r \in E\text{CLOSE}(q)$
Epsilon Closure

ECLOSE(1) = \{1,2,3,4,6\}
ECLOSE(2) = \{2,3,6\}
ECLOSE(3) = \{3,6\}
ECLOSE(4) = \{4\}
ECLOSE(5) = \{5,7\}
ECLOSE(6) = \{6\}
ECLOSE(7) = \{7\}
Extended Delta for ε-NFA

• Inductive definition $\hat{\delta}$ of for ε-NFA

Basis: $\hat{\delta}(q, \varepsilon) = \text{ECLOSE}(q)$

Induction: $\hat{\delta}(q, xa) = \bigcup_{p \in \delta(\hat{\delta}(q, x), a)} \text{ECLOSE}(p)$
Equivalence of DFA and \(\varepsilon \)-NFA

• Given an \(\varepsilon \)-NFA

\[
E = (Q_E, \Sigma, \delta_E, q_0, F_E)
\]

we will construct a DFA

\[
D = (Q_D, \Sigma, \delta_D, q_D, F_D)
\]

such that \(L(D) = L(E) \)
Equivalence of DFA and ε-NFA

Subset Construction

\[Q_D = \{ S : S \subseteq Q_E \text{ and } S = \text{ECLOSE}(S) \} \]

\[q_D = \text{ECLOSE}(q_0) \]

\[F_D = \{ S : S \in Q_D \text{ and } S \cap F_E \neq \emptyset \} \]

\[\delta_D(S, a) = \bigcup \{ \text{ECLOSE}(p) : p \in \delta(t, a) \text{ for some } t \in S \} \]
Equivalence of DFA and ε-NFA

Subset Construction - Example
Equivalence of DFA and ε-NFA - Theorem

Theorem: A language L is accepted by some ε-NFA E if and only if L is accepted by some DFA D.

Proof: We use D constructed using subset-construction and show by induction that \(\hat{\delta}_D(q_0, w) = \hat{\delta}_E(q_D, w) \)

Basis: \(\hat{\delta}_E(q_0, \epsilon) = \text{ECLOSE}(q_0) = q_D = \hat{\delta}(q_D, \epsilon) \)

Induction:

\[
\hat{\delta}_E(q_0, xa) = \bigcup_{p \in \hat{\delta}_E(q_0, x), a} \text{ECLOSE}(p)
\]

\[
= \bigcup_{p \in \hat{\delta}_D(q_D, x), a} \text{ECLOSE}(p)
\]

\[
= \bigcup_{p \in \hat{\delta}_D(q, xa)} \text{ECLOSE}(p)
\]

\[
= \hat{\delta}_D(q_D, xa)
\]