
BBS514 Structured Programming (with Java) 1

Loops

BBS514 Structured Programming (with Java) 2

Loops

• while loop

• do-while loop

• for loop

• Nested loops

• Repetition statements allow us to execute a statement (or statements) multiple times.

• Repetition statements are often referred to as loops.

• Like conditional statements, loops are controlled by boolean expressions

• Java has three kinds of looping structures:

while loop

do-while loop

for loop

• The programmer should choose the right kind of loop for the situation.

Repetition Statements

BBS514 Structured Programming (with Java) 3

• The most general one of loop statements is while statement.

while (boolean-expression)

statement

where statement can be any statement including a compound statement, an if-
statement, another loop statement, ...

• Statement is repeated as long as the condition (boolean-expression) is true.

• When the condition gets false, the statement is not executed anymore.

while Loop

BBS514 Structured Programming (with Java) 4

while (condition) while (condition) {

statement statements

}

• While the condition is true, the statements will execute repeatedly.

while Statement – Flow Diagram

BBS514 Structured Programming (with Java) 5

condition statement(s)
true

false

while (condition)

statement

• Statement is repeated as long as the condition (boolean-expression) is true.

– When the condition gets false, the statement is not executed anymore.

• Somewhere in the loop, some operations should make the condition false so that the
loop can end.

• If the condition never gets false  infinite loop

• If the condition gets immediately false  the loop will be repeated zero times.

while Loop

BBS514 Structured Programming (with Java) 6

int product = 2;

while (product <= 20)

product = 2 * product;

System.out.println("Loop ends.");

while Loop – Example

BBS514 Structured Programming (with Java) 7

product <= 20 product = 2 * product
true

false

System.out.println("Loop ends.");

loop condition

loop body

int number = 1;

while (number < 5)

{

System.out.println("Hello");

number++;

}

System.out.println("after loop.");

while Loop with multiple statements – Example

BBS514 Structured Programming (with Java) 8

loop body

• In order for a while loop to end, the condition must become false.

• A statement in the loop eventually must make the condition false.

• If not, it is called an infinite loop, which will execute until the user interrupts the

program

• This is a common logical error.

• You should always double check the logic of a program to ensure that your loops will

terminate normally.

Infinite Loops

BBS514 Structured Programming (with Java) 9

• The following loop will not end:

int x = 20;

while(x > 0)

{

System.out.println("x is greater than 0: " + x);

}

x--;

• The variable x never gets decremented so it will always be greater than 0.

• Adding the x--; above fixes the problem.

Infinite Loops

BBS514 Structured Programming (with Java) 10

• The following loop will not end:

int count = 1;

while (count <= 25)

{

System.out.println("count is " + count);

count = count - 1;

}

Infinite Loops

BBS514 Structured Programming (with Java) 11

count = count + 1;

• The following loop will not end:

int count = 1;

while (count != 50)

{

System.out.println("count is " + count);

count = count + 2;

}

Infinite Loops

BBS514 Structured Programming (with Java) 12

while (count <= 50)

• Input validation is the process of ensuring that user input is valid.

System.out.print("Enter a number in the range of 1 through 100:");

number = keyboard.nextInt();

// Validate the input.

while (number < 1 || number > 100)

{

System.out.println("That number is invalid.");

System.out.print("Enter a number in the range of 1 through 100:");

number = keyboard.nextInt();

}

while Loop for Input Validation

BBS514 Structured Programming (with Java) 13

• A loop that repeats a specific number of times is known as a counter-controlled loop.

– its condition depends on the value of a counter variable.

• A counter-controlled loop possesses three elements:

1. It should initialize a control variable to a starting value.

2. It should test the control variable by comparing it to a maximum (or minimum)

value. When the control variable reaches its maximum (minimum) value, the loop

terminates.

3. It should update (increment or decrement) the control variable.

Counter-Controlled Loop

BBS514 Structured Programming (with Java) 14

• Print 5 asterisk characters

• The loop will be repeated for 5 times (for count values: 0,1,...,4)

int count = 0;

while (count < 5)

{

System.out.println("*");

count = count + 1;

}

System.out.println("done");

while Statement: Counter-Controlled Loop

BBS514 Structured Programming (with Java) 15

*

*

*

*

*

done

• Read and sum 5 integer values

int num;

int sum = 0;

int count = 0;

while (count < 5)

{

System.out.print("Enter an integer: ");

num = keyboard.nextInt();

sum = sum + num;

count = count + 1;

}

System.out.println("sum is " + sum);

while Statement: Counter-Controlled Loop

BBS514 Structured Programming (with Java) 16

Enter an integer: 5

Enter an integer: 3

Enter an integer: 7

Enter an integer: 4

Enter an integer: 1

sum is 20

• A class of 10 students took a quiz.

• The grades are integers in the range 0 to 100.

• Determine the class average on the quiz

The algorithm:

Set total to zero

Set grade counter to one

While grade counter is less than or equal to 10

Input the next grade

Add the grade into the total

Add one to the grade counter

Set the class average to the total divided by ten

Print the class average

Example: Counter-Controlled Repetition

BBS514 Structured Programming (with Java) 17

import java.util.*;

/* Class average program with counter-controlled repetition */

public class ClassAverage {

public static void main(String[] args){

int counter, total, grade;

double average;

Scanner keyboard = new Scanner(System.in);

total = 0;

counter = 1;

while (counter <= 10) {

System.out.print("Enter grade: ");

grade = keyboard.nextInt();

total = total + grade;

counter = counter + 1;

}

average = total / 10.0;

System.out.println("Class average is " + average);

}

}

Example: Counter-Controlled Repetition

The Java Program

BBS514 Structured Programming (with Java) 18

Enter grade: 98

Enter grade: 76

Enter grade: 71

Enter grade: 87

Enter grade: 83

Enter grade: 90

Enter grade: 57

Enter grade: 79

Enter grade: 82

Enter grade: 94

Class average is 81.7

• What happens if we don’t know how many times a loop will run.

• Ex: a loop which reads the scores of the students in an exam and find the average of

the scores;

– we don’t know the number of students.

– How are we going to stop the loops?

 use a sentinel-value

• We choose a sentinel-value which can not be a score (e.g. –1)

• We read the scores until this sentinel-value has been entered.

– When this sentinel-value has been read, we stop the loop.

Sentinel-Controlled Loops

BBS514 Structured Programming (with Java) 19

• Problem becomes:

Develop a class-averaging program that will process an arbitrary number of grades

each time the program is run.

– Unknown number of students

– How will the program know to end?

• Use sentinel value

– Also called signal value, dummy value, or flag value

– Indicates “end of data entry.”

– Loop ends when user inputs the sentinel value

– Sentinel value chosen so it cannot be confused with a regular input (such as -1 in

this case)

A Similar Problem: Sentinel-Controlled Loops

BBS514 Structured Programming (with Java) 20

import java.util.*;

/* Finding the average of an arbitrary number of grades */

public class ClassAverageArbitrary{

public static void main(String[] args){

int counter, total,grade;

double average=0;

Scanner keyboard = new Scanner(System.in);

total = 0;

counter = 0;

System.out.print("Enter grade, -1 to end:");

grade = keyboard.nextInt();

while (grade != -1) {

total = total + grade;

counter = counter + 1;

System.out.print("Enter grade, -1 to end:");

grade = keyboard.nextInt();

}

if (counter != 0)

average = (double)total / counter;

System.out.println("Class average is " + average);

}

}

A Similar Problem: Solution

BBS514 Structured Programming (with Java) 21

Enter grade, -1 to end: 75

Enter grade, -1 to end: 94

Enter grade, -1 to end: 97

Enter grade, -1 to end: 88

Enter grade, -1 to end: 70

Enter grade, -1 to end: 64

Enter grade, -1 to end: 83

Enter grade, -1 to end: 89

Enter grade, -1 to end: -1

Class average is 82.5

• The do/while loop

– Similar to the while loop

– The condition of the loop is tested after the body of the loop is performed.

• The loop body is performed at least once.

do {

statement(s)

} while (condition);

do/while Loop

BBS514 Structured Programming (with Java) 22

do-while statement – Flow Diagram

BBS514 Structured Programming (with Java) 23

statement(s)

condition

false

true

public class DoWhileTest {

public static void main(String[] args) {

int counter = 1;

do {

System.out.print(counter + " ");

counter = counter + 1;

} while (counter <= 10);

}

}

Program Output:

1 2 3 4 5 6 7 8 9 10

do-while loop – Example

BBS514 Structured Programming (with Java) 24

import java.util.Scanner;

public class CircleArea {

public static void main(String[] args) {

double radius, area;

String input;

char repeat;

Scanner keyboard = new Scanner(System.in);

do {

System.out.print("Enter radius: ");

radius = keyboard.nextDouble();

keyboard.nextLine();

area = radius*radius*3.14;

System.out.println(

"The area of the circle with radius "

+ radius + " is " + area);

System.out.println("\nDo you want continue?");

System.out.print("Enter Y or N : ");

input = keyboard.nextLine(); // Read line.

repeat = input.charAt(0); // Get first char.

} while (repeat == 'Y' || repeat == 'y');

}

}

do-while loop – Example

BBS514 Structured Programming (with Java) 25

Enter radius: 10

The area of the circle with radius 10.0 is 314.0

Do you want continue?

Enter Y or N : y

Enter radius: 5

The area of the circle with radius 5.0 is 78.5

Do you want continue?

Enter Y or N : Y

Enter radius: 4

The area of the circle with radius 4.0 is 50.24

Do you want continue?

Enter Y or N : n

• Another loop statement in Java is for-statement.

• for-statement is more suitable for counter-controlled loops.

• The for loop allows the programmer to initialize a control variable, test a condition,

and modify the control variable all in one line of code.

for (initialization ; test ; update) {

statement(s) ;

}

for (initialization ; test ; update)

statement

for Loop

BBS514 Structured Programming (with Java) 26

for (initialization; test; update) {

statement(s) ;

}

• The initialization section of the for loop
allows the loop to initialize its own control
variable.

• The test section of the for statement acts in
the same manner as the condition section of
a while loop.

• The update section of the for loop is the
last thing to execute at the end of each loop.

for Statement – Flow Diagram

BBS514 Structured Programming (with Java) 27

initialization

statement(s)

update

condition
false

true

initialization:

• Typically, for loops initialize a counter variable that will be tested by the test section

of the loop and updated by the update section.

• The initialization section can initialize multiple variables.

• Variables declared in this section have scope only for the for loop.

test:

• Typically, the boolean expression in the test section tests the value of the control

variable.

update:

• The update expression is usually used to increment or decrement the counter

variable(s) that are initialized in the initialization section of the for loop.

• The update section of the loop executes last in the loop.

• The update section may update multiple variables.

Sections of for Loop

BBS514 Structured Programming (with Java) 28

for (initialization ; test ; update) {

statement(s) ;

}

is equivalent to

initialization ;

while (test) {

statement(s) ;

update ;

}

for Statement

BBS514 Structured Programming (with Java) 29

for(counter = 1; counter <= 10; counter++)

System.out.print(counter + " ");

• Prints the integers from one to ten. 1 2 3 4 5 6 7 8 9 10

• This for loop is equivalent to

counter = 1;

while(counter <= 10) {

System.out.print(counter + " ");

counter++;

}

for Statement – Example

BBS514 Structured Programming (with Java) 30

int i; int i;

int sum = 0; int sum = 0;

for (i=1; i<=20; i++)  i = 1;

sum = sum + i; while (i<=20) {

sum = sum + i;

i++;

}

int i; int i;

int sum = 0; int sum = 0;

for (i=100; i>=1; i--)  i = 100;

sum = sum + i; while (i>=1) {

sum = sum + i;

i--;

}

for Statement – Example

BBS514 Structured Programming (with Java) 31

• The for loop may initialize and update multiple variables.

– Multiple initializations and multiple update expressions are comma-separated lists.

for (i = 0, j = 0; i+j <= 10; i++, j++)

System.out.println(i+j);

Output:

0

2

4

6

8

10

Multiple Initializations and Updates

BBS514 Structured Programming (with Java) 32

• Control (loop) variables can be also declared in the initialization section.

– In this case, the scope of those variables will be only that for loop structure.

– i.e. That declaration will be only valid in that loop structure.

• Or, control (loop) variables can be declared at the begining of the method.

– The scope of those variables will be only that method.

for (int i=1; i<=10; i++)

System.out.print(i+" ");

Control Variable Declarations

BBS514 Structured Programming (with Java) 33

int i;

for(i = 1; i<= 10; i++)

System.out.print(i+" ");

for (int i=0, j=0; i+j<=10; i++, j++)

System.out.println(i+j);

Control Variable Declarations

BBS514 Structured Programming (with Java) 34

int i, j;

for (i=0, j=0; i+j<=10; i++, j++)

System.out.println(i+j);

scope: The part of a program where a variable exists.

– From its declaration to the end of the { } braces

– A variable declared in a for loop exists only in that loop.

public static void main(String[] args) {

int x = 3;

for (int i = 1; i <= 10; i++) {

System.out.println(x);

}

// i no longer exists here

} // x ceases to exist here

Scope

BBS514 Structured Programming (with Java) 35

x's scopei's scope

• Variables without overlapping scope can have same name.

for (int i = 1; i <= 100; i++) {

System.out.print("\\");

}

int i = 5; // OK: outside of loop's scope

• A variable can't be used out of its scope.

for (int i = 1; i <= 100 * line; i++) {

System.out.print("/");

}

i = 4; // ERROR: outside scope

Scope implications

BBS514 Structured Programming (with Java) 36

• Adding even numbers

/* Summation of even numbers up to 100 with for */

int sum = 0;

for (int number = 2; number <= 100; number += 2)

sum += number;

System.out.println("Sum is " + sum);

Output:

Sum is 2550

for Loop – Example

BBS514 Structured Programming (with Java) 37

• Printing Celsius and Fahrenheit table.

for (int i = 0; i <= 5; i++)

System.out.println(i + " " + (i * 1.8 + 32));

Output:

0 32.0

1 33.8

2 35.6

3 37.4

4 39.2

5 41.0

for Loop – Example

BBS514 Structured Programming (with Java) 38

• The body of a loop can contain any kind of statements, including another loop.

• When a loop body includes another loop construct this is called a nested loop.

• In a nested loop structure the inner loop is executed from the beginning every time the

body of the outer loop is executed.

Example 1:

int value = 0;

for (int i=1; i<=10; i=i+1)

for (int j=1; j<=5; j=j+1)

value = value + 1;

• How many times the inner loop is executed?

 value is 10*5=50

Nested Loops

BBS514 Structured Programming (with Java) 39

Example 2:

int value = 0;

for (int i=1; i<=10; i=i+1) {

for (int j=1; j<=i; j=j+1) {

value = value + 1;

}

}

How many times the inner loop is executed?

 value is 1+2+3+4+5+6+7+8+9+10=55

Nested Loops

BBS514 Structured Programming (with Java) 40

Example 3:

for (int i = 1; i <= 5; i++) {

for (int j = 1; j <= 10; j++) {

System.out.print("*");

}

System.out.println(); // to end the line

}

Output: The outer loop repeats 5 times; the inner one 10 times.

Nested Loops

BBS514 Structured Programming (with Java) 41

• Write a program to draw a triangle like the following:

*

**

• We can use a nested for-loop:

Nested Loops - Printing a triangle

BBS514 Structured Programming (with Java) 42

• A triangle shape (1st line contains 1 star, 2nd line contains 3 star, ... , nth line contains

2n-1 stars)

*

Nested Loops – Example

BBS514 Structured Programming (with Java) 43

import java.util.Scanner;

public class NestedLoop2 {

public static void main(String[] args) {

int n;

Scanner keyboard = new Scanner(System.in);

System.out.print("Number of lines: ");

n = keyboard.nextInt();

for (int i=1; i<=n; i++) { // for each line

for (int j=1; j<=(n-i); j++)

System.out.print(" ");

for (int j=1; j<=(2*i-1); j++)

System.out.print("*");

System.out.println();

}

}

}

• Nesting can be more than one level

int sum=0;

for (int i=1; i<=5; i++)

for (int j=1; j<=5; j++)

for (int k=1; k<=5; k++)

sum=sum+1;  sum is 125

Nested Loops – Example

BBS514 Structured Programming (with Java) 44

• Write a program segment that computes N!.

int fact = 1;

for (int j = 1; j <= n; j++)

fact = fact * j;

• Write a program segment for finding the sum of the first N terms of the series

1 + 1/2+ 1/3 + ….

double sum = 0;

for (int j = 1; j <= n; j++)

sum = sum + 1.0 / j;

Loop - Exercises

BBS514 Structured Programming (with Java) 45

• What nested for loops produce the following output?

....1

...2

..3

.4

5

• We must build multiple complex lines of output using:

– an outer loop for each of the lines

– inner loop(s) for the patterns within each line

Loop - Exercises

BBS514 Structured Programming (with Java) 46

outer loop (loops 5 times

because there are 5 lines)

inner loop (repeated characters on each line)

• First write the outer loop, from 1 to the number of lines.

for (int line = 1; line <= 5; line++) {

...

}

• Now look at the line contents. Each line has a pattern: some dots (0 dots on the last

line), then a number

....1

...2

..3

.4

5

Loop - Exercises

BBS514 Structured Programming (with Java) 47

• Observation: the number of dots is
related to the line number.

there are 4 dots in line 1 (# of dots= 5 - 1);

there are 3 dots in line 2 (# of dots= 5 - 2);

…

 There must be (5-i) dots in line i.

Answer:

// repeat for each line

for (int line = 1; line <= 5; line++) {

// print dots in the line

for (int j = 1; j <= (5 - line); j++) {

System.out.print(".");

}

// print line number and move to the next line

System.out.println(line);

}

Output:

....1

...2

..3

.4

5

Loop - Exercises

BBS514 Structured Programming (with Java) 48

// A program that reads numbers until a negative number is read and

// prints number of values read, largest value and smallest value

import java.util.Scanner;

public class MaxMinVal {

public static void main(String[] args) {

Scanner keyboard = new Scanner(System.in);

int num, maxVal, minVal, numOfVals = 0;

System.out.println("Enter a sequence of positive numbers ending with -1: ");

num = keyboard.nextInt();

minVal = num;

maxVal = num;

while (num >= 0) {

numOfVals++;

if (num < minVal)

minVal = num;

else if (num > maxVal)

maxVal = num;

num = keyboard.nextInt();

}

System.out.println("Number of values: " + numOfVals +

"\nLargest value : " + maxVal +

"\nSmallest value: " + minVal);

}

}

Loop Exercises – Program 1

BBS514 Structured Programming (with Java) 49

Enter a sequence of positive numbers ending with -1:
5 2 3 6 1 8 3 2 4 -1
Number of values: 9
Largest value : 8
Smallest value: 1

Loop Exercises – Program 2

BBS514 Structured Programming (with Java) 50

Enter a positive integer: 4
4 th fibonacci number is 3

Loop Exercises – Program 3

BBS514 Structured Programming (with Java) 51

Enter a positive integer > 1: 53
53 is a prime number.

