
Finite Automata

BİL405 - Automata Theory and Formal Languages 1

Deterministic Finite Automata (DFA)

• A Deterministic Finite Automata (DFA) is a quintuple
A = (Q, , , q0, F)

1. Q is a finite set of states
2.  is a finite set of symbols (alphabet)
3. Delta () is a transition function (q,a)  p
4. q0 is the start state (q0  Q)
5. F is a set of final (accepting) states (F  Q)

• Transition function takes two arguments: a state and an input symbol.
• (q, a) = the state that the DFA goes to when it is in state q and input a

is received.

BİL405 - Automata Theory and Formal Languages 2

Graph Representation of DFA’s

• Nodes = states.
• Arcs represent transition function.
• Arc from state p to state q labeled by all those input symbols that have

transitions from p to q.
• Arrow labeled “Start” to the start state.
• Final states indicated by double circles.

BİL405 - Automata Theory and Formal Languages 3

Start

1

0

A CB
1

0 0,1

Alternative Representation: Transition Table

BİL405 - Automata Theory and Formal Languages 4

0 1
A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*
*Arrow for

start state

Strings Accepted By A DFA

• An DFA accepts a string w = a1a2 ... an if its path in the transition
diagram that
1. Begins at the start state
2. Ends at an accepting state

• This DFA accepts
input: 010001

• This DFA rejects
input: 011001

BİL405 - Automata Theory and Formal Languages 5

Start

1

0

A CB
1

0 0,1

Extended Delta Function – Delta Hat

• The transition function  can be extended to that operates on states
and strings (as opposed to states and symbols)

(q,) = q

(q,xa) = ((q,x), a)

BİL405 - Automata Theory and Formal Languages 6

̂

̂

̂ ̂

Language Accepted by a DFA

• Formally, the language accepted by a DFA A is

L(A) = { w | (q0,w)  F }

• Languages accepted by DFAs are called as regular languages.
– Every DFA accepts a regular language, and
– For every regular language there is a DFA accepts it

BİL405 - Automata Theory and Formal Languages 7

̂

Language Accepted by a DFA

• This DFA accepts all strings of 0’s and 1’s without two consecutive
1’s.

• Formally,
L(A) = { w |w is in {0,1}* and w does not have two consecutive 1’s }

BİL405 - Automata Theory and Formal Languages 8

Start

1

0

A CB
1

0 0,1

DFA Example

• A DFA accepting all and only strings with an even number of 0's and
an even number of 1's

BİL405 - Automata Theory and Formal Languages 9

Tabular representation of the DFA

Proofs of Set Equivalence

• We need to prove that two descriptions of sets are in fact the same set.
• Here, one set is “the language of this DFA,” and the other is “the set of

strings of 0’s and 1’s with no consecutive 1’s.”
• In general, to prove S=T, we need to prove two parts:

S ⊆ T and T ⊆ S. That is:
1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

• As an example, let S = the language of our running DFA, and T = “no
consecutive 1’s.”

BİL405 - Automata Theory and Formal Languages 10

Start

1

0

A CB 1
0 0,1

Proof Part 1 : S ⊆ T

• To prove: if w is accepted by our DFA
then w has no consecutive 1’s.

• Proof is an induction on length of w.

• Important trick: Expand the inductive hypothesis to be more detailed
than you need.

BİL405 - Automata Theory and Formal Languages 11

The Inductive Hypothesis

BİL405 - Automata Theory and Formal Languages 12

1. If (A, w) = A, then w has no consecutive 1’s and does not end in 1.
2. If (A, w) = B, then w has no consecutive 1’s and ends in a single 1.

• Basis: |w| = 0; i.e., w = ε.
– (1) holds since ε has no 1’s at all.
– (2) holds vacuously, since (A, ε) is not B.

Important concept:
If the “if” part of “if..then” is false,
the statement is true.

̂
̂

̂

Inductive Step

• Need to prove (1) and (2) for w = xa.

• (1) for w is: If (A, w) = A, then w has no consecutive 1’s and does not
end in 1.

• Since (A, w) = A, (A, x) must be A or B, and a must be 0 (look at
the DFA).

• By the IH, x has no 11’s.

• Thus, w has no 11’s and does not end in 1.

BİL405 - Automata Theory and Formal Languages 13

̂

̂ ̂

Inductive Step

• Now, prove (2) for w = xa: If (A, w) = B, then w has no 11’s and ends
in 1.

• Since (A, w) = B, (A, x) must be A, and a must be 1 (look at the
DFA).

• By the IH, x has no 11’s and does not end in 1.

• Thus, w has no 11’s and ends in 1.

BİL405 - Automata Theory and Formal Languages 14

̂

̂ ̂

Proof Part 1 : T ⊆ S

• Now, we must prove:
if w has no 11’s, then w is accepted by our DFA

• Contrapositive : If w is not accepted by our DFA then w has 11.

BİL405 - Automata Theory and Formal Languages 15

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

Using the Contrapositive

• Every w gets the DFA to exactly one state.
– Simple inductive proof based on:

• Every state has exactly one transition on 1, one transition on 0.
• The only way w is not accepted is if it gets to C.
• The only way to get to C [formally: (A,w) = C] is if w = x1y, x gets to

B, and y is the tail of w that follows what gets to C for the first time.
• If (A,x) = B then surely x = z1 for some z.
• Thus, w = z11y and has 11.

BİL405 - Automata Theory and Formal Languages 16

̂

̂

Start

1

0

A CB 1
0 0,1

Nondeterministic Finite Automata (NFA)

• A NFA can be in several states at once, or, it can "guess" which state to
go to next.

• A NFA state can have more than one arc leaving from that state with a
same symbol.

• Example: An automaton that accepts all and only strings ending in 01.

• State q0 can go to q0 or q1 with the symbol 0.

BİL405 - Automata Theory and Formal Languages 17

NFA – Example

• What happens when the NFA processes the input 00101

• In fact, all missing arcs go to a death state, the death state goes to itself
for all symbols, and the death state is a non-accepting state.

BİL405 - Automata Theory and Formal Languages 18

Definition of Nondeterministic Finite Automata

• Formally, a Nondeterministic Finite Automata (NFA) is a quintuple
A = (Q, , , q0, F)

1. Q is a finite set of states
2.  is a finite set of symbols (alphabet)
3. Delta () is a transition function from Qx to the powerset of Q.
4. q0 is the start state (q0  Q)
5. F is a set of final (accepting) states (F  Q)

• Transition function takes two arguments: a state and an input symbol.
• (q, a) = the set of the states that the DFA goes to when it is in state q

and input a is received.

BİL405 - Automata Theory and Formal Languages 19

NFA – Table Representation

BİL405 - Automata Theory and Formal Languages 20

The table representation of this NFA is as follows.

NFA is

its transition function is

Extended Transition Function for NFA – Delta Hat

• The transition function  can be extended to that operates on states
and strings (as opposed to states and symbols)

Basis: (q,) = q
Induction: If (q,x) = {p1,p2,...,pk} for a string x, then

(q,xa) = ⋃ (݅݌, ܽ)	௞
௜ୀଵ

For the string w = xa, we compute (q,x) first, then we follow any
transition from any of the states with the symbol a.

BİL405 - Automata Theory and Formal Languages 21

̂

̂

̂

̂

̂

Language of a NFA

• The language accepted by a NFA A is

• i.e. a string w is accepted by a NFA A iff the states that are reachable
from the starting state by consuming w contain at least one final state.

BİL405 - Automata Theory and Formal Languages 22

Language of a NFA - Example

• Let's prove formally that the NFA

accepts the language {x01 : x  * }. We'll do a mutual induction on the
following three statements,

BİL405 - Automata Theory and Formal Languages 23

Proof

BİL405 - Automata Theory and Formal Languages 24

BİL405 - Automata Theory and Formal Languages 25

Equivalence of DFA and NFA

• NFA's are usually easier to construct.
• Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N),

and vice versa.
• This involves the subset construction, an important example how an

automaton B can be generically constructed from another automaton A.
• Given an NFA

we will constract a DFA

such that L(D) = L(N)
BİL405 - Automata Theory and Formal Languages 26

Subset Construction

BİL405 - Automata Theory and Formal Languages 27

Subset Construction - Example

BİL405 - Automata Theory and Formal Languages 28

Subset Construction – Accessible States

• We can often avoid the exponential blow-up by constructing the
transition table for D only for accessible states S as follows:

BİL405 - Automata Theory and Formal Languages 29

Subset Construction – Accessible States (example)

BİL405 - Automata Theory and Formal Languages 30

NFA

DFA

Equivalence of DFA and NFA - Theorem

Theorem: Let D be the subset DFA of an NFA N. Then L(D) = L(N).
Proof: We show on an induction on |w| that

Basis: w = . The claim follows from definition.
Induction:

BİL405 - Automata Theory and Formal Languages 31

So, L(D) =L(N)

Equivalence of DFA and NFA – Theorem 2

Theorem: A language L is accepted by some DFA if and only if L is
accepted by some NFA.
Proof: The if-part is proved by the previous theorem.
For the only-if-part, we note that any DFA can be converted to an
equivalent NFA by modifying the D to N by the rule

BİL405 - Automata Theory and Formal Languages 32

A Bad Case for Subset Construction -
Exponential Blow-Up

• There is an NFA N with n+1 states that has no equivalent DFA with
fewer than 2n states

BİL405 - Automata Theory and Formal Languages 33

A NFA for Text Search

• NFA accepting the set of keywords {ebay, web}

BİL405 - Automata Theory and Formal Languages 34

Corresponding DFA for Text Search

BİL405 - Automata Theory and Formal Languages 35

NFA with Epsilon Transitions - -NFA

• -NFA’s allow transtions with  label.

• Formally, -NFA is a quintuple
A = (Q, , , q0, F)

1. Q is a finite set of states
2.  is a finite set of symbols (alphabet)
3. Delta () is a transition function from Q x {} to the powerset of

Q.
4. q0 is the start state (q0  Q)
5. F is a set of final (accepting) states (F  Q)

BİL405 - Automata Theory and Formal Languages 36

-NFA Example
• An -NFA accepting decimal numbers consisting of:

1. An optional + or - sign
2. A string of digits
3. a decimal point
4. another string of digits

• One of the strings in (2) and .(4) are optional

BİL405 - Automata Theory and Formal Languages 37

-NFA Example - Transition Table

BİL405 - Automata Theory and Formal Languages 38

Transition Table

Epsilon Closure

• We close a state by adding all states reachable by a sequence  ... 

• Inductive denition of ECLOSE(q)

Basis: qECLOSE(q)

Induction: pECLOSE(q) and r(p,)  rECLOSE(q)

BİL405 - Automata Theory and Formal Languages 39

Epsilon Closure

ECLOSE(1) = {1,2,3,4,6}
ECLOSE(2) = {2,3,6}
ECLOSE(3) = {3,6}
ECLOSE(4) = {4}
ECLOSE(5) = {5,7}
ECLOSE(6) = {6}
ECLOSE(7) = {7}

BİL405 - Automata Theory and Formal Languages 40

Exdended Delta for -NFA

• Inductive definition of for -NFA

Basis:

Induction:

BİL405 - Automata Theory and Formal Languages 41

̂

Equivalence of DFA and -NFA

• Given an -NFA

we will construct a DFA

such that L(D) = L(E)

BİL405 - Automata Theory and Formal Languages 42

Equivalence of DFA and -NFA
Subset Construction

BİL405 - Automata Theory and Formal Languages 43

Equivalence of DFA and -NFA
Subset Construction - Example

BİL405 - Automata Theory and Formal Languages 44

Equivalence of DFA and -NFA - Theorem

Theorem: A language L is accepted by some -NFA E if and only if L is
accepted by some DFA D.
Proof: We use D constructed using subset-construction and show by
induction that
Basis:
Induction:

BİL405 - Automata Theory and Formal Languages 45

