Bayesian Learning

Features of Bayesian learning methods:

• Each observed training example can incrementally decrease or increase the estimated probability that a hypothesis is correct.
 – This provides a more flexible approach to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent with any single example.

• Prior knowledge can be combined with observed data to determine the final probability of a hypothesis. In Bayesian learning, prior knowledge is provided by asserting
 – a prior probability for each candidate hypothesis, and
 – a probability distribution over observed data for each possible hypothesis.

• Bayesian methods can accommodate hypotheses that make probabilistic predictions
• New instances can be classified by combining the predictions of multiple hypotheses, weighted by their probabilities.
• Even in cases where Bayesian methods prove computationally intractable, they can provide a standard of optimal decision making against which other practical methods can be measured.
Difficulties with Bayesian Methods

• Require initial knowledge of many probabilities
 – When these probabilities are not known in advance they are often estimated based on background knowledge, previously available data, and assumptions about the form of the underlying distributions.

• Significant computational cost is required to determine the Bayes optimal hypothesis in the general case (linear in the number of candidate hypotheses).
 – In certain specialized situations, this computational cost can be significantly reduced.
Bayes Theorem

• In machine learning, we try to determine the **best hypothesis** from some hypothesis space H, given the observed training data D.

• In Bayesian learning, the **best hypothesis** means the **most probable** hypothesis, given the data D plus any initial knowledge about the prior probabilities of the various hypotheses in H.

• Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior probability, the probabilities of observing various data given the hypothesis, and the observed data itself.
Bayes Theorem

P(h) is **prior probability of hypothesis h**
- P(h) to denote the initial probability that hypothesis h holds, before observing training data.
- P(h) may reflect any background knowledge we have about the chance that h is correct. If we have no such prior knowledge, then each candidate hypothesis might simply get the same prior probability.

P(D) is **prior probability of training data D**
- The probability of D given no knowledge about which hypothesis holds.

P(h|D) is **posterior probability of h given D**
- P(h|D) is called the **posterior probability** of h, because it reflects our confidence that h holds after we have seen the training data D.
- The posterior probability P(h|D) reflects the influence of the training data D, in contrast to the prior probability P(h), which is independent of D.

P(D|h) is **posterior probability of D given h**
- The probability of observing data D given some world in which hypothesis h holds.
- Generally, we write P(x|y) to denote the probability of event x given event y.
Bayes Theorem

- In ML problems, we are interested in the probability $P(h|D)$ that h holds given the observed training data D.
- Bayes theorem provides a way to calculate the posterior probability $P(h|D)$, from the prior probability $P(h)$, together with $P(D)$ and $P(D|h)$.

Bayes Theorem:
$$P(h | D) = \frac{P(D | h) P(h)}{P(D)}$$

- $P(h|D)$ increases with $P(h)$ and $P(D|h)$ according to Bayes theorem.
- $P(h|D)$ decreases as $P(D)$ increases, because the more probable it is that D will be observed independent of h, the less evidence D provides in support of h.
Bayes Theorem - Example

Sample Space for events A and B

<table>
<thead>
<tr>
<th>A holds</th>
<th>T</th>
<th>T</th>
<th>F</th>
<th>F</th>
<th>T</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>B holds</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

P(A) = 4/7 P(B) = 3/7 P(B|A) = 2/4 P(A|B) = 2/3

Is Bayes Theorem correct?

P(B|A) = P(A|B)P(B) / P(A) = (2/3 * 3/7) / 4/7 = 2/4 \(\Rightarrow\) CORRECT

P(A|B) = P(B|A)P(A) / P(B) = (2/4 * 4/7) / 3/7 = 2/3 \(\Rightarrow\) CORRECT
Maximum A Posteriori (MAP) Hypothesis, h_{MAP}

- The learner considers some set of candidate hypotheses H and it is interested in finding the **most probable hypothesis** $h \in H$ given the observed data D.
- Any such maximally probable hypothesis is called a **maximum a posteriori (MAP) hypothesis** h_{MAP}.
- We can determine the MAP hypotheses by using Bayes theorem to calculate the posterior probability of each candidate hypothesis.

$$h_{MAP} \equiv \operatorname{argmax}_{h \in H} P(h|D)$$

$$= \operatorname{argmax}_{h \in H} \frac{P(D|h) P(h)}{P(D)}$$

$$= \operatorname{argmax}_{h \in H} P(D|h) P(h)$$
Maximum Likelihood (ML) Hypothesis, h_{ML}

- If we assume that every hypothesis in H is equally probable
 i.e. $P(h_i) = P(h_j)$ for all h_i and h_j in H
 We can only consider $P(D|h)$ to find the most probable hypothesis.

- $P(D|h)$ is often called the *likelihood* of the data D given h

- Any hypothesis that maximizes $P(D|h)$ is called a *maximum likelihood (ML) hypothesis, h_{ML}.*

\[
h_{ML} \equiv \arg\max_{h \in H} P(D|h)
\]
Example - Does patient have cancer or not?

- The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present.
- Furthermore, 0.008 of the entire population have cancer.

\[
\begin{align*}
P(\text{cancer}) &= 0.008 \\
P(\neg \text{cancer}) &= 0.992 \\
P(+) | \text{cancer} &= 0.98 \\
P(+) | \neg \text{cancer} &= 0.03 \\
P(-) | \text{cancer} &= 0.02 \\
P(-) | \neg \text{cancer} &= 0.97
\end{align*}
\]

- A patient takes a lab test and the result comes back positive.

\[
\begin{align*}
P(+) | \text{cancer} \cdot P(\text{cancer}) &= 0.98 \cdot 0.008 = 0.0078 \\
P(+) | \neg \text{cancer} \cdot P(\neg \text{cancer}) &= 0.03 \cdot 0.992 = 0.0298
\end{align*}
\]

\[\Rightarrow h_{MAP} \text{ is notcancer}\]

- Since \(P(\text{cancer}|+) + P(\neg \text{cancer}|+) \) must be 1

\[
\begin{align*}
P(\text{cancer}|+) &= 0.0078 / (0.0078 + 0.0298) = 0.21 \\
P(\neg \text{cancer}|+) &= 0.0298 / (0.0078 + 0.0298) = 0.79
\end{align*}
\]
Basic Formulas for Probabilities

Product rule: probability $P(A \land B)$ of a conjunction of two events A and B

$$P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$$

Sum rule: probability of a disjunction of two events A and B

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Theorem of total probability: if events A_1, \ldots, A_n are mutually exclusive with $\sum_{i=1}^{n} P(A_i) = 1$, then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$
Brute-Force Bayes Concept Learning

- A Concept-Learning algorithm considers a finite hypothesis space H defined over an instance space X.
- The task is to learn the target concept (a function) $c : X \rightarrow \{0, 1\}$.
- The learner gets a set of training examples $(<x_1, d_1>, \ldots, <x_m, d_m>)$ where x_i is an instance from X and d_i is its target value (i.e. $c(x_i) = d_i$).

Brute-Force Bayes Concept Learning Algorithm finds the maximum a posteriori hypothesis (h_{MAP}), based on Bayes theorem.
Brute-Force MAP Learning Algorithm

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{\text{MAP}} = \arg\max_{h \in H} P(h|D)$$

- This algorithm may require significant computation, because it applies Bayes theorem to each hypothesis in H to calculate $P(h|D)$.
 - While this is impractical for large hypothesis spaces,
 - The algorithm is still of interest because it provides a standard against which we may judge the performance of other concept learning algorithms.
Brute-Force MAP Learning Algorithm

• BF MAP learning algorithm must specify values for $P(h)$ and $P(D|h)$.

• $P(h)$ and $P(D|h)$ must be chosen to be consistent with the assumptions:
 1. The training data D is noise free (i.e., $d_i = c(x_i)$).
 2. The target concept c is contained in the hypothesis space H.
 3. We have no a priori reason to believe that any hypothesis is more probable than any other.

• With these assumptions:

$$P(h) = \frac{1}{|H|} \quad \text{for all } h \in H$$

$$P(D|h) = \begin{cases} 1 & \text{if } d_i = h(x_i) \text{ for all } d_i \text{ in } D \\ 0 & \text{otherwise} \end{cases}$$
Brute-Force MAP Learning Algorithm

- So, the values of $P(h|D)$ will be:

\[
P(h|D) = \frac{0 \cdot P(h)}{P(D)} = 0 \text{ if } h \text{ is inconsistent with } D
\]

where $\text{VS}_{H,D}$ is the version space of H with respect to D.

- $P(D) = \frac{|\text{VS}_{H,D}|}{|H|}$ because
 - the sum over all hypotheses of $P(h|D)$ must be one and
 - the number of hypotheses from H consistent with D is $|\text{VS}_{H,D}|$, or
- we can derive $P(D)$ from the theorem of total probability and
 the fact that the hypotheses are mutually exclusive (i.e., $(\forall i \neq j)(P(h_i \land h_j) = 0)$

\[
P(D) = \sum_{h_i \in H} P(D|h_i)P(h_i) = \sum_{h_i \in \text{VS}_{H,D}} 1 \cdot \frac{1}{|H|} + \sum_{h_i \notin \text{VS}_{H,D}} 0 \cdot \frac{1}{|H|} = \sum_{h_i \in \text{VS}_{H,D}} 1 \cdot \frac{1}{|H|} = \frac{|\text{VS}_{H,D}|}{|H|}
\]
Evolution of posterior probabilities $P(h|D)$ with increasing training data.

(a) Uniform priors assign equal probability to each hypothesis. As training data increases first to D_1 (b), then to $D_1 \land D_2$ (c),

the posterior probability of inconsistent hypotheses becomes zero, while posterior probabilities increase for hypotheses remaining in the version space.
MAP Hypotheses and Consistent Learners

• A learning algorithm is a **consistent learner** if it outputs a hypothesis that commits zero errors over the training examples.

• Every consistent learner outputs a MAP hypothesis, if we assume
 – a uniform prior probability distribution over H (i.e., $P(h_i) = P(h_j)$ for all i, j), and
 – deterministic, noise free training data (i.e., $P(D|h) = 1$ if D and h are consistent, and 0 otherwise).

• Because FIND-S outputs a consistent hypothesis, it will output a MAP hypothesis under the probability distributions $P(h)$ and $P(D|h)$ defined above.

• Are there other probability distributions for $P(h)$ and $P(D|h)$ under which FIND-S outputs MAP hypotheses? Yes.
 – Because FIND-S outputs a maximally specific hypothesis from the version space, its output hypothesis will be a MAP hypothesis relative to any prior probability distribution that favors more specific hypotheses.
 – More precisely, suppose we have a probability distribution $P(h)$ over H that assigns $P(h_1) \geq P(h_2)$ if h_1 is more specific than h_2.

Maximum Likelihood and Least-Squared Error Hypotheses

- Many learning approaches such as neural network learning, linear regression, and polynomial curve fitting try to learn a continuous-valued target function.

- Under certain assumptions any learning algorithm that minimizes the squared error between the output hypothesis predictions and the training data will output a **Maximum Likelihood Hypothesis**.

- The significance of this result is that it provides a Bayesian justification (under certain assumptions) for many neural network and other curve fitting methods that attempt to minimize the sum of squared errors over the training data.
Learning A Continuous-Valued Target Function

• Learner L considers an instance space X and a hypothesis space H consisting of some class of real-valued functions defined over X.
• The problem faced by L is to learn an unknown target function f drawn from H.
• A set of m training examples is provided, where the target value of each example is corrupted by random noise drawn according to a Normal probability distribution.
• Each training example is a pair of the form \((x_i, d_i)\) where \(d_i = f(x_i) + e_i\).
 – Here \(f(x_i)\) is the noise-free value of the target function and \(e_i\) is a random variable representing the noise.
 – It is assumed that the values of the \(e_i\) are drawn independently and that they are distributed according to a Normal distribution with zero mean.
• The task of the learner is to output a maximum likelihood hypothesis, or, equivalently, a MAP hypothesis assuming all hypotheses are equally probable a priori.
Learning A Linear Function

- The target function f corresponds to the solid line.
- The training examples (x_i, d_i) are assumed to have Normally distributed noise e_i with zero mean added to the true target value $f(x_i)$.
- The dashed line corresponds to the hypothesis h_{ML} with least-squared training error, hence the maximum likelihood hypothesis.
- Notice that the maximum likelihood hypothesis is not necessarily identical to the correct hypothesis, f, because it is inferred from only a limited sample of noisy training data.
Basic Concepts from Probability Theory

- Before showing why a hypothesis that minimizes the sum of squared errors in this setting is also a maximum likelihood hypothesis, let us quickly review basic concepts from probability theory.

- A random variable can be viewed as the name of an experiment with a probabilistic outcome. Its value is the outcome of the experiment.

- A probability distribution for a random variable Y specifies the probability $\Pr(Y = y_i)$ that Y will take on the value y_i, for each possible value y_i.

- The expected value, or mean, of a random variable Y is $E[Y] = \sum_i y_i \Pr(Y = y_i)$. The symbol μ_Y is commonly used to represent $E[Y]$.

- The variance of a random variable is $\text{Var}(Y) = E[(Y - \mu_Y)^2]$. The variance characterizes the width or dispersion of the distribution about its mean.

- The standard deviation of Y is $\sqrt{\text{Var}(Y)}$. The symbol σ_Y is often used used to represent the standard deviation of Y.

- The Normal distribution is a bell-shaped probability distribution that covers many natural phenomena.

- The Central Limit Theorem is a theorem stating that the sum of a large number of independent, identically distributed random variables approximately follows a Normal distribution.
Basic Concepts from Probability Theory

A Normal Distribution (Gaussian Distribution) is a bell-shaped distribution defined by the probability density function

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

• A Normal distribution is fully determined by two parameters in the formula: \(\mu\) and \(\sigma\).

• If the random variable \(X\) follows a normal distribution:
 - The probability that \(X\) will fall into the interval \((a, b)\) is \(\int_a^b p(x)dx\)
 - The expected, or mean value of \(X\), \(E[X] = \mu\)
 - The variance of \(X\), \(\text{Var}(X) = \sigma^2\)
 - The standard deviation of \(X\), \(\sigma_x = \sigma\)

• The **Central Limit Theorem** states that the sum of a large number of independent, identically distributed random variables follows a distribution that is approximately **Normal**.
Maximum Likelihood and Least-Squared Error Hypotheses – Deriving h_{ML}

• In order to find the maximum likelihood hypothesis, we start with our earlier definition but using lower case p to refer to the probability density function.

$$h_{ML} = \arg\max_{h \in H} p(D|h)$$

• We assume a fixed set of training instances $(x_1 \ldots x_m)$ and therefore consider the data D to be the corresponding sequence of target values $D = (d_1 \ldots d_m)$.

• Here $d_i = f(x_i) + e_i$. Assuming the training examples are mutually independent given h, we can write $p(D|h)$ as the product of the various $p(d_i|h)$

$$h_{ML} = \arg\max_{h \in H} \prod_{i=1}^{m} p(d_i|h)$$
Maximum Likelihood and Least-Squared Error Hypotheses – Deriving h_{ML}

• Given that the noise e_i obeys a Normal distribution with zero mean and unknown variance σ^2, each d_i must also obey a Normal distribution with variance σ^2 centered around the true target value $f(x_i)$ rather than zero.

• $p(d_i|h)$ can be written as a Normal distribution with variance σ^2 and mean $\mu = f(x_i)$.

• Let us write the formula for this Normal distribution to describe $p(d_i|h)$, beginning with the general formula for a Normal distribution and substituting appropriate μ and σ^2.

• Because we are writing the expression for the probability of d_i given that h is the correct description of the target function f, we will also substitute $\mu = f(x_i) = h(x_i)$,

$$h_{ML} = \arg\max_{h \in H} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2\sigma^2} (d_i - \mu)^2}$$

$$= \arg\max_{h \in H} \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2\sigma^2} (d_i - h(x_i))^2}$$
Maximum Likelihood and Least-Squared Error Hypotheses – Deriving h_{ML}

- Maximizing $\ln p$ also maximizes p.

$$h_{ML} = \arg\max_{h \in H} \sum_{i=1}^{m} \ln \frac{1}{\sqrt{2\pi \sigma^2}} - \frac{1}{2\sigma^2} (d_i - h(x_i))^2$$

- First term is constant, discard it.

$$h_{ML} = \arg\max_{h \in H} \sum_{i=1}^{m} -\frac{1}{2\sigma^2} (d_i - h(x_i))^2$$

- Maximizing the negative quantity is equivalent to minimizing the corresponding positive quantity

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} \frac{1}{2\sigma^2} (d_i - h(x_i))^2$$

- Finally, we can again discard constants that are independent of h.

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$
Maximum Likelihood and Least-Squared Error Hypotheses

- The maximum likelihood hypothesis \(h_{ML} \) is the one that minimizes the sum of the squared errors between observed training values \(d_i \) and hypothesis predictions \(h(x_i) \).
- This holds under the assumption that the observed training values \(d_i \) are generated by adding random noise to the true target value, where this random noise is drawn independently for each example from a Normal distribution with zero mean.
- Similar derivations can be performed starting with other assumed noise distributions, producing different results.
- Why is it reasonable to choose the Normal distribution to characterize noise?
 - One reason, is that it allows for a mathematically straightforward analysis.
 - A second reason is that the smooth, bell-shaped distribution is a good approximation to many types of noise in physical systems.
- Minimizing the sum of squared errors is a common approach in many neural network, curve fitting, and other approaches to approximating real-valued functions.
Bayes Optimal Classifier

• Normally we consider:
 – What is the most probable hypothesis given the training data?

• We can also consider:
 – what is the most probable classification of the new instance given the training data?

• Consider a hypothesis space containing three hypotheses, hl, h2, and h3.
 – Suppose that the posterior probabilities of these hypotheses given the training data are .4, .3, and .3 respectively.
 – Thus, hl is the MAP hypothesis.
 – Suppose a new instance x is encountered, which is classified positive by hl, but negative by h2 and h3.
 – Taking all hypotheses into account, the probability that x is positive is .4 (the probability associated with hl), and the probability that it is negative is therefore .6.
 – The most probable classification (negative) in this case is different from the classification generated by the MAP hypothesis.
Bayes Optimal Classifier

- The most probable classification of the new instance is obtained by combining the predictions of all hypotheses, weighted by their posterior probabilities.

- If the possible classification of the new example can take on any value v_j from some set V, then the probability $P(v_j | D)$ that the correct classification for the new instance is v_j:

\[
P(v_j | D) = \sum_{h_i \in H} P(v_j | h_i) P(h_i | D)
\]

- Bayes optimal classification:

\[
\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D)
\]
Bayes Optimal Classifier - Ex

\[P(h_1 | D) = 0.4, \ P(\Theta | h_1) = 0, \ P(\oplus | h_1) = 1 \]
\[P(h_2 | D) = 0.3, \ P(\Theta | h_2) = 1, \ P(\oplus | h_2) = 0 \]
\[P(h_3 | D) = 0.3, \ P(\Theta | h_3) = 1, \ P(\oplus | h_3) = 0 \]

Probabilities:

\[
\sum_{h_i \in H} P(\oplus | h_i) P(h_i | D) = 0.4
\]
\[
\sum_{h_i \in H} P(\Theta | h_i) P(h_i | D) = 0.6
\]

Result:

\[
\arg\max_{v_j \in \{\oplus, \Theta\}} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D) = \Theta
\]
Bayes Optimal Classifier

• Although the Bayes optimal classifier obtains the best performance that can be achieved from the given training data, it can be quite costly to apply.
 – The expense is due to the fact that it computes the posterior probability for every hypothesis in H and then combines the predictions of each hypothesis to classify each new instance.

• An alternative, less optimal method is the Gibbs algorithm:
 1. Choose a hypothesis \(h \) from H at random, according to the posterior probability distribution over H.
 2. Use \(h \) to predict the classification of the next instance \(x \).
Naive Bayes Classifier

• One highly practical Bayesian learning method is Naive Bayes Learner (*Naive Bayes Classifier*).

• The naive Bayes classifier applies to learning tasks where each instance x is described by a conjunction of attribute values and where the target function $f(x)$ can take on any value from some finite set V.

• A set of training examples is provided, and a new instance is presented, described by the tuple of attribute values $(a_1, a_2 \ldots a_n)$.

• The learner is asked to predict the target value (classification), for this new instance.
Naive Bayes Classifier

• The Bayesian approach to classifying the new instance is to assign the most probable target value v_{MAP}, given the attribute values $(a_1, a_2 \ldots a_n)$ that describe the instance.

$$v_{\text{MAP}} = \arg\max_{v_j \in V} P(v_j|a_1, a_2 \ldots a_n)$$

• By Bayes theorem:

$$v_{\text{MAP}} = \arg\max_{v_j \in V} \frac{P(a_1, a_2 \ldots a_n|v_j)P(v_j)}{P(a_1, a_2 \ldots a_n)}$$

$$= \arg\max_{v_j \in V} P(a_1, a_2 \ldots a_n|v_j)P(v_j)$$
Naive Bayes Classifier

- It is easy to estimate each of the $P(v_j)$ simply by counting the frequency with which each target value v_j occurs in the training data.
- However, estimating the different $P(a_1, a_2 \ldots a_n | v_j)$ terms is not feasible unless we have a very, very large set of training data.
 - The problem is that the number of these terms is equal to the number of possible instances times the number of possible target values.
 - Therefore, we need to see every instance in the instance space many times in order to obtain reliable estimates.
- The naive Bayes classifier is based on the simplifying assumption that the attribute values are conditionally independent given the target value.
- For a given the target value of the instance, the probability of observing conjunction $a_1, a_2 \ldots a_n$, is just the product of the probabilities for the individual attributes:
 \[
P(a_1, a_2 \ldots a_n | v_j) = \prod_i P(a_i | v_j)
\]
- **Naive Bayes classifier:**
 \[
v_{NB} = \arg \max_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)
\]
Naive Bayes Classifier - Ex

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temp.</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play Tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cold</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Naive Bayes Classifier - Ex

- New instance to classify:
 (Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong)
- Our task is to predict the target value (yes or no) of the target concept *PlayTennis* for this new instance.

\[
v_{NB} = \arg \max_{v_j \in \{\text{yes, no}\}} P(v_j) \prod_i P(a_i | v_j)
\]

\[
= \arg \max_{v_j \in \{\text{yes, no}\}} P(v_j) P(\text{Outlook= sunny} | v_j) P(\text{Temperature= cool} | v_j) \\
\quad P(\text{Humidity= high} | v_j) P(\text{Wind= strong} | v_j)
\]
Naive Bayes Classifier - Ex

- \(P(\text{PlayTennis} = \text{yes}) = \frac{9}{14} = .64 \)
- \(P(\text{PlayTennis} = \text{no}) = \frac{5}{14} = .36 \)

\[
P(\text{yes}) \cdot P(\text{sunny}|\text{yes}) \cdot P(\text{cool}|\text{yes}) \cdot P(\text{high}|\text{yes}) \cdot P(\text{strong}|\text{yes}) = .0053
\]
\[
P(\text{no}) \cdot P(\text{sunny}|\text{no}) \cdot P(\text{cool}|\text{no}) \cdot P(\text{high}|\text{no}) \cdot P(\text{strong}|\text{no}) = .0206
\]

Thus, the naive Bayes classifier assigns the target value \(\text{PlayTennis} = \text{no} \) to this new instance, based on the probability estimates learned from the training data.

- Furthermore, by normalizing the above quantities to sum to one we can calculate the conditional probability that the target value is \(\text{no} \), given the observed attribute values.

\[
.0206 / (.0206 + .0053) = .795
\]
Estimating Probabilities

• \(P(\text{Wind}=\text{strong} \mid \text{PlayTennis}=\text{no}) \) by the fraction \(n_c/n \) where \(n = 5 \) is the total number of training examples for which \(\text{PlayTennis}=\text{no} \), and \(n_c = 3 \) is the number of these for which \(\text{Wind}=\text{strong} \).

• When \(n_c \) is zero
 – \(n_c/n \) will be zero too
 – this probability term will dominate

• To avoid this difficulty we can adopt a Bayesian approach to estimating the probability, using the m-estimate defined as follows.

 m-estimate of probability: \((n_c + m*p) / (n + m) \)

• if an attribute has \(k \) possible values we set \(p = 1/k \).
 – \(p=0.5 \) because Wind has two possible values.

• \(m \) is called the equivalent sample size
 – augmenting the \(n \) actual observations by an additional \(m \) virtual samples distributed according to \(p \).
Learning To Classify Text

LEARN_NAIVE_BAYES_TEXT(Examples, V)

- Examples is a set of text documents along with their target values. V is the set of all possible target values.
- This function learns the probability terms \(P(w_k|v_j) \), describing the probability that a randomly drawn word from a document in class \(v_j \) will be the English word \(w_k \).
- It also learns the class prior probabilities \(P(v_j) \).

1. collect all words, punctuation, and other tokens that occur in Examples
 - Vocabulary \(\leftarrow \) the set of all distinct words and other tokens occurring in any text document from Examples
LEARN_NAIVE_BAYES_TEXT(Examples, V)

2. calculate the required $P(v_j)$ and $P(w_k|v_j)$ probability terms

For each target value v_j in V do

– $\text{docs}_j \leftarrow$ the subset of documents from Examples for which the target value is v_j

– $P(v_j) \leftarrow |\text{docs}_j| / |\text{Examples}|

– $\text{Text}_j \leftarrow$ a single document created by concatenating all members of docs_j

– $n \leftarrow$ total number of distinct word positions in Examples

– for each word w_k in Vocabulary

 • $n_k \leftarrow$ number of times word w_k occurs in Text_j

 • $P(w_k|v_j) \leftarrow (n_k + 1) / (n + |\text{Vocabulary}|)$
CLASSIFY_NAIVE_BAYES_TEXT(Doc)

• Return the estimated target value for the document Doc.

• a_i denotes the word found in the i^{th} position within Doc.

 – positions \leftarrow all word positions in Doc that contain tokens found in Vocabulary
 – Return V_{NB}, where

 \[
 v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_{i \in \text{positions}} P(a_i | v_j)
 \]