Use your mentality

Wake up to reality

—From the song, "I've Got You under My Skin“ by Cole Porter
Web Security

• Web now widely used by business, government, individuals
• but Internet & Web are vulnerable
• have a variety of threats
 – integrity
 – confidentiality
 – denial of service
 – authentication
• need added security mechanisms
SSL (Secure Socket Layer)

- transport layer security service
- originally developed by Netscape
- version 3 designed with public input
- subsequently became Internet standard known as TLS (Transport Layer Security)
- uses TCP to provide a reliable end-to-end service
- SSL has two layers of protocols
SSL Architecture

- SSL Handshake Protocol
- SSL Change Cipher Spec Protocol
- SSL Alert Protocol
- HTTP

SSL Record Protocol

TCP

IP
SSL Architecture

• **SSL session**
 – an association between client & server
 – created by the Handshake Protocol
 – define a set of cryptographic parameters
 – may be shared by multiple SSL connections

• **SSL connection**
 – a transient, peer-to-peer, communications link
 – associated with 1 SSL session
SSL Record Protocol

• confidentiality
 – using symmetric encryption with a shared secret key defined by Handshake Protocol
 – IDEA, RC2-40, DES-40, DES, 3DES, Fortezza, RC4-40, RC4-128
 – message is compressed before encryption

• message integrity
 – using a MAC with shared secret key
 – similar to HMAC but with different padding
SSL Change Cipher Spec Protocol

- one of 3 SSL specific protocols which use the SSL Record protocol
- a single message
- causes pending state to become current
- hence updating the cipher suite in use
SSL Alert Protocol

- conveys SSL-related alerts to peer entity
- severity
 - warning or fatal
- specific alert
 - unexpected message, bad record mac, decompression failure, handshake failure, illegal parameter
 - close notify, no certificate, bad certificate, unsupported certificate, certificate revoked, certificate expired, certificate unknown
- compressed & encrypted like all SSL data
SSL Handshake Protocol

• allows server & client to:
 – authenticate each other
 – to negotiate encryption & MAC algorithms
 – to negotiate cryptographic keys to be used

• comprises a series of messages in phases
 – Establish Security Capabilities
 – Server Authentication and Key Exchange
 – Client Authentication and Key Exchange
 – Finish
SSL Handshake Protocol

Phase 1
Establish security capabilities, including protocol version, session ID, cipher suite, compression method, and initial random numbers.

Phase 2
Server may send certificate, key exchange, and request certificate. Server signals end of hello message phase.

Phase 3
Client sends certificate if requested. Client sends key exchange. Client may send certificate verification.

Phase 4
Change cipher suite and finish handshake protocol.

Note: Shaded transfers are optional or situation-dependent messages that are not always sent.
TLS (Transport Layer Security)

• IETF standard RFC 2246 similar to SSLv3
• with minor differences
 – in record format version number
 – uses HMAC for MAC
 – a pseudo-random function expands secrets
 – has additional alert codes
 – some changes in supported ciphers
 – changes in certificate negotiations
 – changes in use of padding
Secure Electronic Transactions (SET)

• open encryption & security specification
• to protect Internet credit card transactions
• developed in 1996 by Mastercard, Visa etc
• not a payment system
• rather a set of security protocols & formats
 – secure communications amongst parties
 – trust from use of X.509v3 certificates
 – privacy by restricted info to those who need it
SET Components

- Cardholder
- Merchant
- Certificate Authority
- Issuer
- Payment Network
- Acquirer
- Payment Gateway
SET Transaction

1. customer opens account
2. customer receives a certificate
3. merchants have their own certificates
4. customer places an order
5. merchant is verified
6. order and payment are sent
7. merchant requests payment authorization
8. merchant confirms order
9. merchant provides goods or service
10. merchant requests payment
Dual Signature

- customer creates dual messages
 - order information (OI) for merchant
 - payment information (PI) for bank
- neither party needs details of other
- but **must** know they are linked
- use a dual signature for this
 - signed concatenated hashes of OI & PI
Purchase Request – Customer

PI

+ Dual Signature
+ OIMD

E

K_S

E

K_U_b

Request Message

- Digital Envelope
- PIMD
- OI

- Dual Signature
- Cardholder Certificate

Passed on by merchant to payment gateway

Received by merchant

PI = Payment Information
OI = Order Information
PIMD = PI message digest
OIMD = OI message digest
E = Encryption (RSA for asymmetric; DES for symmetric)
K_S = Temporary symmetric key
K_U_b = Bank’s public key-exchange key
Purchase Request – Merchant

OI = Order Information
OIMD = OI message digest
POMD = Payment Order message digest
D = Decryption (RSA)
H = Hash function (SHA-1)
\(KU_c \) = Customer’s public signature key
Purchase Request – Merchant

1. verifies cardholder certificates using CA sigs
2. verifies dual signature using customer's public signature key to ensure order has not been tampered with in transit & that it was signed using cardholder's private signature key
3. processes order and forwards the payment information to the payment gateway for authorization (described later)
4. sends a purchase response to cardholder
Payment Gateway Authorization

1. verifies all certificates
2. decrypts digital envelope of authorization block to obtain symmetric key & then decrypts authorization block
3. verifies merchant's signature on authorization block
4. decrypts digital envelope of payment block to obtain symmetric key & then decrypts payment block
5. verifies dual signature on payment block
6. verifies that transaction ID received from merchant matches that in PI received (indirectly) from customer
7. requests & receives an authorization from issuer
8. sends authorization response back to merchant
Payment Capture

• merchant sends payment gateway a payment capture request
• gateway checks request
• then causes funds to be transferred to merchants account
• notifies merchant using capture response
Summary

• have considered:
 – need for web security
 – SSL/TLS transport layer security protocols
 – SET secure credit card payment protocols