
Regular Expressions
and

Regular Languages

BİL405 - Automata Theory and Formal Languages 1

Operations on Languages

Remember: A language is a set of strings

Union:

Concatenation:

Powers:

Kleene Closure:

BİL405 - Automata Theory and Formal Languages 2

Operations on Languages - Examples

L = {00,11} M = {1,01,11}

L M = {00,11,1,01}
L.M = {001,0001,0011,111,1101,1111}
L0 = {} L1= L ={00,11} L2={0000,0011,1100,1111}
L*={,00,11,0000,0011,1100,1111,000000,000011,...}

Kleene closures of all languages (except two of them) are infinite.
1. * = {}* = {}
2. {}* = {}

BİL405 - Automata Theory and Formal Languages 3

Regular Expressions

• Regular Expressions are an algebraic way to describe languages.
• Regular Expressions describe exactly the regular languages.
• If E is a regular expression, then L(E) is the regular language it defines.
• A regular expression is built up of simpler regular expressions (using

defining rules)
• For each regular expression E, we can create a DFA A

such that L(E) = L(A).
• For each a DFA A, we can create a regular expression E

such that L(A) = L(E)

BİL405 - Automata Theory and Formal Languages 4

Regular Expressions - Definition

Regular expressions over alphabet

Reg. Expr. E Language it denotes L(E)
Basis 1: {}
Basis 2: {}
Basis 3: a {a}

Note:
{a} is the language containing one string, and that string is of length 1.

BİL405 - Automata Theory and Formal Languages 5

Regular Expressions - Definition

Induction 1 – or : If E1 and E2 are regular expressions, then E1+E2 is a
regular expression, and L(E1+E2) = L(E1)L(E2).

Induction 2 – concatenation: If E1 and E2 are regular expressions, then
E1E2 is a regular expression, and L(E1E2) = L(E1)L(E2) where L(E1)L(E2)
is the set of strings wx such that w is in L(E1) and x is in L(E2).

Induction 3 – Kleene Closure: If E is a regular expression, then E* is a
regular expression, and L(E*) = (L(E))*.

Induction 4 – Pranteheses: If E is a regular expression, then (E) is a
regular expression, and L((E)) = L(E).

BİL405 - Automata Theory and Formal Languages 6

Regular Expressions - Parentheses

• Parentheses may be used wherever needed to influence the grouping of
operators.

• We may remove parentheses by using precedence and associativity
rules.

Operator Precedence Associativity
* highest
concatenation next left associative
+ lowest left associative

ab*+c means (a((b)*))+(c)

BİL405 - Automata Theory and Formal Languages 7

Regular Expressions - Examples

Alphabet = {0,1}

• L(01) = {01}. L(01) = L(0) L(1) ={0}{1}={01}

• L(01+0) = {01, 0}. L(01+0) = L(01) L(0) = (L(0) L(1)) L(0)
= ({0}{1}) {0} = {01} {0}={01,0}

• L(0(1+0)) = {01, 00}.
– Note order of precedence of operators.

• L(0*) = {ε, 0, 00, 000,… }.
• L((0+10)*(ε+1)) = all strings of 0’s and 1’s without two consecutive 1’s.

• L((0+1)(0+1)) = {00,01,10,11}
• L((0+1)*) = all strings with 0 and 1, including the empty string

BİL405 - Automata Theory and Formal Languages 8

Regular Expressions - Examples

All strings of 0’s and 1’s starting with 0 and ending with 1
0(0+1)*1

All strings of 0’s and 1’s with even number of 0’s
1*(01*01*)*

All strings of 0’s and 1’s with at least two consecutive 0’s
(0+1)*00 (0+1)*

All strings of 0’s and 1’s without two consecutive 0’s
((1+01)*(ε+0))

BİL405 - Automata Theory and Formal Languages 9

Equivalence of FA's and Regular Expressions

• We have already shown that DFA's, NFA's, and -NFA's all are
equivalent.

• To show FA’s equivalent to regular expressions we need to establish
that
1. For every DFA A we can construct a regular expression R, s.t. L(R) = L(A).
2. For every regular expression R there is a -NFA A (a DFA A), s.t. L(A) = L(R).

BİL405 - Automata Theory and Formal Languages 10

From DFA's to Regular Expressions

Theorem 3.4: For every DFA A = (Q, , , q0, F) there is a regular expression R, s.t.
L(R) = L(A).
Proof:
• Let the states of A be {1,2,...,n} with 1 being the start state.
• Let be a regular expression describing the set of labels (strings) of all paths in

A from state i to state j going through intermediate states {1,2,...,k} only.
– Note that the beginning and end points of the path are not "intermediate." so there is no

constraint that i and/or j be less than or equal to k.

BİL405 - Automata Theory and Formal Languages 11

Rij
(k)

Definition -Basis

Basis: k = 0, i.e. no intermediate states.

Case 1: i j

Case 2: i = j

BİL405 - Automata Theory and Formal Languages 12

Rij
(k)

Definition -Induction

BİL405 - Automata Theory and Formal Languages 13

Rij
(k)

Case1: The path does not. go through state k at all. In this
case, the label of the path is in the language of Rij

(k-1)

Case 2: The path goes through state k at, least once.
• The first goes from state i to state k without passing

through k,
• the last piece goes from k to j without passing through k,

and
• all the pieces in the middle go from k to itself, without

passing through k.

Definition

• If we construct these expressions in order of increasing superscript,
then since each depends only on expressions with a smaller
superscript, then all expressions are available when we need them.

• Eventually, we have for all i and j. We may assume that state 1 is
the start state, although the accepting states could be any set of the
states.

• The regular expression for the language of the automaton is then the
sum (union) of all expressions such that state j is an accepting state.

BİL405 - Automata Theory and Formal Languages 14

Rij
(k)

Rij
(k)

Rij
(n)

Rij
(n)

Example

BİL405 - Automata Theory and Formal Languages 15

Example

BİL405 - Automata Theory and Formal Languages 16

Rij
(1)

Example

BİL405 - Automata Theory and Formal Languages 17

R12
(2)

The final regular expression equivalent to DFAis constructed by taking the union of
all the expressions where the first state is the start state and the second state is accepting.

With 1 as the start state and 2 as the only accepting state, we need only the expression

Rij
(2)

R12
(2) = 1*0(0+1)*

Some Simplification Rules

(+R)* = R*

R = R = is an annihilator for concatenation.

+R = R+ = R is the identity for union.

BİL405 - Automata Theory and Formal Languages 18

Converting DFA's to Regular Expressions
by Eliminating States

• The previous method is expensive since we have to construct about n3 expressions.
• There is more efficient way to convert DFA’s to Regular Expressions by eliminating

states.
• When we eliminate a state s. all the paths that went through s no longer exist in the

automaton.
– If the language of the automaton is not to change, we must include, on an arc that

goes directly from q to p, the labels of paths that went from some state q to state
p, through s.

– Since the label of this arc may now involve strings, rather than single symbols,
and there may even be an infinite number of such strings, we cannot simply list
the strings as a label. Regular expressions are, finite way to represent all such
strings.

– Thus, automata will have regular expressions as labels.
– The language of the automaton is the union over all paths from the start state to an

accepting state of the language formed by concatenating the languages of the
regular expressions along that path.

BİL405 - Automata Theory and Formal Languages 19

Converting DFA's to Regular Expressions
by Eliminating States

BİL405 - Automata Theory and Formal Languages 20

Eliminate
the state s

label the edges with regex's instead
of symbols

Converting DFA's to Regular Expressions
by Eliminating States

To construct a RegExp from a DFA

1. For each accepting state q, apply the above reduction process to produce an
equivalent automaton with regular-expression labels on the arcs. Eliminate all states
except q and the start state q0.

2. If q q0, a two-state automaton will be created (CASE 1)

3. If q = q0, a single-state automaton will be created (CASE 2)

4. The desired regular expression is the sum (union) of all the expressions derived from
the reduced automata for each accepting state, by rules (2) and (3).

BİL405 - Automata Theory and Formal Languages 21

Converting DFA's to Regular Expressions
by Eliminating States

CASE 1: If q q0, a two-state automaton will be created

CASE 2: If q = q0, a single-state automaton will be created

BİL405 - Automata Theory and Formal Languages 22

It accepts the regular expression:

(R+SU*T)*SU*

It accepts the regular expression:

R*

Example

BİL405 - Automata Theory and Formal Languages 23

Convert a NFA to a regular expression

 Replace all symbols on arcs with regular expressions

Example

BİL405 - Automata Theory and Formal Languages 24

 Eliminate the state B
NewArcAC = ArcAC + ArcAB ArcBB* ArcBC

= + 1 * (0+1)
= 1 (0+1)

Example

BİL405 - Automata Theory and Formal Languages 25

 Eliminate the state C
NewArcAD = ArcAD + ArcAC ArcCC* ArcCD

= + 1(0+1) * (0+1)
= 1 (0+1) (0+1)

Example

BİL405 - Automata Theory and Formal Languages 26

 Eliminate the state D
NewArcAC = ArcAC + ArcAD ArcDD* ArcDC

= 1(0+1) + *
= 1 (0+1)

Example - Result

BİL405 - Automata Theory and Formal Languages 27

RE = (ArcAA+ArcAC ArcCC* ArcCA)*ArcACArcCC*
= ((0+1)+1(0+1) *)* 1(0+1) *
= (0+1)*1(0+1)

Final Reg Exp = (0+1)*1(0+1) + (0+1)*1(0+1) (0+1)

RE = (ArcAA+ArcAD ArcDD* ArcDA)*ArcADArcDD*
= ((0+1)+1(0+1) (0+1)*)* 1(0+1) (0+1) *
= (0+1)*1(0+1) (0+1)

From Regular Expressions to -NFA's

BİL405 - Automata Theory and Formal Languages 28

Theorem 3.7: For every regex R we can construct and -NFA A,
s.t. L(A) = L(R).

From Regular Expressions to -NFA's – R+S

BİL405 - Automata Theory and Formal Languages 29

From Regular Expressions to -NFA's – RS

BİL405 - Automata Theory and Formal Languages 30

From Regular Expressions to -NFA's – R*

BİL405 - Automata Theory and Formal Languages 31

Example: Convert (0+1)*1(0+1) to -NFA

BİL405 - Automata Theory and Formal Languages 32

Example: Convert (0+1)*1(0+1) to -NFA

BİL405 - Automata Theory and Formal Languages 33

Algebraic Laws for Languages –
Associativity and Commutativity

BİL405 - Automata Theory and Formal Languages 34

Union is commutative: M N = N M
Union is associative: (M N) R = M (N R)

Concatenation is associative: (M N) R = M (N R)
Concatenation is NOT commutative,

i.e., there are M and Nsuch that MN NM

• Commutativity is the property of an operator that says we can
switch the order of its operands and get the same result.

• Associativity is the property of an operator that allows us to
regroup the operands when the operator is applied twice.

Algebraic Laws for Languages –
Identities and Annihilators

BİL405 - Automata Theory and Formal Languages 35

 is identity for union: N = N = N

{} is left and right identity for concatenation: {} N = N {} = N

 is left and right annihilator for concatenation: N = N =

• An identity for an operator is a value such that when the operator is
applied to the identity and some other value, the result is the other value.

• An annihilator for an operator is a value such that when the operator is
applied to the annihilator and some other value, the result is the
annihilator.

Algebraic Laws for Languages –
Distributive and Idempotent

BİL405 - Automata Theory and Formal Languages 36

Concatenation is left and right distributive over union:
R (M N) = RM RN
(M N) R = MR NR

Union is idempotent: M M = M

• A distributive law involves two operators, and asserts that one
operator can be pushed down to be applied to each argument of the
other operator individually.

• An operator is said to be idempotent if the result of applying it to
two of the same values as arguments is that value.

Algebraic Laws for Languages –
Closure Laws

BİL405 - Automata Theory and Formal Languages 37

Languages Regular Expressions

* = {} * =

{}* = {} * =

L+ = LL* = L*L R+ = RR* = R*R

L* = L+ {} R* = R+ +

L? = L {} R? = R +

(L*)* = L* (R*)* = R*

Algebraic Laws for Languages

BİL405 - Automata Theory and Formal Languages 38

Theorem: (L*)* = L*

Discovering Laws for Regular Expressions

• There is an infinite variety of laws about regular expressions that might
be proposed.

• Is there a general methodology that will make our proofs of the correct
laws easy? YES
– This methodology only works for regular expression operators (concetanation, or,

closure)

• Methodology: Exp1 = Exp2
– Replace each variable in the law (in Exp1 and Exp2) with unique

symbols to create concrete regular expressions, RE1 and RE2.
– Check the equality of the languages of RE1 and RE2,

ie. L(RE1) = L(RE2)
BİL405 - Automata Theory and Formal Languages 39

Discovering Laws for Regular Expressions

BİL405 - Automata Theory and Formal Languages 40

Discovering Laws for Regular Expressions -
Example

BİL405 - Automata Theory and Formal Languages 41

Law: R(M+N) = RM + RN

Replace R with a, M with b, and N with c.

 a(b+c) = ab + ac

Then, check whether L(a(b+c)) is equal to L(ab+bc)

If their languages are equal, the law is TRUE.

Since, L(a(b+c)) is equal to L(ab+bc)
 R(M+N) = RM + RN is a true law

Discovering Laws for Regular Expressions -
Example

BİL405 - Automata Theory and Formal Languages 42

Law: (M+N)* = (M*N*)*

Replace M with a, and N with b.

 (a+b)* = (a*b*)*

Then, check whether L((a+b)*) is equal to L((a*b*)*)

Since, L((a+b)*) is equal to L((a*b*)*)
 (M+N)* = (M*N*)* is a true law

