Finite Automata
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Deterministic Finite Automata (DFA)

e A Deterministic Finite Automata (DFA) 1s a quintuple
A=(Q,3,38, q F)

Q 1s a finite set of states

2. 1s a finite set of symbols (alphabet)

Delta ( 0 ) 1s a transition function (q,a) = p

qo 18 the start state (q, € Q)

A A e

F 1s a set of final (accepting) states (F < Q)

« Transition function takes two arguments: a state and an input symbol.

* 0(q, a) = the state that the DFA goes to when it 1s in state g and input a
1s recerved.
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Graph Representation of DFA’s

Nodes = states.
Arcs represent transition function.

Arc from state p to state q labeled by all those input symbols that have
transitions from p to q.

Arrow labeled “Start” to the start state.
Final states indicated by double circles.

Start 0
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Alternative Representation: Transition Table

Final states
starred

Columns =
input symbols

Q@ P> | o
QOO w| -

* A
Arrow for * B
start state C

Rows = states
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Strings Accepted By A DFA

An DFA accepts a string w=2a,a, ... a
diagram that

if 1ts path 1n the transition

n

1. Begins at the start state
2. Ends at an accepting state

This DFA accepts
input: 010001

This DFA rejects
input: 011001 Start 0
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Extended Delta Function — Delta Hat

AN
« The transition function 8 can be extended to O that operates on states
and strings (as opposed to states and symbols)

5(a0:8) =g

5(q.xa) = 8( §(q,x), )
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Language Accepted by a DFA

* Formally, the language accepted by a DFA A 1s

L(A) = { W] §(qpw) € F}

« Languages accepted by DFAs are called as regular languages.
— Every DFA accepts a regular language, and
— For every regular language there 1s a DFA accepts it
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Language Accepted by a DFA

Start 0

« This DFA accepts all strings of 0’s and 1’s without two consecutive
1’s.

 Formally,
L(A)={w|wisin {0,1}* and w does not have two consecutive 1’s }
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DFA Example

* A DFA accepting all and only strings with an even number of 0's and
an even number of 1's

Start T TR @ Tabular representation of the DFA
7, 0 |1
|
U AL W IR S - *—qo | 92 | i1
0 0 q1 || 93 | 90
m g2 || 90 | 93
> g3 || 91 | 92
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Proofs of Set Equivalence

We need to prove that two descriptions of sets are in fact the same set.

Here, one set 1s “the language of this DFA,” and the other 1s “the set of
strings of 0’s and 1’s with no consecutive 1°s.”

In general, to prove S=T, we need to prove two parts:
SC Tand T € S. That is:

1. IfwisinS,thenwisinT.

2. IfwisinT, thenwisin S.

As an example, let S = the language of our running DFA, and T = “no
consecutive 1°s.”
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Proof Partl: SCST

To prove: if w 1s accepted by our DFA

then w has no consecutive 1’s.
Proof is an induction on length of w.

Important trick: Expand the inductive hypothesis to be more detailed
than you need.
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1.
2.

The Inductive Hypothesis

If g(A, w) = A, then w has no consecutive 1’s and does not end 1n 1.
If g(A, w) = B, then w has no consecutive 1’s and ends 1n a single 1.

Basis: [w| =0; 1.e., w = €.
(1) holds since € has no 1’s at all.
(2) holds vacuously, since g(A, €) 1s not B.

\

If the “if” part of “if..then” 1s false,
the statement 1s true.
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Inductive Step

Need to prove (1) and (2) for w = xa.

(1) for wis: If g(A, w) = A, then w has no consecutive 1’s and does not
end in 1.

Since /S(A, w) = A, g(A, x) must be A or B, and a must be 0 (look at
the DFA).

By the IH, x hasno 11°s.

Thus, w has no 11°s and does not end 1n 1.
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Inductive Step

Now, prove (2) for w = xa: If /S(A, w) = B, then w has no 11°s and ends
in 1.

Since /S(A, w) =B, /S(A, x) must be A, and a must be 1 (look at the
DFA).

By the IH, x has no 11’s and does not end 1n 1.

Thus, w has no 11°s and ends 1n 1.
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Proof Partl: TCS

 Now, we must prove:
if w has no 11°s, then w 1s accepted by our DFA

* Contrapositive : If w 1s not accepted by our DFA then w has 11.

AN

. contrapositive
of “if X then Y 1s the
equivalent statement
“1f not Y then not X.”
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Using the Contrapositive

Every w gets the DFA to exactly one state.
— Simple inductive proof based on:
» Every state has exactly one transition on 1, one transition on 0.

The only way w 1s not accepted 1s 1f 1t gets to C.

The only way to get to C [formally: /S(A,w) =C]isif w=xly, x gets to
B, and y is the tail of w that follows what gets to C for the first time.

If g(A,X) = B then surely x = zI for some z.

Thus, w=2zl11y and has 11.

Start O
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Nondeterministic Finite Automata (NFA)

A NFA can be 1n several states at once, or, 1t can "guess" which state to
£0 to next.

A NFA state can have more than one arc leaving from that state with a
same symbol.

Example: An automaton that accepts all and only strings ending in O1.

0,1
~
Start '; \I 0 N 1 // \\
—(%) (4 ) 0
\ / o/ \\__ -//

State q, can go to q, or q; with the symbol 0.
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0.1
NFA — Example 03l ° .o ' @)

) A N

 What happens when the NFA processes the input 00101

T N W W - W——

., O .

q, a, q

(stuck) \ \

* In fact, all missing arcs go to a death state, the death state goes to itself
for all symbols, and the death state 1s a non-accepting state.

BIL405 - Automata Theory and Formal Languages
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Definition of Nondeterministic Finite Automata

* Formally, a Nondeterministic Finite Automata (NFA) 1s a quintuple
A=(Q,3,38, q F)

Q 1s a finite set of states

2. 1s a finite set of symbols (alphabet)

Delta ( 0 ) 1s a transition function from QxZX to the powerset of Q.
qo 18 the start state (q, € Q)

A A e

F 1s a set of final (accepting) states (F < Q)

» Transition function takes two arguments: a state and an input symbol.

* 0(q, a) = the set of the states that the DFA goes to when it is in state ¢
and input a 1s received.
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NFA — Table Representation

0.1
Start ';q_\' 0 (G ) : -»:'//(1:»\\' |
—J) Y \—/

The table representation of this NFA 1s as follows.

NFAis ({90,91,92},10,1},6,90,{92})

1ts transition function 1s 0 1
— qo | {90,491} | {90}
q1 | 0 {q2}

*xqo || 0 0
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Extended Transition Function for NFA — Delta Hat

AN
« The transition function 8 can be extended to O that operates on states
and strings (as opposed to states and symbols)

Basis: 5(0,6) =q
Induction: If$ (q,X) = {p,Pas--sPis foOr a string x, then

S (qxa)= U, 3(p;, a)

. AN
For the string w = xa, we compute o(q,x) first, then we follow any
transition from any of the states with the symbol a.
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Language of a NFA

* The language accepted by a NFA A 1s

L(A) = {w: (g0, w) N F # 0}

e 1.c.astring w 1s accepted by a NFA A 1ff the states that are reachable
from the starting state by consuming w contain at least one final state.

BIL405 - Automata Theory and Formal Languages
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Language of a NFA - Example

« Let's prove formally that the NFA

0. 1
\ \ v
Start /( 0 () 1 77N\
— 7, ) (%))
Q) \ =/

accepts the language {x01:x € 2* }. We'll do a mutual induction on the
following three statements,

weE X* = qg € 4(qo, w)

q1 € 6(qo,w) & w = 20

¢ € 6(qo, w) & w = z01

BIL405 - Automata Theory and Formal Languages
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0.1
Proof Start —-—m" (@)

BASIS: If [w| = 0, then w = €. Statement (1) says that (qo,€) contains go,
which it does by the basis part of the definition of §. For statement (2), we
know that € does not end in 0, and we also know that & (go, €) does not contain
q1, again by the basis part of the definition of 4. Thus, the hypotheses of both
directions of the if-and-only-if statement are false, and therefore both directions
of the statement are true. The proof of statement (3) for w = € is essentially
the same as the above proof for statement (2).

INDUCTION: Assume that w = za, where a is a symbol, either 0 or 1. We
may assume statements (1) through (3) hold for z, and we need to prove them
for w. That is, we assume |w| = n + 1, so |z|] = n. We assume the inductive
hypothesis for n and prove it for n + 1.
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1. We know that d(go,z) contains go. Since there are transitions on both

0 and 1 from go to itself, it follows that &(go,w) also contains go, so
statement (1) is proved for w.

2. (If) Assume that w ends in 0; i.e., a = 0. By statement (1) applied to z,
we know that &(qo,x) contains go. Since there is a transition from go to
¢; on input 0, we conclude that 6(qo,w) contains q;.

(Only-if) Suppose 5(q0,'w) contains ¢q;. If we look at the diagram of
Fig. 2.9, we see that the only way to get into state g¢; is if the input
sequence w is of the form z0. That is enough to prove the “only-if”
portion of statement (2).

3. (If) Assume that w ends in 01. Then if w = xa, we know that a = 1 and
z ends in 0. By statement (2) applied to z, we know that 5(go, ) contains
q1. Since there is a transition from ¢; to g2 on input 1, we conclude that
4(go, w) contains gs.

(Only-if) Suppose 4(go, w) contains ¢o. Looking at the diagram of Fig. 2.9,
we discover that the only way to get to state go is for w to be of the form
z1, where 6(qo, ) contains ¢;. By statement (2) applied to z, we know
that z ends in 0. Thus, w ends in 01, and we have proved statement (3).
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Equivalence of DFA and NFA

 NFA's are usually easier to construct.

e Surprisingly, for any NFA N there 1s a DFA D, such that L(D) = L(N),
and vice versa.

* This involves the subset construction, an important example how an
automaton B can be generically constructed from another automaton A.

* (Given an NFA
N = (Qn,%,0N,90, FN)
we will constract a DFA

D = (Qp.Z.5p. {0}, Fp)
such that (D) = L(N)
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Subset Construction
e Qp={S:5CQn}.

Note: |Qp| = 2|QN|, although most states in
Qp are likely to be garbage.

e Fp={SCQn:SNFy #* 0}

e Forevery SCQpy and a € 2,

op(S,a) = |J on(p;a)
peS

BIL405 - Automata Theory and Formal Languages
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Subset Construction - Example

0.1
Smn___b{ég 0 ’C§> 1 »QEQD
0 1
O 0 0
— {q0} | 190:91} | {90}
{q1} | © {q2}
x{qa} || 0 0

{90,91} || {90, 91} | 190, 92}
*{q0. 92} || {90,491} | {90}
*{q1.q2} || 0 {g2}

*{490, 91,92} || 190- 91} | {90, 92}




Subset Construction — Accessible States

* We can often avoid the exponential blow-up by constructing the
transition table for D only for accessible states S as follows:

Basis: S = {qp} is accessible in D

Induction: If state S is accessible, so are the
states in Uuex 0p(S,a).

BIL405 - Automata Theory and Formal Languages
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Subset Construction

0.1
NFA  Start 'V;—Qg 0

|
™
Start \_ )
DFA _..< a0} )

BIL405 - Automata

— Accessible States (example)

Theory and Formal Languages
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Equivalence of DFA and NFA - Theorem

Theorem: Let D be the subset DFA of an NFA N. Then L(D) = L(N).

Proof: We show on an induction on |w| that
op({g0}, w) = dn(q0, w)

Basis: w = €. The claim follows from definition.

Induction: 5, ({40}, 2a) = 6p(Gp({a0}, 7). a)

1§ PR—
= dp(dn(g0,2),a)

@)
[§%

g on(p,a)

pEdN (go.7)

=t dn(qo, za)

BIL405 - Automata Theory and Formal Languages
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Equivalence of DFA and NFA — Theorem 2

Theorem: A language L 1s accepted by some DFA if and only if L 1s
accepted by some NFA.

Proof: The if-part 1s proved by the previous theorem.

For the only-if-part, we note that any DFA can be converted to an
equivalent NFA by modifying the o to oy by the rule

If 6p(q,a) = p, then dn(q,a) = {p}.

By induction on |w| it will be shown in the
tutorial that if §p(qo,w) = p, then dn (g0, w) ={p}-
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A Bad Case for Subset Construction -
Exponential Blow-Up

* There 1s an NFA N with n+1 states that has no equivalent DFA with
fewer than 2" states

0.1
() 1 0.1 0.1 0.1 0.1 —
NN e W s N NN\
—» gl (- - — —»((4, )
san ) W& O\l

L(N) ={zlcocz---cp:xe€{0,1}",¢; € {0,1}}

BIL405 - Automata Theory and Formal Languages
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A NFA for Text Search

 NFA accepting the set of keywords {ebay, web}

N e Nt (1

N, Y, ”\\_{)
\i/:\—-l/é\ :\!—-—?f;t %-’
\_/ » _ a _ y \\:J

BIL405 - Automata Theory and Formal Languages
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Corresponding DFA for Text Search




NFA with Epsilon Transitions - e-NFA

e-NFA’s allow transtions with € label.

Formally, e-NFA 1is a quintuple
A=(Q,2,0,qyF)

Q 1s a finite set of states

2. 2 1s a finite set of symbols (alphabet)

. Delta ( 0) 1s a transition function from Q x XuU{e} to the powerset of

Q.

4. qq1s the start state (q, € Q)

. F 1s a set of final (accepting) states (F c Q)

BIL405 - Automata Theory and Formal Languages
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e-NFA Example

* An &-NFA accepting decimal numbers consisting of:
1. An optional + or - sign
2. A string of digits
3. a decimal point
4. another string of digits

e One of the strings in (2) and .(4) are optional

0.1....9
Start ‘/ \.
7\ &.T.- ~/ P
—P!\(‘I-/'-—P@‘l/}—bl q 3

019

BIL405 - Automata Theory and Formal Languages
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e-NFA Example - Transition Table

01 ..... 9 0.1,....9
Start N ‘ /\/ /'\
£ £ A
=" qo\—"ﬁo—’@ 0.1..... /(j\ \\j
0.1....9

(4)

Y
= ({q0,91, - - -. gsts 1oy —0, 1.0 .9} 9.q90,1{g5})

; +.- . 0,...,9

—qo | {a1} | {ar} |9 D
q1 || 9 0 192} | 191,94}

g2 | 0 0 0 {a3}
q3 || {g5} | 0 0 {93}
qa || 0 0 {g3} | 0

BIL405 - Automata Theory and Formal Languages
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Epsilon Closure

 We close a state by adding all states reachable by a sequence g ... €
» Inductive denition of ECLOSE(q)
Basis: qe ECLOSE(q)

Induction: peECLOSE(q) and red(p,e) =2 reECLOSE(q)

BIL405 - Automata Theory and Formal Languages
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Epsilon Closure

/ “
N
¢
€ 7
I\‘_»_I_./.

ECLOSE(1) = {1,2,3,4,6}
ECLOSE(2) = {2,3,6}
ECLOSE(3) = {3,6)
ECLOSE(4) = {4}
ECLOSE(5) = {5,7}
ECLOSE(6) = {6}
ECLOSE(7) = {7}

£
-(3) ~(5)
b
A )
’\5,,/' g "\7“/'
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Exdended Delta for e-NFA

e Inductive definition 8 of for e-NFA

Basis: 0(q,€) = ECLOSE(q)

Induction:  §(q, za) = U ECLOSE(p)
peé(6(q,xz),a)

BIL405 - Automata Theory and Formal Languages
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Equivalence of DFA and e-NFA

e (Given an e-NFA

F=(Qr.2.9r,q90, FF)

we will construct a DFA
D= (Qp,%,ép,q9p, Fp)

such that (D) = L(E)

BIL405 - Automata T heory an d Forma 1 Languages



Equivalence of DFA and e-NFA
Subset Construction

Qp ={S:SCQr and S = ECLOSE(S)}

qp = ECLOSE(qo)
Fp={S:S€Qpand SN Fp # 0}

5p(S,a) =| J{ECLOSE(p) : p € §(t,a) for some t € S}

BIL405 - Automata Theory and Formal Languages



009
Start ( \'
e+.- =

— ()0 —
0:1.....9

Equivalence of DFA and e-NFA
Subset Construction - Example

01...9
0

(B)— (B (@)

| 2 {13 | 5))

T = =/

Start

BIL405 - Automata Theory and Formal Languages
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Equivalence of DFA and &-NFA - Theorem

Theorem: A language L is accepted by some e-NFA E if and only i1f L 1s
accepted by some DFA D.

Proof: We use D constructed using subset-construction and show by
induction that 0p(qo, w) = op(gp.w)

Basis: 9£(qo,€) = ECLOSE(q0) = qp = d(qp,€)

Induction: 0 (qo, va) = U ECLOSE(p)

pedp(dp(qo.x),a)

= U ECLOSE(p)
]')E(SD(SD(QD--?')-”)

= U ECLOSE(p)
I’E‘SD(‘ID--”’)

= dp(qp, za)

L4U> - Automata 1heory and Formal Languages
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