
Pushdown Automata

BİL405 - Automata Theory and Formal Languages 1

Pushdown Automata

• A pushdown automata (PDA) is essentially an -NFA with a stack.
• On a transition, the PDA:

1. Consumes an input symbol.
2. Goes to a new state (or stays in the old).
3. Replaces the top of the stack by any string (does nothing, pops the

stack, or pushes a string onto the stack)

BİL405 - Automata Theory and Formal Languages 2

Pushdown Automata - Example

Example: Let's consider
with the grammar

P  0P0, P  1P1, P 

•A PDA for Lwwr has tree states, and operates as follows:
1. Guess that you are reading w. Stay in state 0, and push the input symbol onto the

stack.
2. Guess that you are in the middle of wwR. Go spontaneously to state 1.
3. You're now reading the head of wR. Compare it to the top of the stack. If they

match, pop the stack, and remain in state 1. If they don't match, go to sleep.
4. If the stack is empty, go to state 2 and accept.

BİL405 - Automata Theory and Formal Languages 3

Pushdown Automata – Formal Definition

A pushdown Automata (PDA) is a seven-tuple:
P = (Q,,,,q0,Z0,F),

where
– Q is a finite set of states,
–  is a finite input alphabet,
–  is finite stack alphabet,
– : Q x {} x   2Qx* is the transition function,
– q0, is a start state,
– Z0, is the start symbol for the stack, and
– F is the set of accepting states.

BİL405 - Automata Theory and Formal Languages 4

Pushdown Automata- Example

BİL405 - Automata Theory and Formal Languages 5

Pushdown Automata- Example

• The PDA is actually a seven tuple

P = ({q0,q1,q2}, {0,1}, {0,1,Z0}, , q0 ,Z0, {q2})
;

where the transition function is the following table
(set brackets missing)

BİL405 - Automata Theory and Formal Languages 6

Instantaneous Descriptions of a PDA

• A PDA goes from configuration to configuration when consuming
input.

• The configuration of a PDA is represented by a triple (q,w,) where
1. q is a the state,
2. w is the remaining input, and
3.  is the stack contents

• A configuration triple is called an instantaneous description, or ID, of
the pushdown automaton.

BİL405 - Automata Theory and Formal Languages 7

PDA Move - "turnstile" notation

• We need a notation that describes changes in the state, the input, and
stack.

• The "turnstile" notation for connecting pairs of ID's that represent one
or many mows of a PDA is used to show PDA moves.

BİL405 - Automata Theory and Formal Languages 8

if

PDA Move - Example

• On input 1111 the PDA has the following computation sequences:

BİL405 - Automata Theory and Formal Languages 9

Three important principles about ID’s

• The following properties hold:

1. If an ID sequence is a legal computation for a PDA, then so is the
sequence obtained by adding an additional string at the end of
component number two.

2. If an ID sequence is a legal computation for a PDA, then so is the
sequence obtained by adding an additional string at the bottom of
component number three.

3. If an ID sequence is a legal computation for a PDA, and some tail of
the input is not consumed, then removing this tail from all ID's result in
a legal computation sequence.

BİL405 - Automata Theory and Formal Languages 10

Three important principles about ID’s

• We formalize points (1) and (2) in Th 6.5, and (3) in Th. 6.6.

BİL405 - Automata Theory and Formal Languages 11

The Languages of a PDA

• We have assumed that a PDA accepts its input by consuming it and
entering an accepting state.

• This approach is called as "acceptance by final state."

• There is a second approach known as "accepted by empty stack“.
– The set of strings that cause the PDA to empty its stack, starting

from the initial ID.

• These two methods axe equivalent, in the sense that a language L has a
PDA A that accepts it by final state if and only if L has a PDA B that
accepts it by empty stack.

BİL405 - Automata Theory and Formal Languages 12

Acceptance by Final State

BİL405 - Automata Theory and Formal Languages 13

• That is, starting in the initial ID with w waiting on the input,
PDA consumes w from the input and enters an accepting state.

• The contents of the stack at that time is irrelevant.

Acceptance by Empty Stack

BİL405 - Automata Theory and Formal Languages 14

• That is, N(P) is the set of inputs w that P can consume and
at the same time empty its stack.

From Empty Stack to Final State

• If there is a PDA PN that accepts a language L by empty stack then we
can construct a PDA PF that accepts L by final state.

BİL405 - Automata Theory and Formal Languages 15

From Empty Stack to Final State

BİL405 - Automata Theory and Formal Languages 16

Proof: Let

From Final State to Empty

BİL405 - Automata Theory and Formal Languages 17

From Final State to Empty

• Proof: Let

BİL405 - Automata Theory and Formal Languages 18

Equivalence of PDA's and CFG's

• The following three classes of languages are all the same class.
1. The context-free- languages, i.e.. the languages defined by CFG's.
2. The languages that are accepted by final state by some PDA.
3. The languages that are accepted by empty stack by some PDA.

• We have already shown that (2) and (3) are the same.
• It turns out to be easiest next to show that (1) and (3) are the same, thus

Implying the equivalence of all three.
BİL405 - Automata Theory and Formal Languages 19

From Grammars to Pushdown Automata

• Given a CFG G. we construct a PDA that simulates the leftmost
derivations of G.

• Any left-sentential form that is not a terminal string can be written as
xA, where
– A is the leftmost variable,
– x is whatever terminals appear to its left, and
–  is the string of terminals and variables that appear to the right of A.
– If a left-sentential form consists of terminals only, then A  is .

• Let xA lm x
• This corresponds to the PDA rest having consumed x and having A

on the stack, and then on  it pops A and pushes 
.

BİL405 - Automata Theory and Formal Languages 20

From Grammars to Pushdown Automata - Formal

Let G = {V,T, Q, S) be a CFG. Construct the PDA P that accepts L{G)
by empty stack as follows:

P = ({q},T,VT,,q,S)

where transition function 5 is defined by:

1. For each variable A,

(q, , A) — {{q, ) | A   is a production of G}

2. For each terminal a, (q,a,a) — {(q,)}.

BİL405 - Automata Theory and Formal Languages 21

From CFG to PDA - Example

• P  0P0, P  1P1, P 

BİL405 - Automata Theory and Formal Languages 22

,P/0P0
,P/1P1
,P/ 
0,0/ 
1,1/ 

From PDA with empty stack to CFG

BİL405 - Automata Theory and Formal Languages 23

Let's look at how a PDA can consume x =x1x2…xk and empty the stack.

We shall define a
grammar with variables of
the form [pi-1Yipi]
representing going from
pi-1 to pi with net effect of
popping Yi.

From PDA with empty stack to CFG

BİL405 - Automata Theory and Formal Languages 24

From PDA with empty stack to CFG - Example

BİL405 - Automata Theory and Formal Languages 25

 {S  qZq}

From PDA with empty stack to CFG – Example2

BİL405 - Automata Theory and Formal Languages 26

From PDA with empty stack to CFG – Example2

BİL405 - Automata Theory and Formal Languages 27

Deterministic Pushdown Automata (DPDA)

• While PDA's are by definition allowed to be nondeterministic, the
deterministic subcase is quite important.

• In particular, parsers generally behave like deterministic PDA's, so the
class of languages that can be accepted by these automata is interesting
for the insights it gives us into what constructs are suitable for use in
programming languages.

A PDA P = (Q,,,,q0,Z0,F) is deterministic iff
1. (q,a,X) is always empty or a singleton where a, or a is .
2. If (q,a,X) is nonempty where a, then (q, ,X) must be empty.

BİL405 - Automata Theory and Formal Languages 28

DPDA - Example

BİL405 - Automata Theory and Formal Languages 29

DPDA Properties

BİL405 - Automata Theory and Formal Languages 30

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

regular languages  languages of DPDAs

Lwcwr is a member of languages of DPDAs but it is not regular.

languages of DPDAs  context free languages

Lwwr is a contex free language
but it is not a member of languages of DPDAs.

DPDA Properties

BİL405 - Automata Theory and Formal Languages 31

• For a given unambiguous grammar we may NOT find a DPDA.

Lwwr has unambiguous grammar S  0S0 | 1S1 | 
but not is not L(DPDA).

• But we can always find an unambiguous grammar for the language
of a given DPDA.

