
Lecture 12
Fundamental Algorithms

Burkay Genç, Ahmet Selman Bozkır, and Selma Dilek

31/05/2023

PREVIOUS LECTURE

Object Oriented Programming

Classes

Objects

·

A different way of thinking about programming-

·

·

2/31

TODAY

Searching

Sorting

·

·

3/31

FUNDAMENTAL ALGORITHMS

Algorithmic Complexity

A problem can be solved with many different algorithms

Some will take seconds, others will take years

Algorithm design is an important part of engineering

Complexity shows how an algorithm will perform on very large inputs

·

·

·

·

5/31

Fundamental Algorithms

There are two types of algorithms that are frequently used by other algorithms

General algorithm design methodology:

·

Searching algorithms : search within a list for an item

Sorting algorithms : sort a list of items in ascending order

-

-

·

Develop an understanding of the complexity of the problem

Think about how to break the problem into subproblems

Solve subproblems using existing efficient algorithms

-

-

-

6/31

SEARCHING

Search Algorithm

A search algorithm is a method for finding an item or group of items with specific properties
within a collection of items

We refer to the collection of items as a search space

Many problems in real life can be reduced to search problems

·

·

·

8/31

Specification

def lin_search(L, e):
 """Assumes L is a list.
 Returns True if e is in L and False otherwise"""

How is that different than e in L ?·

9/31

Linear Search

def lin_search(L, e):
 """Assumes L is a list.
 Returns True if e is in L and False otherwise"""
 for i in range(len(L)):
 if L[i] == e:
 return True
 return False

This is how Python implements search

This takes linear time to find an item

Worst case is the for loop runs len(L) times

·

·

We need to look at each item once to find a specific item

If we are lucky, it can be the first item in the list

If we are unlucky, it can be the last item in the list

-

-

The for loop runs only once-

-

The for loop runs len(L) times-

·

len(L) -> Size of input -> linear time algorithm-

10/31

Binary Search

If we know nothing about the list and the items, then linear time search is the best we can do

But consider searching for a word in the dictionary

·

·

Do you go over each word one by one to find the word?

You actually jump to a page

You can do that because a dictionary is sorted

-

-

Check the words on that page,-

Keep jumping into the half that makes sense-

-

11/31

Binary Search

If you are given a list of items in sorted order, can you search for a specific item faster than linear
time?

strategy

·

The answer is YES-

·

Look at the item in the middle

If it is equal to the item you are searching for,

Else if it is less than what you are searching for

Else,

-

-

return True-

-

Repeat the search with the right half-

-

Repeat the search with the left half-

12/31

Example

example·

Searching for 7

Given a sorted list:

-

-

li = [1,3,4,5,7,12,17,18,19,24,32,33,35,40]

Is 7 in this list?·

13/31

Example

items in the list

There are·

len(li)

14

Check the middle one·

li[len(li) // 2]

18

18 is greater than 7, so we repeat with the left half.·

14/31

Example

li = li[0:(len(li)//2)]
li

[1, 3, 4, 5, 7, 12, 17]

Check the middle one·

li[len(li) // 2]

5

5 is less than 7, so we repeat with the right half.·

15/31

Example

li = li[(len(li)//2+1):len(li)]
li

[7, 12, 17]

Check the middle one·

li[len(li) // 2]

12

12 is greater than 7, so we repeat with the left half.·

16/31

Example

li = li[0:(len(li)//2)]
li

[7]

Check the middle one·

li[len(li) // 2]

7

We found 7 in the list!·

17/31

Implementation

Let’s turn this into python code·

def bsearch(L, e, start, end): # Search e in L[start:end]
 if start == end:
 return L[start] == e:
 else:

18/31

Implementation

Now, check the middle item:·

def bsearch(L, e, start, end): # Search e in L[start:end]
 if start == end:
 return L[start] == e:
 else:
 middle = (start+end)//2 # middle item of the list
 if L[middle] == e:
 return True
 ...

19/31

Implementation

Now, recurse into the correct half:·

def bsearch(L, e, start, end): # Search e in L[start:end]
 if start == end:
 return L[start] == e
 else:
 middle = (start+end)//2 # middle item of the list
 if L[middle] == e:
 return True
 elif e < L[middle]:
 return bsearch(L, e, start, middle) # keep searching in the left half
 else:
 return bsearch(L, e, middle + 1, end) # keep searching in the right half

20/31

Testing

Let’s test·

L = [1,3,4,5,7,12,17,18,19,24,32,33,35,40]
bsearch(L, 7, 0, len(L)-1)

True

bsearch(L, 1, 0, len(L)-1)

True

bsearch(L, 40, 0, len(L)-1)

True

bsearch(L, 0, 0, len(L)-1)

False

bsearch(L, 50, 0, len(L)-1)

False

bsearch(L, 9, 0, len(L)-1)

False

21/31

Improvement

It is not pretty to write bsearch(L, 7, 0, len(L) - 1)·

Too many arguments to call-

def bin_search(li, it):
 return bsearch(li, it, 0, len(L) - 1)

bin_search(L, 7)

True

bin_search(L, 45)

False

22/31

Justification

Is bin_search really faster than lin_search ?·

If the list is sorted, on the average, YES-

import time
from random import gauss
li = [gauss(0,1) for i in range(1000000)] # Create a list of one million random numbers
li.sort() # sort the list
start = time.process_time() # mark the start of lin_search
for i in range(1, 20): # search for 20 different numbers
 res = lin_search(li, li[50000*i])
lin_elapsed = time.process_time() - start # mark the end
start = time.process_time() # do the same for bin_search
for i in range(1, 20):
 res = bin_search(li, li[50000*i])
bin_elapsed = time.process_time() - start
print("Time spent in linear search:", lin_elapsed) # print the results

Time spent in linear search: 1.25

print("Time spent in binary search:", bin_elapsed)

Time spent in binary search: 0.0

23/31

Justification

What really happened?

How many times can you do that?

This is called logarithms in base two

·

At each recursive call, binary search gets rid of half of the current list

In the first call it gets rid of 500000 items,

Then 250000 items,

Then 125000 items,

…

-

-

-

-

-

·

When you hit 1 item, you have to stop-

·

Recursion will run times

log time << linear time

- lo (len(li))g2

- lo (1000000) << 1000000g2

-

24/31

SORTING

Sorting

A sorted list is easier to search

But how can we sort a list as fast as possible?

Python’s built-in sort function is very efficient

·

·

·

It runs in time- O(n log n)

That is a special notation computer scientists use to represent speed of algorithms

binary search:

linear search:

python’s sort:

-

- O() > O(n log n) > O(n) > O(log n) > O(1)n2

- O(log n)

- O(n)

- O(n log n)

26/31

Selection Sort

Python’s sort is fast, use it!

We provide selection sort only for practice purposes

strategy

·

·

·

loop invariant-

L = prefix + suffix

prefix = L[0:i]

suffix = L[i:len(L)]

at the end of ith iteration

-

-

-

-

prefix is sorted

all items in suffix are greater than all items in prefix

-

-

27/31

Selection Sort

def selSort(L):
 """Assumes that L is a list of elements that can be compared using >.
 Sorts L in ascending order"""
 suffixStart = 0
 while suffixStart != len(L):
 #look at each element in suffix
 for i in range(suffixStart, len(L)):
 if L[i] < L[suffixStart]:
 #swap position of elements
 L[suffixStart], L[i] = L[i], L[suffixStart]
 suffixStart += 1

li = [9,8,7,6,5,4,3,2,1]
selSort(li)
li

[1, 2, 3, 4, 5, 6, 7, 8, 9]

28/31

Complexity

What is the complexity of selection sort?

It is a very slow algorithm for large inputs

·

the for loop runs times

the while loop runs times

overall:

- O(n)

- O(n)

- O(n) ∗ O(n) = O()n2

·

li = [i for i in range(10000, 1, -1)]
li2 = li.copy()
start = time.process_time()
selSort(li)
elapsed = time.process_time() - start
print(elapsed)

4.515625

start = time.process_time()
li2.sort()
elapsed = time.process_time() - start
print(elapsed)

0.0

29/31

How To Sort Fast?

Fast sorting algorithms use an approach called Divide and Conquer

Examples

·

Divide the problem into two halves

Solve the problem on each half

Combine/merge the halves

-

-

-

·

mergesort

quicksort

-

-

30/31

END OF THE COURSE

