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Pushdown Automata

• A pushdown automata (PDA) is essentially an -NFA with a stack.
• On a transition, the PDA:

1. Consumes an input symbol.
2. Goes to a new state (or stays in the old).
3. Replaces the top of the stack by any string (does nothing, pops the 

stack, or pushes a string onto the stack)
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Pushdown Automata - Example

Example: Let's consider  
with the grammar 

P  0P0, P  1P1,  P 

•A PDA for Lwwr has tree states, and operates as follows:
1. Guess that you are reading w. Stay in state 0, and push the input symbol onto the 

stack.
2. Guess that you are in the middle of wwR. Go spontaneously to state 1.
3. You're now reading the head of wR. Compare it to the top of the stack. If they

match, pop the stack, and remain in state 1. If they don't match, go to sleep.
4. If the stack is empty, go to state 2 and accept.
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Pushdown Automata – Formal Definition

A pushdown Automata (PDA) is a seven-tuple:
P = (Q,,,,q0,Z0,F),

where
– Q is a finite set of states,
–  is a finite input alphabet,
–  is finite stack alphabet,
– : Q x {} x   2Qx* is the transition function,
– q0, is a start state,
– Z0, is the start symbol for the stack, and
– F is the set of accepting states.
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Pushdown Automata- Example
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Pushdown Automata- Example

• The PDA is  actually a seven tuple

P = ({q0,q1,q2}, {0,1}, {0,1,Z0}, , q0 ,Z0, {q2} )
;

where  the transition function is the following table
(set brackets missing)
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Instantaneous Descriptions of a PDA 

• A PDA goes from configuration to configuration when consuming 
input.

• The configuration of a PDA is represented by a triple (q,w,) where
1. q is a the state,
2. w is the remaining input, and
3.  is the stack contents

• A configuration triple is called an instantaneous description, or ID, of 
the pushdown automaton.
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PDA Move - "turnstile" notation 

• We need a notation that describes changes in the state, the input, and 
stack. 

• The "turnstile" notation for connecting pairs of ID's that represent one 
or many mows of a PDA is used to show PDA moves. 
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PDA Move - Example

• On input 1111 the PDA has the following computation sequences:
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Three important principles about ID’s 

• The following properties hold:

1. If an ID sequence is a legal computation for a PDA, then so is the 
sequence obtained by adding an additional string at the end of 
component number two.

2. If an ID sequence is a legal computation for a PDA, then so is the 
sequence obtained by adding an additional string at the bottom of 
component number three.

3. If an ID sequence is a legal computation for a PDA, and some tail of 
the input is not consumed, then removing this tail from all ID's result in 
a legal computation sequence.
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Three important principles about ID’s 

• We formalize points (1) and (2) in Th 6.5, and (3) in Th. 6.6. 
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The Languages of a PDA 

• We have assumed that a PDA accepts its input by consuming it and 
entering an accepting state. 

• This approach is called as "acceptance by final state." 

• There is a second approach known as "accepted by empty stack“. 
– The set of strings that cause the PDA to empty its stack, starting 

from the initial ID. 

• These two methods axe equivalent, in the sense that a language L has a 
PDA A that accepts it by final state if and only if L has a PDA B that 
accepts it by empty stack.
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Acceptance by Final State
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• That is, starting in the initial ID with w waiting on the input, 
PDA consumes w from the input and enters an accepting state.

• The contents of the stack at that time is irrelevant. 



Acceptance by Empty Stack
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• That is, N(P) is the set of inputs w that P can consume and 
at the same time empty its stack. 



From Empty Stack to Final State

• If there is a PDA PN that accepts a language L by empty stack then we 
can construct a PDA PF that accepts L by final state.
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From Empty Stack to Final State
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Proof: Let



From Final State to Empty 
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From Final State to Empty 

• Proof: Let
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Equivalence of PDA's and CFG's 

• The following three classes of languages are all the same class. 
1. The context-free- languages, i.e.. the languages defined by CFG's. 
2. The languages that are accepted by final state by some PDA. 
3. The languages that are accepted by empty stack by some PDA. 

• We have already shown that (2) and (3) are the same. 
• It turns out to be easiest next to show that (1) and (3) are the same, thus 

Implying the equivalence of all three. 
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From Grammars to Pushdown Automata 

• Given a CFG G. we construct a PDA that simulates the leftmost 
derivations of G. 

• Any left-sentential form that is not a terminal string can be written as 
xA, where 
– A is the leftmost variable, 
– x is whatever terminals appear to its left, and 
–  is the string of terminals and variables that appear to the right of A. 
– If a left-sentential form consists of terminals only, then A  is . 

• Let xA lm x
• This corresponds to the PDA rest having consumed x and having A

on the stack, and then on  it pops A and pushes 
.
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From Grammars to Pushdown Automata - Formal

Let G = {V,T, Q, S) be a CFG. Construct the PDA P that accepts L{G) 
by empty stack as follows: 

P = ({q},T,VT,,q,S) 

where transition function 5 is defined by: 

1. For each variable A, 

(q, , A) — {{q, ) | A   is a production of G} 

2. For each terminal a, (q,a,a) — {(q,)}. 
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From CFG to PDA - Example

• P  0P0, P  1P1,  P 
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,P/0P0
,P/1P1
,P/ 
0,0/ 
1,1/ 



From PDA with empty stack  to CFG
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Let's look at how a PDA can consume x =x1x2…xk and empty the stack.

We shall define a 
grammar with variables of 
the form [pi-1Yipi] 
representing going from 
pi-1 to pi with net effect of 
popping Yi.



From PDA with empty stack  to CFG
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From PDA with empty stack  to CFG - Example
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 {S  qZq}



From PDA with empty stack  to CFG – Example2
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From PDA with empty stack  to CFG – Example2
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Deterministic Pushdown Automata (DPDA)

• While PDA's are by definition allowed to be nondeterministic, the 
deterministic subcase is quite important. 

• In particular, parsers generally behave like deterministic PDA's, so the 
class of languages that can be accepted by these automata is interesting 
for the insights it gives us into what constructs are suitable for use in 
programming languages.

A PDA P = (Q,,,,q0,Z0,F) is deterministic iff
1. (q,a,X) is always empty or a singleton where a, or a is .
2. If (q,a,X) is nonempty where a, then (q, ,X) must be empty.
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DPDA - Example
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DPDA  Properties
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Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P. 

regular languages  languages of DPDAs

Lwcwr is a member of languages of DPDAs but it is not regular.

languages of DPDAs  context free languages

Lwwr is a contex free language 
but it is not a member of languages of DPDAs.



DPDA  Properties
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• For a given unambiguous grammar we may NOT find a DPDA.

Lwwr has unambiguous grammar S  0S0 |  1S1 |  
but not is not L(DPDA).

• But we can always find an unambiguous grammar for the language 
of a given DPDA.


