Decidability
Decidability

Unsolvable Problems
- Turing-unrecognizable languages

Turing Recognizable Languages

Turing Decidable Languages

Context Free Languages

Regular Languages

Turing Machines

Turing Deciders

PDAs

DFAs
Turing Machines

• The most general model of computation

• Computations of a TM are described by a sequence of configurations. (Accepting Configuration, Rejecting Configuration)

• Turing-recognizable languages
 – TM halts in an accepting configuration if w is in the language.
 – TM may halt in a rejecting configuration or go on indefinitely if w is not in the language.

• Turing-decidable languages
 – TM halts in an accepting configuration if w is in the language.
 – TM halts in a rejecting configuration if w is not in the language.

• Nondeterministic TMs are equivalent to Deterministic TMs.

• Multitape TMs are equivalent to Deterministic TMs.
Decidability

- We investigate the power of algorithms to solve problems.
- We discuss certain problems that can be solved algorithmically and others that can not be solved.

- **Why discuss unsolvability?**
- Knowing a problem is unsolvable is useful because
 - you realize it must be simplified or altered before you find an algorithmic solution.
 - you gain a better perspective on computation and its limitations.
Decidable Languages

Encoding Finite Automata As Strings

- The inputs to TMs have to be strings.
- Every object O that enters a computation will be represented with a string $<O>$, encoding the object.

- **To represent a DFA as a string:**
 - Encode Q using unary encoding:
 - For $Q = \{q_0, \ldots, q_n\}$ encode q_i using $i+1$ 0’s, i.e., using the string 0^{i+1}.
 - We assume that q_0 is always the start state.
 - Encode Σ using unary encoding:
 - For $\Sigma = \{a_1, \ldots, a_m\}$, encode a_i using i 0’s, i.e., using the string 0^i.
 - With these conventions, all we need to encode is δ and F.
 - Each entry of δ, e.g., $\delta(q_i, a_j) = q_k$ is encoded as
 \[
 0^{i+1} 1 0^j 1 0^{k+1}
 \]
Decidable Languages

Encoding Finite Automata As Strings

• The whole δ can now be encoded as

$$001000010001 \ 00000100100000 \cdots 1000000100000010$$

• F can be encoded just as a list of the encodings of all the final states. For example, if states 2 and 4 are the final states, F could be encoded as

$$000 \ 1 \ 00000$$

• The whole DFA would be encoded by

$$11001000100010000 \cdots 011000000001000000011$$

encoding of the transitions encoding of the final states
Decidable Languages

Encoding Finite Automata As Strings

• representing the encoding of the description of an automaton (DFA/NFA) would be something like

$$\langle B \rangle = 110010001000010000 \ldots 0 11000000001000000011$$

- encoding of the transitions
- encoding of the final states

• In fact, the description of all DFAs could be described by a regular expression like

$$11(0^+10^+10^+1)^*1(0^+1)^+1$$

• Similarly strings over Σ can be encoded with (the same convention)

$$\langle w \rangle = \underline{0000} \ 1 \underline{000000} \ 1 \ldots \ 0$$

$$a_4 \quad a_6 \quad a_1$$
Decidable Problems on Regular Languages

• \(\langle B, w \rangle \) represents the encoding of a machine followed by an input string, (with a suitable separator between \(\langle B \rangle \) and \(\langle w \rangle \)).

• Now we can describe our problems over languages and automata as problems over strings (representing automata and languages).

Decidable Problems on Regular Languages

• Does \(B \) accept \(w \)?

• Is \(L(B) \) empty?

• Is \(L(A) = L(B) \)?
The acceptance problem for DFAs of testing whether a particular deterministic finite automaton accepts a given string can be expressed as a language, A_{DFA}.

This language contains the encodings of all DFAs together with strings that DFAs accept.

$$A_{DFA} = \{ <B,w> | B \text{ is a DFA that accepts input string } w \}.$$

The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether $<B,w>$ is a member of the language A_{DFA}.

Similarly, we can formulate other computational problems in terms of testing membership in a language.

Showing that the language is decidable is the same as showing that the computational problem is decidable.
Acceptance Problem for DFAs

THEOREM: \(A_{\text{DFA}} = \{<B,w> | B \text{ is a DFA that accepts input string } w\} \) is a decidable language.

PROOF IDEA:

- We simply need to present a TM \(M \) that decides \(A_{\text{DFA}} \).
- \(M = "\text{On input } <B,w>, \text{ where } B \text{ is a DFA and } w \text{ is a string:}"
 1. Simulate \(B \) on input \(w \).
 2. If the simulation ends in an accept state, **accept**. If it ends in a non-accepting state, **reject** ."
Emptiness Problem for DFAs

THEOREM: $E_{DFA} = \{ <A> \mid A \text{ is a DFA and } L(A) = \emptyset \}$ is a decidable language.

PROOF:

- A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible.
- To test this condition, we can design a TM T that uses a marking algorithm $T =$ “On input $<A>$, where A is a DFA:
 1. Mark the start state of A.
 2. Repeat until no new states get marked:
 3. Mark any state that has a transition coming into it from any state that is already marked.
 4. If no accept state is marked, accept; otherwise, reject.”
Equivalence Problem for DFAs

THEOREM: \(\text{EQ}_{\text{DFA}} = \{<A,B> \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\} \) is a decidable language.

PROOF:

- Construct the machine for
\[
L(C) = \left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right)
\]

T = “On input <A,B> where A and B are DFAs.
1. Construct the DFA for \(L(C) \) as described above.
2. Run TM T of Emptiness Theorem on input <C>.
3. If T accepts, **accept**; otherwise **reject.**”
Decidable Problems on Context-Free Languages

Decidable Problems on CFLs

- Does grammar G generate w?
- Is L(G) empty?

Undecidable Problems on CFLs

- Is L(G) = L(H) for grammars G and H?
Generation Problem for CFGs

THEOREM: \(A_{\text{CFG}} = \{<G,w> \mid G \text{ is a CFG that generates input string } w\} \) is a decidable language.

PROOF:

- The TM \(S \) for \(A_{\text{CFG}} \) is as follows.

\[
S = "\text{On input } <G,w>, \text{ where } G \text{ is a CFG and } w \text{ is a string:}"
\]

1. Convert \(G \) to an equivalent grammar in Chomsky normal form.
2. List all derivations with \(2n-1 \) steps, where \(n \) is the length of \(w \); except if \(n = 0 \), then instead list all derivations with one step.
 - This works because every derivation using a CFG in CNF either increase the length of the sentential form by 1 (using a rule like \(A \rightarrow BC \) or leaves it the same using a rule like \(A \rightarrow a \))
 - Obviously this is not very efficient as there may be exponentially many strings of length up to \(2n-1 \).
3. If any of these derivations generate \(w \), accept; if not, reject.”
THEOREM: $E_{CFG} = \{<G> | G \text{ is a CFG and } L(G) = \emptyset\}$ is a decidable language.

PROOF:

- The TM R for E_{CFG} is as follows.

\begin{align*}
R &= \text{“On input } <G>, \text{ where } G \text{ is a CFG:} \\
&\quad 1. \text{ Mark all terminal symbols in } G. \\
&\quad 2. \text{ Repeat until no new variables get marked:} \\
&\quad 3. \text{ Mark any variable } A \text{ where } G \text{ has a rule } A \rightarrow U_1 \ldots U_k \text{ and each symbol } U_1, \ldots, U_k \text{ has already been marked.} \\
&\quad 4. \text{ If the start variable is not marked, } \textbf{accept} \text{ ; otherwise, } \textbf{reject} .”
\end{align*}
Equivalence Problem for CFGs

\[EQ_{CFG} = \{ <G,H> \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \] is NOT a decidable language.

- It turns out that \(EQ_{DFA} \) is NOT a decidable language.
- The construction for DFAs does not work because CFLs are NOT closed under intersection and complementation.
Decidability of CFLs

THEOREM: Every context free language is decidable.

PROOF:

- Let G be a CFG for a CFL A and design a TM M_G that decides A. We build a copy of G into M_G.

$M_G = \text{“On input } w: \text{”}

1. Run TM S of Generation Theorem for CFGs on input $<G, w>$.
2. If this machine accepts, **accept** ; if it rejects, **reject** .”
Undecidability

• What sorts of problems are unsolvable by computer?
 – In one type of unsolvable problem, you are given a computer program and a precise specification of what that program is supposed to do. You need to verify that the program performs as specified or not.
 – *The general problem of software verification is not solvable by computer.*

• The problem of determining whether a Turing machine accepts a given input string is an undecidable problem
Acceptance Problem for TMs

• Remember that acceptance problems for DFAs and CFGs are decidable (i.e. \(A_{\text{DFA}} \) and \(A_{\text{CFG}} \) are decidable languages).

\textbf{THEOREM:} \(A_{\text{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and accepts string } w \} \) is UNDECIDABLE.

• Note that \(A_{\text{TM}} \) is Turing-recognizable.

• When this theorem when is proved, it shows that \textit{recognizers are more powerful than deciders}.
 – Requiring a TM to halt on all inputs restricts the kinds of languages that it can recognize.

• We can encode TMs with strings just like we did for DFAs
THEOREM: $A_{TM} = \{<M,w> \mid M \text{ is a TM and accepts string } w\}$ is UNDECIDABLE.

- The following Turing machine U recognizes A_{TM}.

 $U = \text{“On input } <M,w>, \text{ where } M \text{ is a TM and } w \text{ is a string:} \quad
 \begin{align*}
 1. & \quad \text{Simulate } M \text{ on input } w. \\
 2. & \quad \text{If } M \text{ ever enters its accept state, accept ; if } M \text{ ever enters its reject state, reject .”}
 \end{align*}$

- Note that if M loops on w, then U loops on $<M,w>$, i.e. U is NOT a decider!
- U can not detect that M halts on w.
- A_{TM} is also known as the Halting Problem
- U is known as the Universal Turing Machine because it can simulate every TM (including itself!)
The proof of the undecidability of A_{TM} uses a technique called diagonalization.

Some Basic Definitions:

- Let A and B be any two sets (not necessarily finite) and f be a function from A to B.
- f is **one-to-one** if $f(a) \neq f(b)$ whenever $a \neq b$.
- f is **onto** if for every $b \in B$ there is an $a \in A$ such that $f(a) = b$.
- We say A and B are the **same size** if there is a one-to-one and onto function $f : A \rightarrow B$:
- Such a function is called a **correspondence** for pairing A and B.
 - Every element of A maps to a unique element of B.
 - Each element of B has a unique element of A mapping to it.
Let N be the set of natural numbers $\{1,2,3,\ldots\}$ and let E be the set of even numbers $\{2,4,6,\ldots\}$.

- $f(n)=2n$ is a correspondence mapping N to E.
- Hence, N and E have the same size (even though $E \subseteq N$).

Definition: Countable Set

A set S is countable if it is either finite or has the same size as N (natural numbers).
Diagonalization Method

Countable Set

- Positive rational numbers \(Q = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \} \) is countable.

 - Correspondence:
 - list all the elements of \(Q \).
 - Then we pair the first element on the list with the number 1 from \(\mathbb{N} \), the second element on the list with the number 2 from \(\mathbb{N} \), and so on.
 - We must ensure that every member of \(Q \) appears only once on the list.
Diagonalization Method

Uncountable Set

• Are there infinite sets that are uncountable (i.e. No correspondence with N)? **YES**

THEOREM: The set of positive real numbers \(R \) are uncountable.

PROOF:

• In order to show that \(R \) is uncountable, we show that no correspondence exists between \(N \) and \(R \).

• The proof is by contradiction.
 – Suppose that a correspondence \(f \) existed between \(N \) and \(R \).
 – Our job is to show that \(f \) fails to work as it should.
 – For it to be a correspondence, \(f \) must pair all the members of \(N \) with all the members of \(R \).
 – But we will find an \(x \) in \(R \) that is not paired with anything in \(N \), which will be our contradiction.
Diagonalization Method

Uncountable Set

THEOREM: The set of positive real numbers \mathbb{R} are uncountable.

PROOF:

- Assume f exists and every number in \mathbb{R} is listed.
- Assume $x \in \mathbb{R}$ is a real number such that x differs from the j^{th} number in the j^{th} decimal digit.
- If x is listed at some position k, then it differs from itself at k^{th} position; otherwise the premise does not hold.
- f does not exist.

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
<th>$x = .4627\ldots$ defined as such, can not be on this list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3.14159\ldots$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$55.55555\ldots$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$0.12345\ldots$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$0.50000\ldots$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td></td>
</tr>
</tbody>
</table>
Diagonalization over Languages

- How many languages are there? ➔ uncountably many languages
- How many TMs are there? ➔ countably many TMs

- This means that there are some languages that
 - They are not decidable and even they are not Turing recognizable.

COROLLARY: Some languages are not Turing-recognizable.

- In order to prove this corollary, we have to show that there are countably many TMs and there are uncountably many languages.
COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all TMs is countable:

- For any alphabet \(\Sigma \), \(\Sigma^* \) is countable.
 - Order strings in \(\Sigma^* \) by length and then alphanumerically, so \(\Sigma^* = \{s_1, s_2, \ldots \} \)
 - \(\Sigma^* \) is countable.

- The set of all TMs is a countable language.
 - Each TM \(M \) corresponds to a string \(\langle M \rangle \).
 - Generate a list of strings and remove any strings that do not represent a TM to get a list of TMs.
 - Since \(\Sigma^* \) is countable, the set of all TMs is a countable language.
COROLLARY: Some languages are not Turing-recognizable.

PROOF: To show that the set of all languages is uncountable:

- The set of infinite binary sequences B is uncountable.
 - The same proof we gave for uncountability of R.

- The set of all languages L is uncountable.
 - Let L be the set of all languages over Σ.
 - For each language $A \in L$ there is unique infinite binary sequence X_A
 - The i^{th} bit in X_A is 1 if $s_i \in A$, 0 otherwise.
 - The function $f : L \rightarrow B$ is a correspondence. Thus L is uncountable.

- So, there are languages that can not be recognized by some TM.
- There are not enough TMs to go around.
THEOREM: $A_{TM} = \{<M,w> | M \text{ is a TM and accepts string } w\}$ is UNDECIDABLE.

PROOF:

• We assume that A_{TM} is decidable and obtain a contradiction.
• Suppose that H is a decider for A_{TM}, i.e. H is a TM where

$$H(<M,w>) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}$$

• H produces reject if M rejects w or M runs forever.
Acceptance Problem for TMs
Halting Problem is Undecidable

PROOF (cont.):

• Now, construct a new TM D

 \[D = "On \text{ input } \langle M \rangle, \text{ where } M \text{ is a TM:} \]

 1. Run \(H \) on input \(\langle M, \langle M \rangle \rangle \).
 2. Output the opposite of what \(H \) outputs. That is, if \(H \) accepts, \textit{reject}; and if \(H \) rejects, \textit{accept}.”

• So,

 \[
 D(\langle M \rangle) = \begin{cases}
 \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\
 \text{reject} & \text{if } M \text{ accepts } \langle M \rangle.
 \end{cases}
 \]

• Run D with its own description \(\langle D \rangle \) as input:

 \[
 D(\langle D \rangle) = \begin{cases}
 \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\
 \text{reject} & \text{if } D \text{ accepts } \langle D \rangle.
 \end{cases}
 \]

• No matter what D does, it is forced to do the opposite, \(\Rightarrow \) a contradiction.

• Thus, neither TM D nor TM H can exist.
Diagonalization in Halting Problem

• Where is the diagonalization in the proof of Halting Problem?

• List all TMs down the rows, M_1, M_2, \ldots, and all their descriptions across the columns, $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$

• The entries tell whether the machine in a given row accepts the input in a given column.
 – The entry is accept if the machine accepts the input but is blank if it rejects or loops on that input.

<table>
<thead>
<tr>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td></td>
<td></td>
<td></td>
<td>\ldots</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Diagonalization in Halting Problem

- The results of running H on inputs:

<table>
<thead>
<tr>
<th>$\langle M_1 \rangle$</th>
<th>$\langle M_2 \rangle$</th>
<th>$\langle M_3 \rangle$</th>
<th>$\langle M_4 \rangle$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
</tr>
<tr>
<td>M_2</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>M_3</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

\begin{tabular}{c|cccc}
| M_1 & M_2 & M_3 & M_4 & \cdots \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>\cdots</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>\vdots</td>
</tr>
<tr>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>\vdots</td>
</tr>
<tr>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>\vdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
\end{tabular}
Diagonalization in Halting Problem

- Consider the behavior of all possible deciders:
 - D computes the opposite of the diagonal entries!

\[
\begin{array}{cccccccc}
\langle M_1 \rangle & \langle M_2 \rangle & \langle M_3 \rangle & \langle M_4 \rangle & \ldots & \langle D \rangle & \ldots \\
M_1 & \text{accept} & \text{reject} & \text{accept} & \text{reject} & \text{accept} & \\
M_2 & \text{accept} & \text{accept} & \text{accept} & \text{accept} & \ldots & \text{accept} & \ldots \\
M_3 & \text{reject} & \text{reject} & \text{reject} & \text{reject} & \ldots & \text{reject} & \ldots \\
M_4 & \text{accept} & \text{accept} & \text{reject} & \text{reject} & \text{accept} & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
D & \text{reject} & \text{reject} & \text{accept} & \text{accept} & \text{?} & \text{a contradiction occurs at “?”} & \\
\vdots & \\
\end{array}
\]
A Turing-Unrecognizable Language

- A_{TM} is an undecidable language (but it is a Turing-recognizable language).

- A language is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

THEOREM:

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

- In other words, a language is decidable exactly when both it and its complement are Turing-recognizable.
A Turing-Unrecognizable Language

COROLLARY: \(A_{TM} \) is not Turing-recognizable.

PROOF:

• We know \(A_{TM} \) is Turing-recognizable.

• If \(AT_M \) were also Turing-recognizable, \(A_{TM} \) would have to be decidable.

• We know \(A_{TM} \) is not decidable.

• \(AT_M \) must not be Turing-recognizable.