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Operations on Languages

Remember: A language is a set of strings

Union:

Concatenation:

Powers:

Kleene Closure: 
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Operations on Languages - Examples

L = {00,11} M = {1,01,11}

L  M = {00,11,1,01}
L.M = {001,0001,0011,111,1101,1111}
L0 = {}  L1= L ={00,11} L2={0000,0011,1100,1111}
L*={,00,11,0000,0011,1100,1111,000000,000011,...}

Kleene closures of all languages (except two of them) are infinite.
1. * = {}* = {}
2. {}* = {}
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Regular Expressions

• Regular Expressions are an algebraic way to describe languages.
• Regular Expressions describe exactly the regular languages.
• If E is a regular expression, then L(E) is the regular language it defines.
• A regular expression is built up of simpler regular expressions (using 

defining rules)
• For each regular expression E, we can create a DFA A                      

such that L(E) = L(A).
• For each a DFA A, we can create a regular expression E                   

such that L(A) = L(E)
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Regular Expressions - Definition

Regular expressions over alphabet 

Reg. Expr. E Language it denotes L(E)
Basis 1:  {}
Basis 2:  {}
Basis 3: a   {a}

Note: 
{a} is the language containing one string, and that string is of length 1.
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Regular Expressions - Definition

Induction 1 – or : If E1 and E2 are regular expressions, then E1+E2 is a 
regular expression, and L(E1+E2) = L(E1)L(E2).

Induction 2 – concatenation: If E1 and E2 are regular expressions, then 
E1E2 is a regular expression, and L(E1E2) = L(E1)L(E2) where L(E1)L(E2)
is the set of strings wx such that w is in L(E1) and x is in L(E2).

Induction 3 – Kleene Closure: If E is a regular expression, then E* is a 
regular expression, and L(E*) = (L(E))*.

Induction 4 – Pranteheses: If E is a regular expression, then (E) is a 
regular expression, and L( (E) ) = L(E).
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Regular Expressions - Parentheses 

• Parentheses may be used wherever needed to influence the grouping of 
operators.

• We may remove parentheses by using precedence and associativity 
rules.

Operator Precedence Associativity
*   highest
concatenation next left associative
+ lowest left associative

ab*+c    means     (a((b)*))+(c) 
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Regular Expressions - Examples

Alphabet   = {0,1}

• L(01) = {01}. L(01) = L(0) L(1) ={0}{1}={01}

• L(01+0) = {01, 0}. L(01+0) = L(01)  L(0) = (L(0) L(1))  L(0)
= ({0}{1}) {0} = {01} {0}={01,0}

• L(0(1+0)) = {01, 00}.
– Note order of precedence of operators.

• L(0*) = {ε, 0, 00, 000,… }.
• L((0+10)*(ε+1)) = all strings of 0’s and 1’s without two consecutive 1’s.

• L((0+1)(0+1) ) = {00,01,10,11}
• L((0+1)*) =  all strings with 0 and 1, including the empty string
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Regular Expressions - Examples

All strings of 0’s and 1’s starting with 0 and ending with 1
0(0+1)*1

All strings of 0’s and 1’s with even number of 0’s
1*(01*01*)*

All strings of 0’s and 1’s with at least two consecutive 0’s
(0+1)*00 (0+1)*

All strings of 0’s and 1’s without two consecutive 0’s
((1+01)*(ε+0))
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Equivalence of FA's and Regular Expressions

• We have already shown that DFA's, NFA's, and -NFA's all are 
equivalent.

• To show FA’s equivalent to regular expressions we need to establish 
that
1. For every DFA A we can construct a regular expression R, s.t. L(R) = L(A).
2. For every regular expression R there is a -NFA A (a DFA A), s.t. L(A) = L(R).
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From DFA's to Regular Expressions 

Theorem 3.4: For every DFA A = (Q, , , q0, F) there is a regular expression R, s.t. 
L(R) = L(A).
Proof: 
• Let the states of A be {1,2,...,n} with 1 being the start state.
• Let             be a regular expression describing the set of labels (strings) of all paths in 

A from state i to state j going through intermediate states {1,2,...,k} only.
– Note  that the beginning and end points of the path are not "intermediate." so there  is no 

constraint that i and/or j be less than or equal to k. 
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Definition -Basis

Basis:  k = 0, i.e. no intermediate states.

Case 1:  i  j

Case 2:  i = j
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Definition -Induction
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Rij
(k)

Case1:  The path does not. go through state k at all. In this 
case, the label of the path is in the language of Rij

(k-1)

Case 2: The path goes through state k at, least once. 
• The first goes from state i to state k without passing 

through k, 
• the last piece goes from k to j without passing through k,

and 
• all the pieces in the middle go from k  to itself, without 

passing through k. 



Definition 

• If we construct these expressions in order of increasing superscript, 
then since each depends only on expressions with a smaller
superscript, then all expressions are available when we need them. 

• Eventually, we have for all i and j. We may assume that state 1 is 
the start state, although the accepting states could be any set of the 
states. 

• The regular expression for the language of the automaton is then the 
sum (union) of all expressions such that state j is an accepting state. 
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Example

BİL405 - Automata Theory and Formal Languages 15



Example   
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Rij
(1)



Example   
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R12
(2)

The final regular expression equivalent to DFAis constructed by taking the union of 
all the expressions where the first state is the start state and the second state is accepting.

With 1 as the start state and 2 as the only accepting state, we need only the expression

Rij
(2)

R12
(2) = 1*0(0+1)*



Some Simplification Rules

(+R)* = R*

R = R =   is an annihilator for concatenation.

+R = R+ = R  is the identity for union.
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Converting DFA's to Regular Expressions 
by Eliminating States 

• The previous method is expensive since we have to construct about n3 expressions.
• There is more efficient way to convert DFA’s to Regular Expressions by eliminating 

states.
• When we eliminate a state s. all the paths that went through s no longer exist in the 

automaton. 
– If the language of the automaton is not to change, we must include, on an arc that 

goes directly from q to p, the labels of paths that went from some state q to state 
p, through s. 

– Since the label of this arc may now involve strings, rather than single symbols, 
and there may even be an infinite number of such strings, we cannot simply list 
the strings as a label. Regular expressions are, finite way to represent all such 
strings.

– Thus, automata will have regular expressions as labels. 
– The language of the automaton is the union over all paths from the start state to an 

accepting state of the language formed by concatenating the languages of the 
regular expressions along that path. 
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Converting DFA's to Regular Expressions 
by Eliminating States 
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
Eliminate 
the state s

label the edges with regex's instead 
of symbols



Converting DFA's to Regular Expressions 
by Eliminating States 

To construct a RegExp from a DFA

1. For each accepting state q, apply the above reduction process to produce an 
equivalent automaton with regular-expression labels on the arcs. Eliminate all states 
except q and the start state q0.

2. If q  q0, a two-state automaton will be created (CASE 1)

3. If q = q0, a single-state automaton will be created (CASE 2)

4. The desired regular expression is the sum (union) of all the expressions derived from 
the reduced automata for each accepting state, by rules (2) and (3). 
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Converting DFA's to Regular Expressions 
by Eliminating States 

CASE 1: If q  q0, a two-state automaton will be created 

CASE 2: If q = q0, a single-state automaton will be created 

BİL405 - Automata Theory and Formal Languages 22

It accepts the regular expression:

(R+SU*T)*SU*

It accepts the regular expression:

R*



Example
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Convert a NFA to a regular expression

 Replace all symbols on arcs with regular expressions



Example
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 Eliminate the state B
NewArcAC = ArcAC + ArcAB ArcBB* ArcBC

=  + 1 * (0+1)
= 1 (0+1)



Example
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 Eliminate the state C
NewArcAD = ArcAD + ArcAC ArcCC* ArcCD

=  + 1(0+1) * (0+1)
= 1 (0+1) (0+1)



Example
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 Eliminate the state D
NewArcAC = ArcAC + ArcAD ArcDD* ArcDC

= 1(0+1) +  * 
= 1 (0+1) 



Example - Result
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RE = (ArcAA+ArcAC ArcCC* ArcCA)*ArcACArcCC*
= ((0+1)+1(0+1) * )* 1(0+1) * 
= (0+1)*1(0+1)  

Final Reg Exp = (0+1)*1(0+1) + (0+1)*1(0+1) (0+1) 

RE = (ArcAA+ArcAD ArcDD* ArcDA)*ArcADArcDD*
= ((0+1)+1(0+1) (0+1)* )* 1(0+1) (0+1) * 
= (0+1)*1(0+1) (0+1) 



From Regular Expressions to -NFA's

BİL405 - Automata Theory and Formal Languages 28

Theorem 3.7: For every regex R we can construct and -NFA A,
s.t. L(A) = L(R).



From Regular Expressions to -NFA's – R+S

BİL405 - Automata Theory and Formal Languages 29



From Regular Expressions to -NFA's – RS
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From Regular Expressions to -NFA's – R*
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Example: Convert   (0+1)*1(0+1)  to -NFA
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Example: Convert   (0+1)*1(0+1)  to -NFA
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Algebraic Laws for Languages –
Associativity and Commutativity 
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Union is commutative: M  N = N  M
Union is associative: (M  N)  R  = M  (N  R)

Concatenation is associative: (M N) R  = M (N R)
Concatenation is NOT commutative, 

i.e., there are M and Nsuch that MN  NM

• Commutativity is the property of an operator that says we can 
switch the order of its operands and get the same result. 

• Associativity is the property of an operator that allows us to 
regroup the operands when the operator is applied twice. 



Algebraic Laws for Languages –
Identities and Annihilators 
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 is identity for union:   N = N   = N

{} is left and right identity for concatenation: {} N = N {} = N

 is left and right annihilator for concatenation:  N = N  = 

• An identity for an operator is a value such that when the operator is 
applied to the identity and some other value, the result is the other value.

• An annihilator for an operator is a value such that when the operator is 
applied to the annihilator and some other value, the result is the 
annihilator. 



Algebraic Laws for Languages –
Distributive and Idempotent
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Concatenation is left and right distributive over union:
R (M  N)   = RM  RN 
(M  N) R   = MR  NR 

Union is idempotent: M  M   = M  

• A distributive law involves two operators, and asserts that one 
operator can be pushed down to be applied to each argument of the 
other operator individually. 

• An operator is said to be idempotent if the result of applying it to 
two of the same values as arguments is that value. 



Algebraic Laws for Languages –
Closure Laws
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Languages Regular Expressions

*  = {} *  = 

{}* = {} * = 

L+ = LL* = L*L R+ = RR* = R*R

L* = L+  {} R* = R+ + 

L? = L  {} R? = R + 

(L*)*   = L*  (R*)*   = R*  



Algebraic Laws for Languages
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Theorem:   (L*)*   = L*  



Discovering Laws for Regular Expressions 

• There is an infinite variety of laws about regular expressions that might 
be proposed. 

• Is there a general methodology that will make our proofs of the correct 
laws easy?   YES 
– This methodology only works for regular expression operators (concetanation, or, 

closure)

• Methodology:  Exp1 = Exp2
– Replace each variable in the law (in Exp1 and Exp2) with unique 

symbols to create concrete regular expressions, RE1 and RE2.
– Check the equality of the languages of RE1 and RE2,                     

ie. L(RE1) = L(RE2)
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Discovering Laws for Regular Expressions 
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Discovering Laws for Regular Expressions -
Example
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Law:    R(M+N) = RM + RN 

Replace R with a, M with b, and N with c.

 a(b+c) = ab + ac

Then, check whether L(a(b+c)) is equal to L(ab+bc)

If their languages are equal, the law is TRUE.

Since, L(a(b+c)) is equal to L(ab+bc) 
 R(M+N) = RM + RN  is a true law



Discovering Laws for Regular Expressions -
Example
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Law:    (M+N)* = (M*N*)*

Replace M with a, and N with b.

 (a+b)* = (a*b*)*

Then, check whether L((a+b)*) is equal to L((a*b*)*)

Since, L((a+b)*) is equal to L((a*b*)*) 
 (M+N)* = (M*N*)*  is a true law


