Finite Automata

Deterministic Finite Automata (DFA)

• A Deterministic Finite Automata (DFA) is a quintuple

 $\mathbf{A} = (\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \mathbf{q}_0, \mathbf{F})$

- 1. Q is a finite set of states
- 2. Σ is a finite set of symbols (alphabet)
- 3. Delta (δ) is a transition function (q,a) \rightarrow p
- 4. q_0 is the start state ($q_0 \in Q$)
- 5. F is a set of final (accepting) states ($F \subseteq Q$)
- Transition function takes two arguments: a state and an input symbol.
- δ(q, a) = the state that the DFA goes to when it is in state q and input a is received.

Graph Representation of DFA's

- Nodes = states.
- Arcs represent transition function.
- Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
- Arrow labeled "Start" to the start state.
- Final states indicated by double circles.

Alternative Representation: Transition Table

Strings Accepted By A DFA

- An DFA accepts a string $w = a_1 a_2 \dots a_n$ if its path in the transition diagram that
 - 1. Begins at the start state
 - 2. Ends at an accepting state
- This DFA accepts input: 010001
- This DFA rejects input: 011001

Extended Delta Function – Delta Hat

• The transition function δ can be extended to $\hat{\delta}$ that operates on states and strings (as opposed to states and symbols)

 $\delta(q,\varepsilon) = q$

 $\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x), a)$

Language Accepted by a DFA

• Formally, the language accepted by a DFA A is

$$L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

- Languages accepted by DFAs are called as **regular languages**.
 - Every DFA accepts a regular language, and
 - For every regular language there is a DFA accepts it

Language Accepted by a DFA

- This DFA accepts all strings of 0's and 1's without two consecutive 1's.
- Formally,

 $L(A) = \{ w | w \text{ is in } \{0,1\}^* \text{ and } w \text{ does not have two consecutive 1's } \}$

DFA Example

• A DFA accepting all and only strings with an even number of 0's and an even number of 1's

Tabular representation of the DFA

	0	1
$\star \rightarrow q_0$	<i>q</i> ₂	q_1
q_1	q_3	q_{O}
q_2	q_0	q_{3}
q_{3}	q_1	q_2

Proofs of Set Equivalence

- We need to prove that two descriptions of sets are in fact the same set.
- Here, one set is "the language of this DFA," and the other is "the set of strings of 0's and 1's with no consecutive 1's."
- In general, to prove S=T, we need to prove two parts: S \subseteq T and T \subseteq S. That is:
 - 1. If w is in S, then w is in T.
 - 2. If w is in T, then w is in S.
- As an example, let S = the language of our running DFA, and T = "no consecutive 1's." $\land 0$

Proof Part 1 : $S \subseteq T$

- **To prove**: if w is accepted by our DFA then w has no consecutive 1's.
- Proof is an induction on length of w.
- **Important trick**: Expand the inductive hypothesis to be more detailed than you need.

The Inductive Hypothesis

1. If $\hat{\delta}(A, w) = A$, then w has no consecutive 1's and does not end in 1.

2. If $\hat{\delta}(A, w) = B$, then w has no consecutive 1's and ends in a single 1.

- **Basis**: |w| = 0; i.e., $w = \epsilon$.
 - (1) holds since ϵ has no 1's at all.
 - (2) holds *vacuously*, since $\hat{\delta}(A, \epsilon)$ is not B.

Important concept: If the "if" part of "if..then" is false, the statement is true.

Inductive Step

- Need to prove (1) and (2) for w = xa.
- (1) for w is: If $\hat{\delta}(A, w) = A$, then w has no consecutive 1's and does not end in 1.
- Since $\hat{\delta}(A, w) = A$, $\hat{\delta}(A, x)$ must be A or B, and a must be 0 (look at the DFA).
- By the IH, x has no 11's.
- Thus, w has no 11's and does not end in 1.

Inductive Step

- Now, prove (2) for w = xa: If δ(A, w) = B, then w has no 11's and ends in 1.
- Since $\hat{\delta}(A, w) = B$, $\hat{\delta}(A, x)$ must be A, and a must be 1 (look at the DFA).
- By the IH, x has no 11's and does not end in 1.
- Thus, w has no 11's and ends in 1.

Proof Part 1 : $T \subseteq S$

• Now, we must prove:

if w has **no** 11's, then w is accepted by our DFA

• *Contrapositive* : If w is **not** accepted by our DFA then w has 11.

Key idea: contrapositive of "if X then Y" is the equivalent statement "if not Y then not X."

Using the Contrapositive

- Every w gets the DFA to exactly one state.
 - Simple inductive proof based on:
 - Every state has exactly one transition on 1, one transition on 0.
- The only way w is not accepted is if it gets to C.
- The only way to get to C [formally: δ(A,w) = C] is if w = x1y, x gets to B, and y is the tail of w that follows what gets to C for the first time.
- If $\hat{\delta}(A,x) = B$ then surely x = z1 for some z.
- Thus, w = z11y and has 11.

Nondeterministic Finite Automata (NFA)

- A NFA can be in several states at once, or, it can "guess" which state to go to next.
- A NFA state can have more than one arc leaving from that state with a same symbol.
- *Example*: An automaton that accepts all and only strings ending in 01.

• State q_0 can go to q_0 or q_1 with the symbol 0.

• What happens when the NFA processes the input 00101

• In fact, all missing arcs go to a death state, the death state goes to itself for all symbols, and the death state is a non-accepting state.

Definition of Nondeterministic Finite Automata

- Formally, a Nondeterministic Finite Automata (NFA) is a quintuple $A = (Q, \Sigma, \delta, q_0, F)$
- 1. Q is a finite set of states
- 2. Σ is a finite set of symbols (alphabet)
- 3. Delta (δ) is a transition function from $Qx\Sigma$ to the powerset of Q.
- 4. q_0 is the start state ($q_0 \in Q$)
- 5. F is a set of final (accepting) states ($F \subseteq Q$)
- Transition function takes two arguments: a state and an input symbol.
- $\delta(q, a) =$ the set of the states that the DFA goes to when it is in state q and input a is received.

NFA – Table Representation

The table representation of this NFA is as follows.

NFA is $(\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$

its transition function is

Extended Transition Function for NFA – Delta Hat

• The transition function δ can be extended to $\hat{\delta}$ that operates on states and strings (as opposed to states and symbols)

Basis: $\widehat{\delta}(q,\varepsilon) = q$ Induction:If $\widehat{\delta}(q,x) = \{p_1,p_2,...,p_k\}$ for a string x, then

$$\hat{\delta}(\mathbf{q},\mathbf{xa}) = \bigcup_{i=1}^{k} \delta(p_i, a)$$

For the string w = xa, we compute $\hat{\delta}(q,x)$ first, then we follow any transition from any of the states with the symbol a.

Language of a NFA

• The language accepted by a NFA A is

$$L(A) = \{ w : \widehat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

• i.e. a string w is accepted by a NFA A iff the states that are reachable from the starting state by consuming w contain at least one final state.

Language of a NFA - Example

• Let's prove formally that the NFA

accepts the language $\{x01 : x \in \Sigma^*\}$. We'll do a mutual induction on the following three statements,

$$w \in \Sigma^* \Rightarrow q_0 \in \widehat{\delta}(q_0, w)$$
$$q_1 \in \widehat{\delta}(q_0, w) \Leftrightarrow w = x0$$
$$q_2 \in \widehat{\delta}(q_0, w) \Leftrightarrow w = x01$$

Proof

BASIS: If |w| = 0, then $w = \epsilon$. Statement (1) says that $\hat{\delta}(q_0, \epsilon)$ contains q_0 , which it does by the basis part of the definition of $\hat{\delta}$. For statement (2), we know that ϵ does not end in 0, and we also know that $\hat{\delta}(q_0, \epsilon)$ does not contain q_1 , again by the basis part of the definition of $\hat{\delta}$. Thus, the hypotheses of both directions of the if-and-only-if statement are false, and therefore both directions of the statement are true. The proof of statement (3) for $w = \epsilon$ is essentially the same as the above proof for statement (2).

INDUCTION: Assume that w = xa, where a is a symbol, either 0 or 1. We may assume statements (1) through (3) hold for x, and we need to prove them for w. That is, we assume |w| = n + 1, so |x| = n. We assume the inductive hypothesis for n and prove it for n + 1.

- 1. We know that $\hat{\delta}(q_0, x)$ contains q_0 . Since there are transitions on both 0 and 1 from q_0 to itself, it follows that $\hat{\delta}(q_0, w)$ also contains q_0 , so statement (1) is proved for w.
- 2. (If) Assume that w ends in 0; i.e., a = 0. By statement (1) applied to x, we know that $\hat{\delta}(q_0, x)$ contains q_0 . Since there is a transition from q_0 to q_1 on input 0, we conclude that $\hat{\delta}(q_0, w)$ contains q_1 .

(Only-if) Suppose $\hat{\delta}(q_0, w)$ contains q_1 . If we look at the diagram of Fig. 2.9, we see that the only way to get into state q_1 is if the input sequence w is of the form x0. That is enough to prove the "only-if" portion of statement (2).

3. (If) Assume that w ends in 01. Then if w = xa, we know that a = 1 and x ends in 0. By statement (2) applied to x, we know that δ(q₀, x) contains q₁. Since there is a transition from q₁ to q₂ on input 1, we conclude that δ(q₀, w) contains q₂.

(Only-if) Suppose $\hat{\delta}(q_0, w)$ contains q_2 . Looking at the diagram of Fig. 2.9, we discover that the only way to get to state q_2 is for w to be of the form x1, where $\hat{\delta}(q_0, x)$ contains q_1 . By statement (2) applied to x, we know that x ends in 0. Thus, w ends in 01, and we have proved statement (3).

Equivalence of DFA and NFA

- NFA's are usually easier to construct.
- Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N), and vice versa.
- This involves the subset construction, an important example how an automaton B can be generically constructed from another automaton A.
- Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

we will constract a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

such that L(D) = L(N)

Subset Construction

•
$$Q_D = \{S : S \subseteq Q_N\}.$$

Note: $|Q_D| = 2^{|Q_N|}$, although most states in Q_D are likely to be garbage.

•
$$F_D = \{ S \subseteq Q_N : S \cap F_N \neq \emptyset \}$$

• For every $S \subseteq Q_N$ and $a \in \Sigma$,

$$\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$$

Subset Construction - Example

Subset Construction – Accessible States

• We can often avoid the exponential blow-up by constructing the transition table for D only for accessible states S as follows:

Basis: $S = \{q_0\}$ is accessible in D

Induction: If state *S* is accessible, so are the states in $\bigcup_{a \in \Sigma} \delta_D(S, a)$.

Subset Construction – Accessible States (example)

Equivalence of DFA and NFA - Theorem

Theorem: Let D be the *subset* DFA of an NFA N. Then L(D) = L(N). **Proof:** We show on an induction on |w| that $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$

Basis: w = ε . The claim follows from definition. **Induction:** $\hat{\delta}_D(\{q_0\}, xa) \stackrel{\text{def}}{=} \delta_D(\hat{\delta}_D(\{q_0\}, x), a)$

 $\stackrel{\text{i.h.}}{=} \delta_D(\widehat{\delta}_N(q_0, x), a)$

$$\stackrel{\mathsf{cst}}{=} \bigcup_{p \in \widehat{\delta}_N(q_0, x)} \delta_N(p, a)$$

$$\stackrel{\text{def}}{=} \widehat{\delta}_N(q_0, xa)$$

Equivalence of DFA and NFA – Theorem 2

Theorem: A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The if-part is proved by the previous theorem.

For the only-if-part, we note that any DFA can be converted to an equivalent NFA by modifying the δ_D to δ_N by the rule

If $\delta_D(q, a) = p$, then $\delta_N(q, a) = \{p\}$.

By induction on |w| it will be shown in the tutorial that if $\hat{\delta}_D(q_0, w) = p$, then $\hat{\delta}_N(q_0, w) = \{p\}$.

A Bad Case for Subset Construction -Exponential Blow-Up

• There is an NFA N with n+1 states that has no equivalent DFA with fewer than 2ⁿ states

A NFA for Text Search

• NFA accepting the set of keywords {ebay, web}

Corresponding DFA for Text Search

BİL405 - Automata Theory and Formal Languages

NFA with Epsilon Transitions - ε-NFA

- ϵ -NFA's allow transtions with ϵ label.
- Formally, ε -NFA is a quintuple A = (Q, Σ , δ , q_0 , F)
- 1. Q is a finite set of states
- 2. Σ is a finite set of symbols (alphabet)
- 3. Delta (δ) is a transition function from Q x $\Sigma \cup \{\epsilon\}$ to the powerset of Q.
- 4. q_0 is the start state ($q_0 \in Q$)
- 5. F is a set of final (accepting) states ($F \subseteq Q$)

ε-NFA Example

- An ε-NFA accepting decimal numbers consisting of:
 - 1. An optional + or sign
 - 2. A string of digits
 - 3. a decimal point
 - 4. another string of digits
- One of the strings in (2) and .(4) are optional

BİL405 - Automata Theory and Formal Languages

ε-NFA Example - Transition Table

 $E = (\{q_0, q_1, \ldots, q_5\}, \{., +, -, 0, 1, \ldots, 9\} \ \delta, q_0, \{q_5\})$

Transition Table

	ϵ	+,-		0, , 9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_{1}	Ø	Ø	$\{q_2\}$	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_{3}\}$
q_{3}	$\{q_{5}\}$	Ø	Ø	$\{q_{3}\}$
q_{4}	Ø	Ø	$\{q_{3}\}$	Ø
$\star q_5$	Ø	Ø	Ø	Ø

Epsilon Closure

- We close a state by adding all states reachable by a sequence $\epsilon\epsilon \dots \epsilon$
- Inductive denition of ECLOSE(q)

Basis: $q \in ECLOSE(q)$

Induction: $p \in ECLOSE(q)$ and $r \in \delta(p, \epsilon) \rightarrow r \in ECLOSE(q)$

Epsilon Closure

 $ECLOSE(1) = \{1,2,3,4,6\}$ $ECLOSE(2) = \{2,3,6\}$ $ECLOSE(3) = \{3,6\}$ $ECLOSE(4) = \{4\}$ $ECLOSE(5) = \{5,7\}$ $ECLOSE(6) = \{6\}$ $ECLOSE(7) = \{7\}$

Exdended Delta for E-NFA

- Inductive definition $\hat{\delta}$ of for $\epsilon\text{-NFA}$

Basis: $\hat{\delta}(q, \epsilon) = \text{ECLOSE}(q)$

Induction:
$$\hat{\delta}(q, xa) = \bigcup_{p \in \delta(\hat{\delta}(q, x), a)} \mathsf{ECLOSE}(p)$$

Equivalence of DFA and ε-NFA

• Given an ε-NFA

$$E = (Q_E, \Sigma, \delta_E, q_0, F_E)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

such that L(D) = L(E)

Equivalence of DFA and ε-NFA Subset Construction

 $Q_D = \{S : S \subseteq Q_E \text{ and } S = \mathsf{ECLOSE}(S)\}$

 $q_D = \text{ECLOSE}(q_0)$

 $F_D = \{S : S \in Q_D \text{ and } S \cap F_E \neq \emptyset\}$

 $\delta_D(S,a) = \bigcup \{ \mathsf{ECLOSE}(p) : p \in \delta(t,a) \text{ for some } t \in S \}$

Equivalence of DFA and ε-NFA Subset Construction - Example

0,1,...,9

Equivalence of DFA and ε-NFA - Theorem

Theorem: A language L is accepted by some ε -NFA E if and only if L is accepted by some DFA D.

Proof: We use D constructed using subset-construction and show by induction that $\hat{\delta}_D(q_0, w) = \hat{\delta}_E(q_D, w)$ **Basis:** $\hat{\delta}_E(q_0, \epsilon) = \text{ECLOSE}(q_0) = q_D = \hat{\delta}(q_D, \epsilon)$ $\hat{\delta}_E(q_0, xa) = \bigcup ECLOSE(p)$ Induction: $p \in \delta_E(\hat{\delta}_E(q_0, x), a)$ = [] ECLOSE(p) $p \in \delta_D(\widehat{\delta}_D(q_D, x), a)$ ECLOSE(p)= || $p \in \widehat{\delta}_D(q_D, xa)$

$$= \hat{\delta}_D(q_D, xa)$$