
BBM401 Automata Theory and Formal Languages 1

Pushdown Automata



• Pushdown automatons accept exactly context free languages.

• A pushdown automaton (PDA) is essentially an NFA with a stack.

• On a transition, a PDA:

1. Consumes an input symbol (or -transition).

2. Goes to a new state (or stays in the old).

3. Replaces the top of the stack item by any string (does nothing, pops the 

stack, or pushes a string onto the stack)

Pushdown Automata

BBM401 Automata Theory and Formal Languages 2



A pushdown Automata (PDA) is a seven-tuple:

P = (Q,,,,q0,Z0,F),

where

– Q is a finite set of states,

–  is a finite input alphabet,

–  is finite stack alphabet,

– : Q x {} x   2Qx* is the transition function,

– q0 is a start state,

– Z0 is the start symbol for the stack, and

– F is the set of accepting states.

Pushdown Automata – Formal Definition

BBM401 Automata Theory and Formal Languages 3



• Consider a CFL   Lwwr = { wwr : w∈{0,1}* }

• A pushdown automaton P for the language Lwwr is as follows:

P = ( {q0,q1,q2}, {0,1}, {0,1,Z0} , ,q0 ,Z0, {q2} )

Pushdown Automata – Example

BBM401 Automata Theory and Formal Languages 4



• Consider a CFL   Lwwr = { wwr : w∈{0,1}* }

• A pushdown automaton P for the language Lwwr = { wwr : w∈{0,1}* } is as actually a seven 

tuple:

P = ( {q0,q1,q2}, {0,1}, {0,1,Z0} , ,q0 ,Z0, {q2} )

where its transition function can be also shown by a table.

Pushdown Automata – Example
Table Representation of Transition Function

BBM401 Automata Theory and Formal Languages 5



State Input Stack Transition

q0 0110 Z0 0, Z0 /0Z0  

q0 110 0Z0 1, 0 /10

q0 10 10Z0 , 1 /1

q1 10 10Z0 1, 1 / 

q1 0 0Z0 0, 0 / 

q1  Z0 , Z0 /Z0 

q2  Z0

Pushdown Automata – Example
A path for the input 0110

BBM401 Automata Theory and Formal Languages 6



• A PDA goes from configuration to configuration when consuming input.

• The configuration of a PDA is represented by a triple (q,w,) where

1. q  is a the state,

2. w  is the remaining input, and

3.  is the stack contents

• A configuration triple is called an instantaneous description, or ID, of the 

pushdown automaton.

Instantaneous Descriptions (ID) of a PDA 

BBM401 Automata Theory and Formal Languages 7



• We need a notation that describes changes in the state, the input, and stack.

• Let  P = (Q,,,,q0,Z0,F) be a PDA. We define a move  ⊢ as follows. 

• If  (p,)(q,a,X) where  qQ, a{}, X and *. Then for all strings 

w* and *, we have a move (transition): 

(q,aw,X) ⊢ (p,w,) )

• This move reflects the idea that, by consuming a (which may be )  from the input and 

replacing X on top of the stack by  we can go from state q to state p.

– Note that what remains on the input, w, and what is below the top of the stack,  ,do not 

influence the action of the PDA, they are merely carried along.

PDA Move - turnstile ⊢ Notation 

BBM401 Automata Theory and Formal Languages 8



• To represent a sequence of zero or more moves of the PDA, we use ⊢*.

• A sequence of moves is also called as computation.

BASIS:  

I ⊢* I for any ID I.

INDUCTION: 

If  I ⊢* J  if there exists ID K such that I ⊢K and K ⊢* J.

PDA Moves - turnstile ⊢* Notation
Computation 

BBM401 Automata Theory and Formal Languages 9



• On input 1111 the PDA has the following computation sequences:

PDA Move - Example

BBM401 Automata Theory and Formal Languages 10

Arrows represent move ⊢ relation.



• A sequence of moves (a computation):

(q0,1111,Z0) ⊢ (q0,111,1Z0) ⊢ (q0,11,11Z0) ⊢ (q1,11,11Z0) ⊢ (q1,1,1Z0) ⊢ (q1,,Z0) ⊢ (q2,,Z0)

• Thus,  (q0,1111,Z0)  ⊢* (q2,,Z0)

PDA Move - Example

BBM401 Automata Theory and Formal Languages 11



• Initial configuration (initial ID): (q0,1111,Z0)

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 12

q0

1 1 1 1

Z0



(q0,1111,Z0) ⊢ (q0,111,1Z0)

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 13

q0

1 1 1 1

Z0

q0

1 1 1

1

Z0



(q0,1111,Z0) ⊢ (q0,111,1Z0) ⊢ (q0,11,11Z0) 

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 14

q0

1 1 1 1

Z0

q0

1 1 1

1

Z0

q0

1 1

1

1

Z0



(q0,1111,Z0) ⊢ (q0,111,1Z0) ⊢ (q0,11,11Z0) 

⊢ (q1,11,11Z0)

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 15

q0

1 1 1 1

Z0

q0

1 1 1

1

Z0

q0

1 1

1

1

Z0

q1

1 1

1

1

Z0



(q0,1111,Z0) ⊢ (q0,111,1Z0) ⊢ (q0,11,11Z0) 

⊢ (q1,11,11Z0) ⊢ (q1,1,1Z0) 

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 16

q0

1 1 1 1

Z0

q0

1 1 1

1

Z0

q0

1 1

1

1

Z0

q1

1 1

1

1

Z0

q1

1

1

Z0



(q0,1111,Z0) ⊢ (q0,111,1Z0) ⊢ (q0,11,11Z0) 

⊢ (q1,11,11Z0) ⊢ (q1,1,1Z0) ⊢ (q1,,Z0) 

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 17

q0

1 1 1 1

Z0

q0

1 1 1

1

Z0

q0

1 1

1

1

Z0

q1

1 1

1

1

Z0

q1

1

1

Z0

q1

Z0



(q0,1111,Z0) ⊢ (q0,111,1Z0) ⊢ (q0,11,11Z0) 

⊢ (q1,11,11Z0) ⊢ (q1,1,1Z0) ⊢ (q1,,Z0) ⊢ (q2,,Z0)

Actions of Example PDA

BBM401 Automata Theory and Formal Languages 18

q0

1 1 1 1

Z0

q0

1 1 1

1

Z0

q0

1 1

1

1

Z0

q1

1 1

1

1

Z0

q1

1

1

Z0

q1

Z0

q2

Z0



• On input 01 the PDA has the following computation sequences:

(q0,01,Z0)

(q0,1,0Z0) (q1,01,Z0) (q2,01,Z0)

(q0,,10Z0) (q1,1,0Z0) (q2,1,0Z0)

(q1,,10Z0)

• All computations end with an ID whose state is NOT a final state or the input string is NOT 

consumed. Thus, 01 is NOT accepted by this PDA.

– (q1,,10Z0) q1 is NOT a final state, and q1 does not have any move.

– (q2,01,Z0) the input (01) is NOT consumed, and q2 does not have any move.

– (q2,1,0Z0) the input (1) is NOT consumed, and q2 does not have any move.

PDA Move - Example

BBM401 Automata Theory and Formal Languages 19



Languages of PDA

BBM401 Automata Theory and Formal Languages 20



• In our example, we have assumed that a PDA accepts its input by consuming it 

and entering  an accepting state. 

• This approach is called as "Acceptance By Final State".

• There is a second approach known as "Accepted By Empty Stack". 

– The set of strings that cause the PDA to empty its stack, starting from the 

initial ID. 

• These two methods are equivalent: 

– A language L has a PDA A that accepts it by final state if and only if               

L has a PDA B that accepts it by empty stack.

The Languages of a PDA 

BBM401 Automata Theory and Formal Languages 21



Let  P = (Q,,,,q0,Z0,F) be a PDA. Then L(P), the language of P which accepts by 

final state, is:

L(P) = { w : (q0,w,Z0)  ⊢* (q,,) }

for some state q in F and any stack string .

• Starting in the initial ID with w waiting on the input, P consumes w from the input and 

enters an accepting state.

– The contents of the stack at that time is irrelevant.

The Languages of a PDA
Acceptance By Final State 

BBM401 Automata Theory and Formal Languages 22



Let  P = (Q,,,,q0,Z0) be a PDA. Then L(P), the language of P which accepts by 

empty stack, is:

L(P) = { w : (q0,w,Z0)  ⊢* (q,,) }

for any state q. 

• Since final states are irrelevant for PDAs that accept by empty stack, we do not define 

final states for those PDAs. 

– That is, a PDA that accepts by empty stack is 6 tuple (not 7 tuple).  

• L(P) is the set of inputs w that P can consume and at the same time empty its stack.

– Final states are irrelevant.

The Languages of a PDA
Acceptance By Empty Stack

BBM401 Automata Theory and Formal Languages 23



• A PDA PN = ({q},{0,1},{P,0,1},,q,P) which accepts by empty stack. 

• The language of this PDA is { wwr : w∈{0,1}* }.

• A computation sequence for 0110:

(q,0110,P) ⊢ (q,0110,0P0) ⊢ (q,110,P0) ⊢ (q,110,1P10) ⊢ (q,10,P10) ⊢ (q,10,10) 

⊢ (q,0,0) ⊢ (q,,)

• Since there is a computation starts with initial ID and ends with empty stack and empty string 

for the string 0110, the string 0110 is recognized by this PDA.

A PDA Accepts By Empty Stack

BBM401 Automata Theory and Formal Languages 24

,P/0P0

,P/1P1

,P/ 

0,0/ 

1,1/ 
q



• A PDA PN = ({q},{0,1},{P,0,1},,q,P) which accepts by empty stack. 

• The language of this PDA is { wwr : w∈{0,1}* }.

(q,01,P) (q,01,) 

(q,01,0P0) (q,01,1P1)

(q,1,P0) (q,1,0)

(q,1,1P10) (q,1,0P00)

(q,,P10) (q,,10) 

(q,,0P010) (q,,1P110) 

• Since all computations do NOT end with an ID containing empty stack and empty string, the 

string 01 is NOT accepted by this PDA.

A PDA Accepts By Empty Stack

BBM401 Automata Theory and Formal Languages 25

,P/0P0

,P/1P1

,P/ 

0,0/ 

1,1/ 
q



Theorem: 

• If  L=L(PF) for some PDA PF = (Q,,,,q0,Z0,F) which accepts by final state, then 

there exists another PDA PN which accepts by empty stack such that L=L(PN). 

• If  L=L(PN) for some PDA PN = (Q,,,,q0,Z0) which accepts by empty stack, 

then there exists another PDA PF which accepts by final state such that L=L(PF). 

Equivalence of Language Definitions

BBM401 Automata Theory and Formal Languages 26



Proof: We will construct a PDA PN which accepts by empty stack from a given PDA    

PF = (Q,,,,q0,Z0,F) which accepts by final state.

• Let  PN = (Q∪{p0,e}, , ∪{X0}, N, p0, X0) 

– The states of PN will contain two new extra states p0 and e. 

• The state p0 is the start state of PN.

• The state e is an erase state which will empty the stack.

– PN will have a new stack symbol X0, and X0 will be the initial stack symbol of PN.

• The new stack symbol X0 is to guard the stack bottom against accidental emptying.

– The transition function N will contain everything in the transition function  of PF and the 

following new transitions:

• N(p0,,X0)={(q0,Z0X0)}  i.e. The new start state p0 pushes the initial stack symbol Z0 of 

PF into the stack and moves to the state q0 which is the start state of PF.

• For any final state f of PF, N(f,,Y)={(e,)} for any stack symbol Y. i.e. A final state of 

PF can move to the new erase e state by erasing the top of stack symbol.

• N(e,,Y)={(e,)} i.e. The new erase state e erases all symbols from the stack.

Creating an Equivalent PDA Accepting by Empty 

Stack from a PDA Accepting by Final State

BBM401 Automata Theory and Formal Languages 27



Proof (continued):

• From PF = (Q,,,,q0,Z0,F) construct PN = (Q∪{p0,e},,∪{X0},N,p0,X0) as follows:

• Now, we must prove that L(PN)=L(PF).

– If wL(PF) then wL(PN). i.e. if  (q0,w,Z0) ⊢𝑷𝑭
∗ (f,,) then (p0,w,X0) ⊢𝑷𝑵

∗ (e,,)

– If wL(PN) then wL(PF). i.e. if (p0,w,X0) ⊢𝑷𝑵
∗ (e,, ) then (q0,w,Z0) ⊢𝑷𝑭

∗ (f,,)

Creating an Equivalent PDA Accepting by Empty 

Stack from a PDA Accepting by Final State

BBM401 Automata Theory and Formal Languages 28



From a PDA Accepting by Final State to a PDA 

Accepting by Empty Stack : Example

BBM401 Automata Theory and Formal Languages 29



Proof: We will construct a PDA PF which accepts by final state from a given PDA    

PN = (Q,,,,q0,Z0) which accepts by empty stack.

• Let  PF = (Q∪{p0,pf}, , ∪{X0}, F, p0, X0, {pf}) 

– The states of PF  will contain two new extra states p0 and pf. 

• The state p0 is the start state of PF.

• The state pf is only final state of PF.

– PF will have a new stack symbol X0, and X0 will be the initial stack symbol of PF.

• The new stack symbol X0 is to guard the stack bottom against accidental emptying.

– The transition function F will contain everything in the transition function  of PN and the 

following new transitions:

• F(p0,,X0)={(q0,Z0X0)}  i.e. The new start state p0 pushes the initial stack symbol Z0 of 

PN into the stack and moves to the state q0 which is the start state of PN.

• For any state q of PN, F(q,,X0)={(pf,)}. i.e. Every state q of PN can move to the new 

final state pf when the stack symbol is X0 and erases the top of stack symbol.

Creating an Equivalent PDA Accepting by Final 

State from a PDA Accepting by Empty Stack 

BBM401 Automata Theory and Formal Languages 30



Proof (continued): 

From PN=(Q,,,,q0,Z0) construct PF=(Q∪{p0,pf},,∪{X0},F,p0,X0,{pf}) as follows:

• Now, we must prove that L(PF)=L(PN).

– If wL(PF) then wL(PN). i.e. if  (p0,w,X0) ⊢𝑷𝑭
∗ (pf,,) then (q0,w,Z0) ⊢𝑷𝑵

∗ (q,,) for any q

– If wL(PN) then wL(PF). i.e. if (q0,w,Z0) ⊢𝑷𝑵
∗ (q,,) for any q then (p0,w,X0) ⊢𝑷𝑭

∗ (pf,,)

Creating an Equivalent PDA Accepting by Final 

State from a PDA Accepting by Empty Stack 

BBM401 Automata Theory and Formal Languages 31



From a PDA Accepting by Empty Stack to a PDA 

Accepting by Final State : Example

BBM401 Automata Theory and Formal Languages 32

,P/0P0

,P/1P1

,P/ 

0,0/ 

1,1/ 
q

,P/0P0

,P/1P1

,P/ 

0,0/ 

1,1/ 
qp0 pf

P



Equivalence of PDA's and CFG's 

BBM401 Automata Theory and Formal Languages 33



• The following three classes of languages are all the same class. 

1. The context-free- languages, i.e.. the languages defined by CFG's. 

2. The languages that are accepted by final state by some PDA. 

3. The languages that are accepted by empty stack by some PDA. 

• We have already shown that (2) and (3) are the same. 

• It turns out to be easiest next to show that (1) and (3) are the same, thus Implying the 

equivalence of all three. 

Equivalence of PDA's and CFG's 

BBM401 Automata Theory and Formal Languages 34



• Given a CFG G, we construct a PDA that simulates the leftmost derivations of G. 

• Any left-sentential form that is not a terminal string can be written as xA, where 

– A is the leftmost variable, 

– x is whatever terminals appear to the left of A, and 

–  is the string of terminals and variables that appear to the right of A. 

– If a left-sentential form consists of terminals only, then A is . 

• Let   xA lm x be a derivation step from the left-sentential form xA.

– This derivation step corresponds to the PDA having consumed x and having A

on the top of the stack, and then the PDA on  it pops A and pushes  into the stack.

From Grammars to Pushdown Automata 

BBM401 Automata Theory and Formal Languages 35



PDA Construction from CFG:

• Let G = (V, T, R, S) be a CFG. 

• Construct the PDA P that accepts L(G) by empty stack as follows: 

P = ({q}, T, V∪T, , q, S) 

where transition function  is defined by: 

1. For each variable A, 

(q,,A) = { (q, ) | A   is a production of G } 

2. For each terminal a, (q,a,a) = {(q,)} 

From Grammars to Pushdown Automata 
PDA Construction from CFG

BBM401 Automata Theory and Formal Languages 36



• Let CFG G = ({P}, {0,1}, {P  0P0, P  1P1,  P }, P)  

• L(G) is { wwr : w∈{0,1}* }

• We can construct PDA A = ( {q}, {0,1}, {0,1,P}, , q, P) with following transitions.

(q,,P) = { (q,0P0), (q,1P1), (q,) }

(q,0,0) = { (q,) }

(q,1,1) = { (q,) }

From CFG to PDA - Example

BBM401 Automata Theory and Formal Languages 37

,P/0P0

,P/1P1

,P/

0,0/

1,1/
q



P  0P0  

P  1P1  

P  

• A computation sequence for 0110:

(q,0110,P) ⊢ (q,0110,0P0) ⊢ (q,110,P0)

• A leftmost derivation sequence of 0111:

P  0P0 

From CFG to PDA – Example
PDA Moves vs Leftmost Derivations

BBM401 Automata Theory and Formal Languages 38

,P/0P0

,P/1P1

,P/

0,0/

1,1/
q



P  0P0  

P  1P1  

P  

• A computation sequence for 0110:

(q,0110,P) ⊢ (q,0110,0P0) ⊢ (q,110,P0) ⊢ (q,110,1P10) ⊢ (q,10,P10)

• A leftmost derivation sequence of 0111:

P  0P0  01P10 

From CFG to PDA – Example
PDA Moves vs Leftmost Derivations

BBM401 Automata Theory and Formal Languages 39

,P/0P0

,P/1P1

,P/

0,0/

1,1/
q



P  0P0  

P  1P1  

P  

• A computation sequence for 0110:

(q,0110,P) ⊢ (q,0110,0P0) ⊢ (q,110,P0) ⊢ (q,110,1P10) ⊢ (q,10,P10) 

⊢ (q,10,10) ⊢ (q,0,0) ⊢ (q,,)

• A leftmost derivation sequence of 0111:

P  0P0  01P10  0110 

From CFG to PDA – Example
PDA Moves vs Leftmost Derivations

BBM401 Automata Theory and Formal Languages 40

,P/0P0

,P/1P1

,P/

0,0/

1,1/
q



Theorem:  If  PDA P  is constructed from CFG G by the construction algorithm   

then L(P) = L(G).

Proof:

• We have to show that  (q,w,S) ⊢* (q,,) if and only if S ⇒* w

• We need to prove something more general: 

– We need to show that (q,wx,S) ⊢* (q,x,) for any x if and only if  S ⇒*
lm w

– After this proof, we can let x== 

• Then (q,w,S) ⊢* (q,,) if and only if S ⇒* w

• That is, w is in L(P) if and only if w is in L(G).

From Grammars to Pushdown Automata 
PDA Construction from CFG

BBM401 Automata Theory and Formal Languages 41



Proof (Only-If Part):  

– Suppose (q,wx,S) ⊢* (q,x,) for any x. 

– We have to show that S ⇒*
lm w

– Proof is an induction on the number steps made by P

Basis: 0 steps

• Then =S, w=, and S ⇒*
lm S  is surely true.

Induction: 

• Consider n moves of P: (q,wx,S) ⊢* (q,x,) and assume the IH for sequences of       

n-1 moves.

• There are two cases, depending on whether the last move uses a terminal or a variable 

on the top of stack.

From Grammars to Pushdown Automata 
PDA Construction from CFG

BBM401 Automata Theory and Formal Languages 42



Induction (cont.): 

Case 1:   The move sequence must be of the form (q,yax,S) ⊢* (q,ax,a) ⊢ (q,x,), 

where ya = w.

• By the IH applied to the first n-1 steps,  S ⇒*
lm ya.

• But ya = w, so S  ⇒*
lm w.

Case 2:   The move sequence must be of the form (q,wx,S) ⊢* (q,x,A) ⊢ (q,x,), 

where A   is a production and  = .

• By the IH applied to the first n-1 steps, S ⇒*
lm wA.

• Thus, S ⇒*
lm w = w.

From Grammars to Pushdown Automata 
PDA Construction from CFG

BBM401 Automata Theory and Formal Languages 43



Proof (If Part): 

– Suppose S ⇒*
lm w

– We have to show that (q,wx,S) ⊢* (q,x,) for any x. 

– Proof is an induction on the length of the leftmost derivation.

• The proof is similar to Only-If part proof and it is in the book.

From Grammars to Pushdown Automata 
PDA Construction from CFG

BBM401 Automata Theory and Formal Languages 44



• Assume we have a PDA P=(Q,,,,q0,Z0) which accepts with empty stack.

• We’ll construct a CFG G such that L(P) = L(G).

• Intuition: 

– G will have variables generating exactly the inputs that cause P to have the net 

effect of popping a stack symbol X while going from state p to state q.

– P never gets below this X while doing so.

From a PDA Accepting with Empty Stack to a CFG

BBM401 Automata Theory and Formal Languages 45



Construct a CFG G=(V,T,R,S) from PDA P=(Q,,,,q0,Z0) such that L(P) = L(G).

Variables of G:

• G’s variables are of the form [pXq] where p∊Q, q∊Q, X∊,

– The variable [pXq] generates all and only the strings w such that 

(p,w,X) ⊢* (q,,).

• In addition, G will also have a start symbol S.

• Thus, V = { [pXq] : p∊Q, q∊Q, X∊} ∪ {S}

From a PDA to a CFG

BBM401 Automata Theory and Formal Languages 46



Construct a CFG G=(V,T,R,S) from PDA P=(Q,,,,q0,Z0) such that L(P) = L(G).

Productions of G:

• Each production for [pXq] comes from a move of P in state p with stack symbol X.

CASE 1:  δ(p,a,X) contains (q,ε).

• G has the production  [pXq]  a  where  a∊∪{ε}.

– [pXq] generates a, because reading a is one way to pop X and go from p to q.

CASE 2:  δ(p,a,X) contains (r,Y) for some state r and a stack symbol Y.

• For each state q∊Q, G has the production  [pXq]  a[rYq] where  a∊∪{ε}.

– We can erase X and go from p to q by reading a (entering state r and replacing X by Y) 

and then reading some w that gets P from r to q while erasing Y.

– Note: [pXq] ⇒* aw whenever [rYq] ⇒* w.

From a PDA to a CFG

BBM401 Automata Theory and Formal Languages 47



Productions of G:

GENERAL CASE:  δ(p,a,X) contains (r,Y1…Yk) for some state r and k2.

• Generate a family of productions (For all states q, s1, …, sk-1)

[pXq]  a [rY1s1] [s1Y2s2] … [sk-2Yk-1sk-2] [sk-1Ykq] 

When k=2:  δ(p,a,X) contains (r,YZ) for some state r

– Now, P has replaced X by YZ.

– To have the net effect of erasing X, P must erase Y, going from state r to some state s, and 

then erase Z, going from s to q.

– Since we do not know state s, we must generate a family of productions:

[pXq]  a[rYs][sZq]   for all states s.

– Note: [pXq] ⇒* awx whenever  [rYs] ⇒* w and [sZq] ⇒* x.

From a PDA to a CFG

BBM401 Automata Theory and Formal Languages 48



Completion of the Construction:

• We can prove that (q0,w,Z0) ⊢* (p,ε,ε) if and only if  [q0Z0p] ⇒* w.

• But state p can be anything.

• Thus, add productions  S  [q0Z0p]  for each state p.

From a PDA to a CFG

BBM401 Automata Theory and Formal Languages 49



• Convert the PDA P=({p,q},{0,1},{X,Z0},,q,Z0) where  is given by:

• We get G=({[pXp],[pXq],[pZ0p],[pZ0q], [qXp],[qXq],[qZ0p],[qZ0q],S}, {0,1}, R, S)

From a PDA to a CFG: Example

BBM401 Automata Theory and Formal Languages 50



G=({[pXp],[pXq],[pZ0p],[pZ0q], [qXp],[qXq],[qZ0p],[qZ0q], S}, {0,1}, R, S) 

and productions in R are:

From

From

From

From

From 

From

From a PDA to a CFG: Example

BBM401 Automata Theory and Formal Languages 51



Deterministic Pushdown Automata 

(DPDA)

BBM401 Automata Theory and Formal Languages 52



• While PDA's are by definition allowed to be nondeterministic, the deterministic 

subcase is quite important. 

• In particular, parsers generally behave like deterministic PDA's, so the class of 

languages that can be accepted by these automata is interesting for the insights it gives 

us into what constructs are suitable for use in programming languages.

A PDA P = (Q,,,,q0,Z0,F) is deterministic iff

1. (q,a,X) is always empty or a singleton where a, or a is .

2. If (q,a,X) is nonempty where a, then (q,,X) must be empty.

Deterministic Pushdown Automata (DPDA)

BBM401 Automata Theory and Formal Languages 53



L = { wcwR : w∊{0,1}* }

• L is recognized by the following DPDA:

DPDA - Example

BBM401 Automata Theory and Formal Languages 54



If  L is a regular language, then L = L(P) for some DPDA P.  

– regular languages  languages of DPDAs

There are languages that are not regular, but there are DPDAs for them.

– { wcwR : w∊{0,1}* } is a member of languages of DPDAs but it is not regular.

There are context free languages which are NOT members of languages of DPDAs.

– { wwR : w∊{0,1}* } is NOT a member of languages of DPDAs. i.e. there is NO 

DPDA for the language { wwR : w∊{0,1}* }.

– languages of DPDAs  context free languages

DPDA  Properties

BBM401 Automata Theory and Formal Languages 55



There are NO DPDAs for inherently ambiguous CFLs.

For a given unambiguous grammar we may NOT find a DPDA.

– { wwR : w∊{0,1}* } has unambiguous grammar   S  0S0  |  1S1  |  

– But { wwR : w∊{0,1}* } is NOT a member of languages of  DPDAs.

We can always find an unambiguous grammar for the language of a given DPDA.

– The languages of DPDAs are equal to languages of deterministic context free 

grammars.

– Each LR(k) grammar is an unambiguous grammar, but not all unambiguous 

grammars are LR(k) grammars.

– The languages of LR(k) grammars  (k1) are equal to languages of deterministic context 

free grammars (languages of DPDAs).

– LR(k) grammars are widely used in the parsing of programming languages (LR parsers).

DPDA  Properties

BBM401 Automata Theory and Formal Languages 56



Formal Languages  -- So far  

BBM401 Automata Theory and Formal Languages 57

Context Free Languages

Languages of unambiguous CFGs

Languages of DPDAs

Regular Languages


