
Finite Automata
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Deterministic Finite Automata (DFA)

• A Deterministic Finite Automata (DFA) is a quintuple
A = (Q, , , q0, F)

1. Q is a finite set of states
2.  is a finite set of symbols (alphabet)
3. Delta (  ) is a transition function  (q,a)  p
4. q0 is the start state (q0  Q )
5. F is a set of final (accepting) states  ( F  Q )

• Transition function takes two arguments: a state and an input symbol.
• (q, a) = the state that the DFA goes to when it is in state q and input a

is received.
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Graph Representation of DFA’s 

• Nodes = states.
• Arcs represent transition function.
• Arc from state p to state q labeled by all those input symbols that have 

transitions from p to q.
• Arrow labeled “Start” to the start state.
• Final states indicated by double circles.

BİL405 - Automata Theory and Formal Languages 3

Start

1

0

A CB
1

0 0,1



Alternative Representation: Transition Table
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Strings Accepted By A DFA

• An DFA accepts a string w = a1a2 ... an if its path in the transition 
diagram that
1. Begins at the start state
2. Ends at an accepting state

• This DFA accepts 
input: 010001

• This DFA rejects
input: 011001
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Extended Delta Function – Delta Hat

• The transition function  can be extended to that operates on states 
and strings (as opposed to states and symbols)

(q,) = q

(q,xa) = (   (q,x), a)
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Language Accepted by a DFA

• Formally, the language accepted by a DFA A is

L(A) = { w |    (q0,w)   F }

• Languages accepted by DFAs are called as regular languages.
– Every DFA accepts a regular language, and
– For every regular language there is a DFA accepts it
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Language Accepted by a DFA

• This DFA accepts all strings of 0’s and 1’s without two consecutive 
1’s.

• Formally,       
L(A) = { w |w is in {0,1}* and w does not have two consecutive 1’s }
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DFA Example

• A DFA accepting all and only strings with an even number of 0's and 
an even number of 1's
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Tabular representation of the DFA



Proofs of Set Equivalence

• We need to prove that two descriptions of sets are in fact the same set.
• Here, one set is “the language of this DFA,” and the other is “the set of 

strings of 0’s and 1’s with no consecutive 1’s.”
• In general, to prove S=T, we need to prove two parts: 

S ⊆ T and T ⊆ S.  That is:
1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

• As an example, let S = the language of our running DFA, and T = “no 
consecutive 1’s.”
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Proof Part 1 :    S ⊆ T

• To prove: if w is accepted by our DFA
then w has no consecutive 1’s.

• Proof is an induction on length of w.

• Important trick: Expand the inductive hypothesis to be more detailed 
than you need.
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The Inductive Hypothesis
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1. If (A, w) = A, then w has no consecutive 1’s and does not end in 1.
2. If (A, w) = B, then w has no consecutive 1’s and ends in a single 1.

• Basis: |w| = 0; i.e., w = ε.
– (1) holds since ε has no 1’s at all.
– (2) holds vacuously, since (A, ε) is not B.

Important concept:
If the “if” part of “if..then” is false,
the statement is true.
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Inductive Step 

• Need to prove (1) and (2) for w = xa.

• (1) for w is: If (A, w) = A, then w has no consecutive 1’s and does not 
end in 1.

• Since (A, w) = A, (A, x) must be A or B, and a  must be 0 (look at 
the DFA).

• By the IH, x has no 11’s.

• Thus, w has no 11’s and does not end in 1.
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Inductive Step 

• Now, prove (2) for w = xa: If (A, w) = B, then w has no 11’s and ends 
in 1.

• Since (A, w) = B, (A, x) must be A, and a must be 1 (look at the 
DFA).

• By the IH, x has no 11’s and does not end in 1.

• Thus, w has no 11’s and ends in 1.
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Proof Part 1 :   T ⊆ S

• Now, we must prove: 
if w has no 11’s, then w is accepted by our DFA

• Contrapositive : If w is not accepted by our DFA then w has 11.
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Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”



Using the Contrapositive

• Every w gets the DFA to exactly one state.
– Simple inductive proof based on:

• Every state has exactly one transition on 1, one transition on 0.
• The only way w is not accepted is if it gets to C. 
• The only way to get to C [formally: (A,w) = C] is if w = x1y, x gets to 

B, and y is the tail of w that follows what gets to C for the first time.
• If (A,x) = B then surely x = z1 for some z.
• Thus, w = z11y and has 11.
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Nondeterministic Finite Automata (NFA)

• A NFA can be in several states at once, or, it can "guess" which state to 
go to next.

• A NFA state can have more than one arc leaving from that state with a 
same symbol.

• Example: An automaton that accepts all and only strings ending in 01.

• State q0 can go to q0 or q1 with the symbol 0.
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NFA – Example       

• What happens when the NFA processes the input 00101

• In fact, all missing arcs go to a death state, the death state goes to itself 
for all symbols, and the death state is a non-accepting state.
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Definition of Nondeterministic Finite Automata

• Formally, a Nondeterministic Finite Automata (NFA) is a quintuple
A = (Q, , , q0, F)

1. Q is a finite set of states
2.  is a finite set of symbols (alphabet)
3. Delta (  ) is a transition function  from Qx to the powerset of Q.
4. q0 is the start state (q0  Q )
5. F is a set of final (accepting) states  ( F  Q )

• Transition function takes two arguments: a state and an input symbol.
• (q, a) = the set of the states that the DFA goes to when it is in state q

and input a is received.
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NFA – Table Representation 
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The table representation of this NFA is as follows.

NFA is 

its transition function is



Extended Transition Function for NFA – Delta Hat

• The transition function  can be extended to that operates on states 
and strings (as opposed to states and symbols)

Basis:   (q,) = q
Induction:  If    (q,x)  = {p1,p2,...,pk}    for a string x, then

(q,xa) = ⋃ (݅݌, ܽ)	௞
௜ୀଵ

For the string w = xa, we compute    (q,x) first, then we follow any 
transition from any of the states with the symbol a.
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Language of a NFA

• The language accepted by a NFA A is

• i.e. a string w is accepted by a NFA A iff the states that are reachable 
from the starting state by consuming w contain at least one final state.
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Language of a NFA - Example

• Let's prove formally that the NFA

accepts the language {x01 : x  * }.  We'll do a mutual induction on the 
following three statements,
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Proof
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Equivalence of DFA and NFA

• NFA's are usually easier to construct.
• Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N), 

and vice versa.
• This involves the subset construction, an important example how an 

automaton B can be generically constructed from another automaton A.
• Given an NFA

we will constract a DFA

such that L(D) = L(N)
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Subset Construction

BİL405 - Automata Theory and Formal Languages 27



Subset Construction - Example
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Subset Construction – Accessible States

• We can often avoid the exponential blow-up by constructing the 
transition table for D only for accessible states S as follows:
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Subset Construction – Accessible States (example)
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Equivalence of DFA and NFA - Theorem

Theorem: Let D be the subset DFA of an NFA N. Then L(D) = L(N).
Proof: We show on an induction on |w| that

Basis: w = . The claim follows from definition.
Induction:
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So, L(D) =L(N)



Equivalence of DFA and NFA – Theorem 2

Theorem: A language L is accepted by some DFA if and only if L is 
accepted by some NFA.
Proof: The if-part is proved by the previous theorem.
For the only-if-part, we note that any DFA can be converted to an 
equivalent NFA by modifying the D to N by the rule
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A Bad Case for Subset Construction -
Exponential Blow-Up

• There is an NFA N with n+1 states that has no equivalent DFA with 
fewer than 2n states
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A NFA for Text Search

• NFA accepting the set of keywords {ebay, web}
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Corresponding DFA for Text Search
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NFA with Epsilon Transitions - -NFA

• -NFA’s allow transtions with  label.

• Formally, -NFA is a quintuple
A = (Q, , , q0, F)

1. Q is a finite set of states
2.  is a finite set of symbols (alphabet)
3. Delta (  ) is a transition function  from Q x {} to the powerset of 

Q.
4. q0 is the start state (q0  Q )
5. F is a set of final (accepting) states  ( F  Q )
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-NFA Example
• An -NFA accepting decimal numbers consisting of:

1. An optional + or - sign
2. A string of digits
3. a decimal point
4. another string of digits

• One of the strings in (2) and .(4) are optional
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-NFA Example  - Transition Table
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Transition Table



Epsilon Closure

• We close a state by adding all states reachable by a sequence  ... 

• Inductive denition of ECLOSE(q)

Basis:         qECLOSE(q)

Induction:  pECLOSE(q)  and r(p,)   rECLOSE(q) 
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Epsilon Closure

ECLOSE(1) = {1,2,3,4,6}
ECLOSE(2) = {2,3,6}
ECLOSE(3) = {3,6}
ECLOSE(4) = {4}
ECLOSE(5) = {5,7}
ECLOSE(6) = {6}
ECLOSE(7) = {7}
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Exdended Delta for -NFA

• Inductive definition    of for -NFA

Basis:

Induction:
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Equivalence of DFA and -NFA

• Given an -NFA

we will construct a DFA

such that L(D) = L(E)
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Equivalence of DFA and -NFA
Subset Construction
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Equivalence of DFA and -NFA
Subset Construction - Example
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Equivalence of DFA and -NFA - Theorem

Theorem: A language L is accepted by some -NFA E if and only if L is 
accepted by some DFA D.
Proof: We use D constructed using subset-construction and show by 
induction that
Basis:
Induction:
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