
IET Computer Vision

Research Article

Histograms of sequences: a novel
representation for human interaction
recognition

ISSN 1751-9632
Received on 21st September 2017
Revised 14th March 2018
Accepted on 9th April 2018
doi: 10.1049/iet-cvi.2017.0471
www.ietdl.org

Aytac Cavent1, Nazli Ikizler-Cinbis1 
1Department of Computer Engineering, Hacettepe University, 06800 Ankara, Turkey

 E-mail: nazli@cs.hacettepe.edu.tr

Abstract: This study presents a novel representation based on hierarchical histogram of local feature sequences for human
interaction recognition. The authors’ method basically combines the power of discriminative sequence mining and histogram
representation for the effective recognition of human interactions. Our framework involves extracting visual features from the
videos first, and then mining sequences of the visual features that occur consequently in space and time. After the mining step,
we represent each video with a histogram pyramid of such sequences. We also propose to use soft clustering in the visual word
construction step, such that more information-rich histograms can be obtained. The authors’ experimental results on challenging
human interaction recognition data sets indicate that the proposed algorithm performs on par with the state-of-the-art methods.

1 Introduction
Owing to its various application domains such as surveillance,
human–computer interaction, sport and entertainment analysis, and
more, human action and activity recognition is a constantly
evolving topic of interest in computer vision research community.
Most of the research up to date has focused on the analysis of
singleton human actions, where only one person is performing a
single action. However, real-world situations are more
complicated. Complex activities are taking place in videos; an
important portion of these activities are human interactions, where
more than one person is involved in a particular activity.

In this paper, we aim to look at the problem of recognising
human–human interactions, where the videos are taken in
uncontrolled settings, and more than one actor is involved in the
interaction. In this problem, there are many challenging issues to
be dealt with, such as occlusions, cluttered backgrounds, scale
variations, changes in light, variations in appearance of the people,
moving camera, and more. These issues require many different
adaptation techniques and a carefully designed framework.

In a simple and relatively good performing activity recognition
system, using temporal and appearance features together is a
requirement, because the actions are mostly characterised in both
temporal and spatial dimensions. Many good-performing feature
representations such as cuboids of histogram of oriented gradient
(HOG) and histogram of optical flow (HOF) [1], space-time
interest points (STIPs) [2] model the temporal structure of local
actions over one to three frames at most. This short-term structure
may have limited representative power in recognition of complex
actions and interactions that are sustained on long time periods. A
scalable temporal model that can be used to model the long
duration of interactions is needed. In temporal domain, most of the
existing work focus on segmentation for finding representative
common subsequences over the different types of actions [3, 4].
Such approaches can cause information loss due to the presence of
splits, even if the method finds best partitions among the possible
ones. Therefore, we believe that a more general framework that
does not propagate the error introduced in simple action
recognition phase is required. This framework should handle the
whole sequence more effectively for the purpose of interaction
recognition.

The idea mainly explored in this paper is to effectively model
the temporal co-occurrence of the local features. Co-occurrence of
local features indicates important cues for accurate recognition of
the interactions. Current successful representations [5] based on
bag-of-words (BOW) of local features mostly ignore the relative

positions; however, the relative temporal locations of these local
features are important, especially if one wants to differentiate
between visually similar interactions.

In this work, we propose a new feature representation that
encodes the videos as a histogram of local feature sequences. The
sequences correspond to the time-ordered list of the visual
vocabulary elements where the dictionaries are constructed over
the space–time interest points. Among these sequences, the
frequently occurring ones are found by means of a sequence
mining approach. We further apply sequence selection for better
discrimination between classes. As an extension to base histogram
of sequences (HoS) model, we incorporate a temporal pyramid
mechanisation, inspired by the work of Choi et al. [6]. Here, the
height of the temporal pyramid determines the temporal scales of
the sequences. This new representation is likely to cover more
complex spatio-temporal relationships by means of mining
sequences of local interest points that frequently occur. In this way,
the temporal variability of local sequences can be more accurately
modelled. The proposed sequence mining and construction of this
HoS representation is illustrated in Fig. 1. 

We evaluate our method on the challenging human interaction
data sets UT Interactions [7] and TV Human Interactions [8]. Our
results indicate that the proposed representation is quite successful
in discovering the discriminative patterns for the recognition of
human interactions, achieving the state-of-the-art performance.

2 Related work
There are many works in the literature of computer vision that aims
at recognising short-scale actions in videos. The recent surveys [9–
11] include broad overviews on this topic. The first line of work is
based on the local spatio-temporal features leveraged with a
discriminative classifier. The second line of work uses temporal
dynamic models, such as hidden Markov model, Bayesian model,
and finite state models. The third line of work uses motion-based
analysis, which employs motion clusters and analyses the temporal
ordering of these clusters and also in the recent years, deep
learning methods are proposed with the availability of the high
processing power of the GPUs. The following sections provide
detailed explanation of the methods.

2.2 Local interest point methods

The BOW with STIPs is employed by a number of approaches to
represent the human action. This representation is combined with
discriminative classifiers [2, 12, 13]. Marín-Jiménez et al. [14]
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reported the performance of the bag of STIPs on human interaction
data sets. According to their results, the combination of BOW and
STIP is still a competitive approach in human interaction
recognition problems and the improvement of the STIP
representation is an important issue for the future work. They also
found out that when modelling interactions between persons, the
context does not help in the recognition process and, therefore, it is
needed to reject STIP densely sampled outside the person region.
Despite the computational efficiency of the bag of STIPs method,
the model discards spatial and temporal structure. Patron-Perez et
al. [15] build a person-centred descriptor and use an upper body
detector to find the people in every frame. The found detections are
clustered to form tracks. Then, they calculate descriptors along the
tracks and use support vector machine (SVM) classifier for each
interaction class by using these descriptor. Hoai and Zisserman
[16] also proposed a method that finds the tracks of the upper
bodies of the people and for each upper body track, a track-focused
descriptor is then computed based on dense trajectory descriptors
[17] which encode gradient and motion cues along the trajectories.
They also compute an HOG-based scene descriptor, which is the
average of HOG descriptors computed on key frames. Thus, a
video is represented by a human-focused descriptor and an HOG-
based scene descriptor. Then, they use SVM classifier for each
interaction class by using both scene and motion along the upper
body.

Zhang et al. [18] proposed a more successful method, which
captures co-occurrence information. Spatial and temporal distance
between two local features are used as the core of the information.
Ryoo and Aggarwal [19] introduced a new method to compare the
structure of videos by using the spatio-temporal relationships
between the features with the temporal and spatial predicates
(before, meets, overlaps, far, near, and more). Their approach
detects and localises all occurring activities. Slimani et al. [20]
proposed a method that extracts a descriptor that captures the co-
occurrence of the local interest points found in three-dimensional
(3D) XYT spatio-temporal volume for each interacting person.
Then the co-occurrence descriptor is used in standard
discriminative classifiers.

Savarese et al. [21] used the co-occurrences within local spatio-
temporal regions to encode the local motion and appearance and
also they used the probabilistic latent semantic analysis to learn the

action classes. In our method, we can handle more complex
relations in temporal domain, the length of a sequential pattern
determines the temporal complexity, and the number of items
within an itemset determines the spatial complexity of the
sequential pattern. There is no limitation on the length of a
sequential pattern. The local features, especially STIP, are highly
affected by the camera movements since they have no adaptation
for external movements. Khokher et al. [22] proposed an improved
STIP detector by extracting salient interest points by taking into
account long-term temporal interactions and camera motion. They
encode the local features in the form of tensors in order to retain
the spatio-temporal structure. To reduce the size of the tensor, they
selected the features by Fisher ranking.

2.2 Models focused on temporal dynamics

For the recognition of complex activities, there are relatively fewer
works. Niebles et al. [3] improved the temporal pyramid matching
idea and propose a dynamic temporal scale selection method rather
than using fixed length temporal parts. To select the best temporal
representation, Niebles et al. [3] generate a set of random temporal
scales and train classifiers for each temporal partitions, where the
best temporal scales are selected according to the recognition
performance. As opposed to finding best partitions, our work
operates on finding the most frequently occurring feature
sequences at different temporal scales. Wang et al. [17] proposed
the use of dense trajectories to model the motion information. The
dense trajectories also have some level of robustness to camera
motion since the trajectories are based on optical flow of points.
Zhang et al. [23] follow the similar method with the Wang et al.
[17] so that they cluster trajectories using the coherent filtering and
employ a multiple instance learning (C-KNN). Kong and Fu [24]
proposed the max-margin action prediction machine for
recognising actions in incomplete videos. They formulate the
action prediction task as a structured SVM learning problem by
using the dense trajectories and interest points, and incorporate
composite kernels to capture non-linear classification boundaries in
the prediction task. Their method requires bounding boxes or a
person detector.

Gaidon et al. [25] represented the videos as a tree of clustered
point trajectories. The authors clustered the trajectories into
representative motion parts by building a cluster tree and they
embedded the cluster tree into their descriptors. Burghouts and
Schutte [26] modelled the spatio-temporal layout of 48 actions by
using location of STIP features. They generated six different
layouts based on the combination of three different coordinate
systems, use of feature posterior probabilities (which are generated
from learned probability density functions of the feature locations),
and use of the standard histogram representation with BOW.

Li et al. [27] proposed a method to exploit the temporal
structure by comparing the principal angles between subspaces
representing the activity types. They generated Hankel matrices by
use of trajectories to model the temporal information. Yu et al. [28]
employed a Hough-transform-based voting method to recognise
human actions. Since the performance of the hough voting is
highly dependent on the quality and the amount of the input data,
the authors suggested to use propagative Hough voting by using
random projection trees (RPT). With their method, feature voting is
done by using RPT rather than using votes of local features
individually.

Vahdat et al. [29] proposed a model that represents actions as a
sequence of poses. The method requires complete tracks of actors
across the entire sequence and the occlusions may cause problems.
Since our model uses local features, occlusions have minimal effect
on the performance. Ma et al. [30] proposed a method that
discovers a compact set of hierarchical space–time tree structures
of human actions from training videos by using the hierarchical
space–time segments [31]. Using an ensemble of the discovered
trees, or in combination with simpler action words and pairwise
structures, they build action classifiers that achieve state-of-the-art
performance on two challenging data sets: High Five [8] and UCF-
Sports [32]. Our method mines the local interest points instead of
the high level space–time segments and we use discrete sequence

Fig. 1  Overall framework of the proposed method
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mining methods instead of tree mining and our method can capture
lower level features by using the local features.

Recently, Liang et al. [33] proposed hierarchical feature
representation structure for affective interaction recognition based
on the local feature and mid-level feature descriptions. They
extract local features and contours from the spatio-temporal
segments of the video and represented as trajectories. Then, the
local features are clustered to form a dictionary. The final video
descriptor is represented as concatenation of the spatio-temporal
histograms of the video segments using the calculated dictionary.
Our method is different from the method of Liang et al. [33] in the
descriptor design. We exploit the pairwise spatio-temporal relations
between the local features via data mining methods instead of
trajectory generation.

Key frames are also commonly used for action recognition. Liu
et al. [34] used Adaboost to select the key frames. Raptis and Sigal
[35] proposed to use a more compact key frame subset (up to 4
frames or %4 of frames). Sefidgar et al. [36] proposed a key
component model that selects a set of key components,
discriminative moments in a video sequence that are important
evidence for the presence of a particular interaction. They use
object trackers and find out the interaction between the objects.

2.3 Deep learning methods

With the advancement of parallel processing power (GPUs, CPU
clusters), the convolutional neural networks (CNNs) started to be
successfully employed for the action recognition. Tran et al. [37]
proposed a spatio-temporal feature learning method using deep 3D
CNNs. Karpathy et al. [38] studied the performance of CNNs in
large-scale video classification, using 1 million videos with 487
categories (Sports-1M data set) obtained from YouTube videos.
There are different methods [39–41] proposed to model the
temporal dynamics of the actions. Simonyan and Zisserman [41]
capture separate spatial and temporal recognition streams based on
CNNs. Feichtenhofer et al. [39] proposed an improvement to [41]
that is able to fuse spatial and temporal cues at several levels of
granularity in feature abstraction. Li et al. [40] presented a multi-
granular deep architecture, which is able to incorporate information
at a multitude of granularity including frame, consecutive frames
(motion), clip, and the entire video. They employed long short-
term memory networks to incorporate long-term temporal
modelling based on the granularity features. In this work, we also
experiment with CNN-based features within our mining
framework.

3 Proposed method
Our proposed framework involves (i) interest point extraction, (ii)
filtering interest points, (iii) visual vocabulary construction, (iv)
temporal pyramid construction, (v) sequence mining, and (vi)
classification steps. Below, we describe each of these steps in
detail.

3.1 Interest point detection and feature extraction

In computer vision community, local feature points have been
proven to have good performance on matching and recognition.
The attractiveness of local features comes from the fact that they
are invariant to scale and occlusions, due to their locality nature.
For this reason, as the low-level representation, we choose to use
space–time interest points (STIPS) [2]. Extraction of STIPs
involves a space–time extension of the Harris detector and is
characterised by a high variation of the image values in space and
non-constant motion over time. The detected points have
significant variation in space–time neighbourhood. For each video
point, the spatio-temporal second-moment matrix is computed
using independent temporal and spatial scale values. In this work,
we use the provided detector of [2] to detect the local STIPs.

3.2 Filtering STIPs

Since the STIP extraction procedure looks for high variations in
both spatial and temporal domain, it is not robust to camera
movements. When the camera is moving, the points that have high
variation in the spatial domain are likely to have variation in the
temporal domain as well. Especially, in the videos with complex
backgrounds which are likely to have many corner-like structures,
the number of detected feature points increases enormously.

To filter the interest points that belong to the background, we
make use of a motion segmentation algorithm which analyses long-
term point trajectories and applies spectral clustering [42] to find
the motion segments within a video. Once the motion segments are
obtained, we assume that the segment that has the maximum spatial
deviation is the background segment and assume that the remaining
segments are the foreground segments. By identifying the
background segment in this way, we can filter out the interest
points that fall into background segment. Example results of the
filtering step are shown in Fig. 2. While not perfect, a great portion
of the STIPs that fall onto the background region are eliminated
this way. 

After extracting and filtering local STIPs, local feature
descriptors are extracted around each STIP. In order to capture both
the shape and the motion information around the STIPs, we choose
to extract the motion boundary histogram (MBH) features. The
MBH descriptors [43] are derivatives of the optical flow and
similar to HOF descriptor [1] and are shown to be effective
descriptors for action recognition [5, 17]. We use MBH descriptors
which have some level of robustness to camera motion, as the
positive effect of using derivatives of the optical flow. We compute
MBH descriptors at the location of STIPs. The temporal and spatial
scale values of the STIPs are also used in MBH computation to
form the encompassing grid of interest. We used the
implementation of the STIP [1] and MBH [5] provided by the
authors.

Fig. 2  Example frames for the STIP filtering step on the TV Human Interaction data set [8]. Original frames are shown to the left of the figure and the
filtered STIPs as the result of background segment identification is shown on the right. In order to identify the background, motion segments discovered by
Brox and Malik [42] are used and the segment with maximum spatial deviation is taken to be the background segment. The STIPs that lie on the detected
background segment is filtered out, and only foreground STIPs that lie on the foreground segments remain
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3.3 Visual vocabulary construction and sequence formation
with soft clustering

After filtering the STIPs as described, we construct the visual
dictionary for quantisation our high-dimensional descriptors. For
this purpose, we adopt the classical vector quantisation procedure
that uses k-means to cluster extracted descriptors into k words,
where cluster centres become the visual words of the final visual
vocabulary.

It has been shown that hard-assignment-based quantisation
suffers significantly from the loss of information. When each data
element is assigned to exactly one cluster, it is possible to lose the
similarity information between the data point and the other
clusters. Several techniques such as sparse coding [44] and
locality-constraint linear coding (LLC) [45] have been proposed to
deal with this situation. In our case, since we need a discrete
representation to apply the subsequent sequence mining procedure,
we employ soft clustering in order to compensate for such an
information loss. In this formulation, rather than mapping a visual
feature to a cluster centre, we map it to the closest K clusters. We
select the closest clusters having a distance less than a threshold.
The threshold τ = c × σ is defined as a multiple of the standard
deviation σ of all distances to all cluster centres. At the end, each
frame is vector-quantised via this soft-clustering procedure and
represented with the set of visual words that appear on that frame.

3.4 Temporal pyramid construction

When we look at the variations in the speed and the duration of
actions, a single short-term temporal model may not cover the
temporal structure of the actions. Some actions are sustained on the
longer time period, whereas some actions are performed within a
short time. The local features do not explain long-term actions well
and the sequence mining procedure is not robust to small changes
in the speed of execution of the actions. To solve this problem, we
propose a temporal pyramid construction.

Temporal pyramid construction is done as follows: the videos
are divided into fixed size subsequences at the temporal dimension.
At each level of the temporal pyramid, we divide the video into the
T parts where T is the corresponding Fibonacci number for that
level such as 2, 3, 5, 8, 13, 21, and so on. The features in the same
temporal window are assumed to occur at the same time interval
and therefore assigned the same temporal label in the mining
process. The depth of the temporal pyramid defines the temporal
subsequence size. This process is illustrated in Fig. 1. At the higher
levels of the pyramid (like L2 in Fig. 1), the mining algorithm finds
the sequential patterns that are common in the long term and at the
lower levels of the pyramid (like LX in Fig. 1), the mining
algorithm finds the common short-term sequential patterns.

3.5 Mining frequently occurring sequences

The sequential pattern mining paradigm was first introduced by
Agrawal and Srikant [46] and it is a subject of data mining
concerned with finding statistically relevant patterns between data
examples where the values are represented in a sequential form and
have associated temporal labels. The problem is to find the most
co-occurring closed sequences when the data set contains time-
ordered set of features. Sequential pattern mining has been
successfully used in many applications that involve temporal data
points. For interaction recognition, we propose to mine the
frequently occurring sequential interest point patterns, and then
represent this information by means of a histogram encoding.

3.5.1 Sequential pattern mining: Formally, the sequential pattern
mining is defined as follows [46]: let I = {i1, i2, …, in} be the
universal set of items, where ix is an item. X is defined as an
itemset, if X ⊆ I. A sequence sm = ⟨X1, X2, …, Xm⟩ is defined as an
ordered list of itemsets. A sequence s1 = ⟨A1, A2, …, An⟩ is said to
be contained in another sequence, s2 = ⟨B1, B2, …, Bm⟩, if there
exists integers 1 ≤ i1 < i2 < … < in ≤ m such that
A1 ⊆ Bi1, A2 ⊆ Bi2, …, An ⊆ Bin, where A and B are itemsets.

Given a sequence database SDB = {s1, s2, …, sk}, which is a set
of sequences, the problem of sequential pattern mining is to find
the sequential patterns that have support values greater or equal to
user-specified minimum support. The support for sequential
pattern candidate supportSDB(s) is the fraction of total sequences
that include that particular sequential pattern candidate.

The original problem of sequential pattern mining considers
only the order of item occurrences but not the intervals between
two items. The time interval between two items has effect on the
meaning of the sequence and should be taken into account. Hirate
and Yamana [47] proposed a method called generalised sequential
pattern mining with time intervals (GSPM) that employs time
labels for each itemsets and brings additional constraints to address
time interval requirements in sequence mining. The sequences that
contain time labelled itemsets are called as interval extended
sequence (is) and the sequential database that is a set of interval
extended sequences are called as interval extended sequence
database (ISDB). Four types of additional constraints are proposed
in support calculation. Constraint C1 is the minimum time interval
required between two adjacent itemsets. Constraint C2 is the
maximum time interval required between two adjacent itemsets.
Constraint C3 is the minimum time interval required between head
and tail of a sequence. Constraint C4 is the maximum time interval
required between head and tail of a sequence. For example,
consider the interval extended sequence
is = ⟨(0; 1)(1; 1, 2)(3; 1, 2, 3)⟩. The time interval between head and
tail of the sequence ‘is’ is 3 and the time interval between the
second and the third itemsets is 2.

To find the frequent interval extended sequences, the algorithm
GSPM [47] makes recursive projections of the interval extended
sequence database with prefixes. The shortest prefix is a single
item i with time label 1. Formally, let us assume
α = ⟨(t1, 1, A1), (t1, 2, A2), …, (t1, m, Am)⟩ and
β = ⟨(t1, 1′ , B1), (t1, 2′ , B2), …, (t1, m′ , Bm)⟩ be interval extended
sequences, where tx, y is the difference of the occurrence time of the
Ax and Ay. The α is said to be contained in β if there exists integers
such that 1 ≤ i1 < i2 < … < in ≤ m such that
A1 ⊆ Bi1, A2 ⊆ Bi2, … , An ⊆ Bin and
t1, i = t1, i1′ , t1, 2 = t1, i2′ , …, t1, n = t1, in′ . The prefix of interval extended
sequence α based on the (tβ, Aβ) is defined as follows:

prefix(α, Aβ, t1, β) = ⟨(t1, 1, A1), (t1, 2, A2), ⋯,
(t1, j, Aj)⟩

(1)

Postfix of interval extended sequence α with regard to (tβ, Aβ) is
defined as follows:

postfix(α, Aβ, t1, β) = ⟨(t j, j, Aj′), (t j, j + 1, Aj + 2), …,
(t j, m, Am)⟩ (2)

where Aj′ contains the items in Aj and does not include the items in
Aβ. When there exists no integer j, postfix of α with regard to
(tβ, Aβ) becomes the following:

prefix(α, Aβ, t1, β) = ∅
postfix(α, Aβ, t1, β) = ∅ (3)

The patterns are calculated by finding the frequent items first. For
each frequent item a, where supportISDB(1, a) > min_sup, the
initial interval extended sequence α is created as < (0, a) > where
a ∈ Ai. Then, ISDB|α is created. The ISDB|α is the projection of
the ISDB with regard to α and defined as:

ISDB|α = {is | is ≠ ∅ ∧ is = postfix(γ, α, 0)} (4)

where γ ∈ ISDB.
Similarly, in the next level of projection, all possible pairs

(t1, i, a) in ISDB|α are generated. For each pair satisfying the
minimum support constraint, β is defined as prefix(α, a, t1, i) and the
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projected interval extended sequence database ISDB| β becomes a
collection of postfixes of sequences in ISDB with regard to β

ISDB| β = {is | is ≠ ∅ ∧ is = postfix(γ, a, t1, i)
∧ supportISDB |α(t1, i, β) ≥ min_sup
∧ β satisfies C1, C2, C3, and C4}

(5)

where γ ∈ ISDB. For more details, refer to [47].
When we execute the sequential pattern mining algorithm

GSPM [47], we observe that there are many redundant sequential
patterns that are included in other sequential patterns that have
same support value. As an example, the sequential patterns:
sp1 = ⟨ 0; 1, 2, 3 ⟩ and sp2 = ⟨ 0; 1, 3 ⟩ have support value of %75
and sp2 is contained in sp1, so there is no additional information
gained by use of sp2. Elimination of these sequences are done by
use of closed sequence mining methods. A closed sequential
pattern is a frequent sequential pattern that is not included in
another sequential pattern having exactly the same support. For our
case, we adopt the sequence mining algorithm of Hirate and
Yamana [47] with the bi-directional extension [48] (BIDE). BIDE
checks if a sequential pattern is closed or not, with no need to
maintain the set of historical closed patterns.

To give more insight on the problem, an example set of
sequences is shown in Table 1. In this example, there are four input
sequences with three, four, two, and two itemsets, respectively.
Each itemset consists of one or more elements and labelled with a
tag to account for the time of occurrence. Table 2 shows some
sequential patterns extracted by applying sequence mining to the
set of example sequences provided in Table 1. 

In our case, the aim is to identify the frequently appearing
sequential patterns for human interactions in videos. To this end,
we need to run the mining algorithm for each class. In this action
recognition domain, the ISDB corresponds to set of class-specific
video sequences Vi such that ISDB = {V1, V2, …, Vm}. A video
sequence is an ordered set of frames and correspond to the interval
extended sequence such that V = ⟨(t1, 1, F1), (t1, 2, F2), ⋯, (t1, n, Fn)⟩,
where Fi is a video frame and t1, i is the frame number. A frame Fi
corresponds to an itemset A, where each detected visual word
correspond to items of the itemsets.

Fair representation of each class in the final model can be
guaranteed by the equal number of participants from each class.
For finding equal number of candidate sequences from each class,
we use the min-support threshold. In our experiments, the min-
support values are automatically selected so that ≈ 1000 sequential
patterns are mined for each class.

Fig. 3 shows extracted sequential patterns pictorially. Each
pattern may have different temporal length. There may be
sequential patterns at length 1 and they represent co-occurring
features in the same frame. Also, same pattern may exist in
different temporal locations in a video (e.g. p2 in Fig. 3). 

3.6 Histogram computation

The histograms are constructed using the occurrence of the
sequential patterns within the video sequences. The occurrence of a
pattern in a sequence is defined in Section 3.5.1. The pseudo-code
of the algorithm for computing these occurrences is given in
Algorithm 1 (see Fig. 4). The pttrn in Algorithm 1 corresponds to a
sequential pattern. The size of histogram is same as the number of
extracted patterns. The complexity of this algorithm is proportional
to the number of the input video sequences, length of the input
video sequences, and the length of the patterns O(k × m × n),
where k is the number of the sequences, m the length of the
sequence, and n the length of the pattern. 

3.6.1 Sequential pattern selection: For the application of
sequence or frequent itemset mining algorithms, there is a well-
known trade-off: if the minimum support value min_sup is kept
large, co-occurring sets of items can be very limited and may not
cover all the interesting subpatterns. On the contrary, if the
min_sup is kept low, the number of found sequential patterns can
be prohibitively large and it becomes infeasible to process them all.

In order to have a more compact and discriminative set of
sequences, we employ a selection procedure. The main idea of this
selection is to discard the sequential patterns which are not
discriminative enough. With this purpose, we first generate a
maximum set of sequential patterns by running the mining
algorithm for each class and collecting all patterns together. Then,
for each class, we train a linear SVM on the calculated histograms
using the generated patterns. The sequential patterns that acquire
large weights in these linear SVMs are selected as the final set of

Table 1 Example input sequences for the sequence mining
algorithm
ID Sequences
Seq1 0; 1 1; 1, 2, 3 2; 1, 3
Seq2 0; 1 1; 1, 2 2; 1, 2, 3 3; 1, 2, 3
Seq3 0; 1 2 1; 1, 2
Seq4 0; 2 1; 1, 2, 3

 

Table 2 Extracted sequential patterns from example input
of Table 1 via applying sequence mining.
ID Sequential patterns Support, %
P2 0; 1, 2 100
P5 0; 2 1; 1 100
P1 0; 1, 2, 3 75
P6 0; 1 1; 1, 2 75
P3 0; 2 1; 1, 2 75
P4 0; 2 1; 1, 3 75
P7 0; 1, 2 1; 1 75

 

Fig. 3  Pictorial representation of the discovered sequential patterns (when the temporal pyramid is not used). The circles in the figure represent the local
interest points and the colour identifies different type of interest points in terms of visual words. The size of the circles represents the spatio-temporal scale of
the features. Each pattern is identified with a number (pX) and the features in a discovered sequential pattern are grouped within a box. The length of the box
determines the length of the sequential pattern. There may be overlapping features within a frame set (e.g. p2, p3, and p4)
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sequential patterns. Fig. 5 shows some example sequences found
after using the sequence mining and sequence selection steps. 

3.6.2 Formation of HoS representation: After selection step, we
have a set of discriminative patterns for each class and the videos
are represented as an HoS where the attributes are the final set of
selected sequential patterns and the values are the normalised
number of occurrences of those sequential patterns. More
specifically, let P = {p1, p2, …, pk} be a set of sequential patterns
which includes all patterns selected for each class, α a sequence,
and k is the number of sequential patterns. The histogram
representation is:

Hα = f (α, p1, 0, 0, 0), f (α, p2, 0, 0, 0), …, f (α, pk, 0, 0, 0) (6)

where f function counts the number of pattern pi occurrences in α
as defined in Algorithm 1.

When the temporal pyramid structure is used, we concatenate
the histograms from each class at each temporal pyramid level into
a single histogram and same classification method is applied. If we
assume L as the number of levels in the temporal pyramid, there
will be 2L − 1 temporal segments. The video sequence a is
temporally split into 2i − 1 parts at level i such that
αi = ⟨(1, A1

i), (2, A2
i), …, (2i − 1, A2i − 1

i )⟩ where 0 < i ≤ L and A is the
itemset within that split. Also, the itemsets at level i will be
concatenation of lower level itemsets: Aj

i = A2 ∗ j − 1
i + 1 A2 ∗ j

i + 1  where
0 < j ≤ 2L − 1. Then, the histogram at level i is:

Hα
i = f (αi, p1

i, 0, 0, 0), f (αi, p2
i0, 0, 0), …, f (αi, pk

i0, 0, 0) (7)

After the histograms at each level are concatenated, the final
histogram pyramid for sequence α becomes concatenation of the
histograms at all levels:

HoSα = Hα
1Hα

2⋯Hα
L (8)

This becomes the representation for each sequence and video
sequences are classified using this compact representation.

3.7 Classification

For this purpose, we use SVM classifiers with radial basis function
(RBF) kernel in a one-versus-all manner. We find the best cost and
gamma values for the RBF kernel by making cross-validation on
the train data set.

4 Experiments
4.1 Data sets

We have tested our method on two benchmark data sets of human
interactions. These are UT Interactions data set [7] and TV Human
Interactions data set [8]. Both of these data sets are collected from
sources of real-world videos. These data sets are particularly
suitable for evaluating the recognition of more complex activities
that involve more than one person or more than a singleton action.

TV Human Interactions data set: This data set contains a
total of 300 videos collected from TV programmes [8]. There are
200 videos containing 4 different classes of daily interactions,
namely hugging, high five, kissing, and hand shaking, and 100
videos that do not belong to any class, hence labelled as negative.
While using this data set, we follow the training and testing split

Fig. 4  Algorithm 1: countPatternOccurrence
 

Fig. 5  Example patterns that are discovered using our approach from the UT Interactions data set (a and b) and TV Human Interactions data set (c and d).
The local feature points are displayed as yellow circles and the size of the circle represents the spatial scale of that local feature
(a) Pushing-1, (b) Pushing-2, (c) Hugging-1, (d) Hugging-2
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provided by Patron et al. [8]. The data set is split into two sets,
each set containing 25 video clips for each interaction and 50 video
clips for negative samples. In this data set, the human body
bounding box annotations are provided, but our method does not
require any of such annotations, so we do not use any annotations,
other than the class labels in training.

UT Interactions: The UT Interactions data set [7] contains
videos of continuous executions of six classes of human–human
interactions: shake-hands, point, hug, push, kick, and punch. For
the classification task, the data set provides 120 video segments
divided into 2 sets. Set#1 and set#2 are both composed of ten video
sequences taken on a parking lot, where each sequence contains at
least one execution per action class. The videos of set#1 are taken
with slightly different zoom rate, and their backgrounds are mostly
static with little camera jitter. The videos in set#2 are taken on a
lawn in a windy day. Background is moving slightly and the videos
contain more camera jitters. For performance comparison, 10-fold
cross-validation method is used as suggested by Ryoo and
Aggarwal [7] for each set. Again, we do not make use of any
annotations.

4.2 Implementation details

After the frequent sequence extraction, since there can be duplicate
sequences across the different classes, the duplicate sequences are
removed first. The total number of unique sequential patterns for
both data sets becomes <3000. The length of the longest sequential
pattern at the highest level is set as 6 for the TV Human
Interactions data set and as 16 for UT Interactions data set. The
length of the shortest sequential pattern at the lowest level is 1 for
both of the data sets. We observe that the found patterns in TV
Human Interactions data set are shorter than those of UT
Interactions data set.

We set the distance threshold for the soft clustering as the
standard deviation of the all distances to the all cluster centres. The
sequential pattern mining parameters are set as follows:
C1(minimum interval between two itemsets) is 0 to cover co-
occurrence information as much as possible, C2 (maximum
interval between two itemsets) is 5 which is found by experimental
analysis on TV Human Interactions data set, C3 (minimum whole
interval) is 0, and C4 is ∞ to cover all sequential patterns at all
lengths.

The UT Interactions data set has small number of videos and
the 10-fold cross-validation is used for the final performance on the
test set. We have performed a 3-fold cross-validation on the train
set to select the number of level in the temporal pyramid and the
number of patterns. Since the train set is small, %100 accuracy is
obtained for most of the runs. For this reason, we omit parameter
selection in this data set and use the same set of parameters with
TV Human interactions data set.

In addition to working with local STIP features, we also
experiment with CNN features on the TV Human Interactions data
set as an input to the HoS method. For this purpose, we use the pre-
trained VGG-16-based spatial network (split#1 of the UCF-101

data set) of Feichtenhofer et al. [39] and we fine-tune this network
on TV Human Interactions data set. We extract FC6 and Relu5-5
outputs as the input features to sequence mining and evaluate the
results. When working with CNN features, we apply the same
pipeline except that there is no interest point filtering applied.

4.3 Experiments on TV human interactions data set

4.3.1 Performance of hierarchical HoS: There are two
important parameters in forming the HoS descriptor: (i) the number
of class-specific mined patterns for each pyramid level, (ii) the
number of selected class-specific patterns for each level of the
pyramid after the sequence selection step. We do cross-validation
on the training data sets to select these two parameters. We extract
same number of patterns for each level of pyramid in the
experiments. Fig. 6 shows the performance (mAP) of number of
the generated patterns for every level of the pyramid on the training
data sets as described in Section 3.5.1 before the sequence
selection step. Our intent was to first find the best number of initial
candidate sequential patterns and then apply sequential pattern
selection. The best performance is found when the number of
generated patterns is 200 which means that the initial descriptor
length is 200 × 5 = 1000 (where 5 is the number of classes) for
each level. 

The effect of the number of the class-specific selected patterns
is shown in Fig. 7. The number of the class-specific patterns is
determined at the sequential pattern selection step as defined in
Section 3.6.1. The best result is obtained when 150 class-specific
patterns are selected from each level of the temporal pyramid. 

Selecting the number of pyramid levels is another important
factor of our HoS representation. For this purpose, we perform 5-
fold cross-validation on training set to select the number of
pyramid levels. We construct a temporal pyramid up to depth 6.
Fig. 8 shows the contribution of cumulative pyramid levels. We
observe that the recognition performance increases up to level 6,
due to the additional information acquired from lower granularity
of data in each subsequent temporal level. However, we observe
that, after level 6, the recognition performance drops. This is
mostly due to the large variations in the short-term activities and
the noise caused by short-term motions present in the videos. 

4.3.2 Performance of single-level HoS: Fig. 9 shows the effect
of the number generated candidate sequential patterns (as described
in Section 3.5.1 before the sequence selection step) on the
performance (mAP), when the temporal pyramid is not used, i.e.
single-level HoS. According to Fig. 9, the best results are obtained
when the histogram size is 1500. Fig. 10 shows the effect of the
number of the class-specific selected patterns on the performance
after the sequence selection step on the training data set. The
number of the class-specific patterns is determined at the sequential
patterns selection step as defined in Section 3.6.1. 

4.3.3 Comparison with existing work: We compare our method
with the several methods as shown in Tables 3 and 4. In the method

Fig. 6  Effect of number of candidate sequential patterns for each class at every level of the pyramid for TV Human Interactions data set
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of Patron-Perez et al. [15], head orientation features are included in
the final descriptors, to enrich their representation. Marín-Jiménez
et al. [14] apply standard BOW + STIP method and discard the
STIPs outside the person region in training phase by using person
bounding boxes provided within the database. We report the best
results of Patron-Perez et al. [15] when including the negative
videos as part of the retrieval task, which have settings using
manual or automatic annotations and structured learning (SL). Hoai
and Zisserman [16] use upper body annotations to train the upper
body detector. Similar to our experimental setting, Yu et al. [28]
and Gaidon et al. [25] did not use any annotations. As can be seen,
in the presence of negative videos, our method outperforms other
methods that do not use any annotations. When the negative videos
are included, our method is % + 1.4 better than Yu et al. [28]. Note
that, the method of Li et al. [27] has the best results in this data set,

but their method requires manual annotation. When the negative
videos are not included (Table 4) in the evaluation, our method is
% + 3.0 better than Yu et al. [28] and almost same as Khokher et al.
[22]. Khokher et al.’s method [22] uses a short window video
stabilisation step to gain robustness against the camera motion. In
our framework, we do not apply such a video stabilisation and
therefore, we can say that the features are affected by the camera
motion. We believe that our framework could also make use of
such an addition of a video stabilisation step. 

The effects of the proposed soft clustering and the temporal
pyramid extension are also analysed in Tables 3 and 4. The soft
clustering has nearly %6 positive effect on the average recognition
performance. The performance gain on mAP when using the
hierarchical temporal pyramid is nearly +%13 (when the negative
videos are included) and +%12 (when the negative videos are
excluded) in the TV Human Interaction data set. We observe that
the best performance is achieved by the proposed HoS formulation
using soft clustering and hierarchical temporal pyramid with local
interest point features.

We also experiment with deep learning-based features in our
framework and the results are presented in Tables 3 and 4. We
observe that the recognition performance is lower, compared to
using local interest points (%3.7 below when the negative videos
are included and %9.4 below when the negative videos are
excluded). This is mostly due to the non-local nature of the deep
features, since they operate over the whole frame. When working
with features extracted from the whole frame, the proposed HoS
method could not take advantage of finding co-occurring local
patterns in a single video frame or finding multiple local patterns
within multiple frames.

Fig. 11 shows the recognition performance (mAP) of the
proposed method and its extensions for each class. We observe that
soft clustering has greater contribution for handshake class than the
others, due to the high spatial variability in the execution of this

Fig. 7  TV Human Interactions data set, effect of number of selected sequential patterns for each class at each level of the pyramid after the sequential pattern
selection step

 

Fig. 8  Effect of the number of pyramid levels on the recognition performance on TV Human Interactions data set. L1 to LX represent that the HoS
representation has been formed using level 1 to level X

 

Fig. 9  Effect of number of candidate sequential patterns when the
temporal pyramid is not used on TV Human Interactions data set
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interaction. We observe that temporal pyramid has greater
contribution for Hug class, and this is largely due to the temporal
extent of the Hug interaction videos, i.e. they tend to be longer than
other class instances. Kiss class as relatively lower performance
and when we analyse the reason, we observe that a smaller number
of local features have been generated since there is not much
significant movement in execution of this interaction. 

4.4 Experiments on UT interactions data set

We also test our method on another benchmark human interactions
data set, UT Interactions. We compare our method with bag of
words baseline and the state-of-the-art methods. The results are
presented in Table 5. 

According to results provided in Table 5, our method is
significantly better than the standard BOW baseline and it achieves
the state-of-the-art performance. In this data set, we observe that
set#2 is more challenging than set#1, because set#2 has camera
jitters and moving background. The contribution of the soft
clustering to HoS representation is higher in set#2. Our method
with soft clustering and hierarchical temporal pyramid gives the
best results in set#2. In set#1, the method of Zhang et al. [18],
Kong and Fu [24], and our method have the same performance.
Note that, in these results, Marín-Jiménez et al. [14] and Patron-
Perez et al. [15] did not include the class point in their
experiments. We should also note that the method of Kong and Fu
[24] requires bounding boxes or a person detector, while our
method does not require such additional annotations and/or
auxiliary tools.

Table 6 shows the confusion matrix when HoS representation is
used with soft-clustering and hierarchical temporal pyramid. Most
of the confusion is between hug and handshake classes. In the UT
Interactions data set, the performance gain on accuracy of the
hierarchical temporal pyramid and soft clustering is nearly +%4. 

4.5 Time and space complexities

In terms of time complexity, the most complex step of our
algorithm is the sequence mining step. The running time of
algorithm is mostly dependent on the number of patterns in the
search space. When there are many similar frequent patterns in a
sequence database, the number of extracted sequential patterns may
increase exponentially. In our experiments, we have searched for
the min_sup that generates required number of patterns by starting
min_sup from the %99 and decreasing with a linear weight until
the required number of patterns are found. With this method, the
total running time of the mining algorithm for UT Interactions was
<25 min for each fold on a standard dual-core computer, and for

Fig. 10  Effect of number of selected sequential patterns when the
temporal pyramid is not used on TV Human Interactions data set after the
sequential pattern selection step

 
Table 3 Performance comparison on the TV Human
Interactions data set when the negative videos are included
in the retrieval task. ‘DF’ refers deep spatial features
Method Annotation mAP
Wang et al. [17] not required %53.4
Yu et al. [28] not required %56.0
HoS not required %38.2
HoS (SoftClust) not required %43.9
HoS (SoftClust + TempPyrd + DF) not required %53.7
HoS (SoftClust + TempPyrd) not required %57.4
Marín-Jiménez et al. [14] automatic %39.2
Patron-Perez et al. [15] (SL) automatic %42.4
Patron-Perez et al. [15] (SL) manual %54.8
Hoai and Zisserman [16] manual %56.3
Li et al. [27] manual %68.0
 

Table 4 Performance comparison on the TV Human
Interactions data set when the negative videos are excluded.
‘DF’ refers deep spatial features
Method Annotation mAP
Gaidon et al. [25] not required %62.4
Ma et al. [30] not required %64.4
Yu et al. [28] not required %66.2
Khokher et al. [22] not required %69.1
HoS not required %51.4
HoS (SoftClust) not required %57.4
HoS (SoftClust + TempPyrd + DF) not required %59.8
HoS (SoftClust + TempPyrd) not required %69.2
 

Fig. 11  Classwise mAP performance of the proposed HoS representations,
together with its extensions on TV Human Interactions data set. Best
viewed in colour

 

Table 5 Performance comparison on the UT Interaction
data set
Method Set #1 Acc Set #2 Acc AVG Acc
HoS + SoftClust + TempPyrd %95.0 %95.0 %95.0
Kong and Fu [24] %95.0 — %95.0
Burghouts and Schutte [26] %93.3 — %93.3
Raptis and Sigal [35] %93.3 — %93.3
Zhang et al. [18] %95.0 %90.0 %92.5
Yu et al. [28] %93.3 %91.7 %92.5
Liang et al. [33] — — %92.3
Sefidgar at al. [36] %93.3 %90.0 %91.7
Vahdat et al. [29] %93.0 %90.0 %91.5
HoS + SoftClust %88.3 %93.3 %90.8
Marín-Jiménez et al. [14] %86.0 %88.0 %87.0
HoS %88.3 %85.0 %86.7
Ryoo [49] %85.0 — %85.0
Patron-Perez et al. [15] %84.0 %86.0 %85.0
Zhang et al. [23] %76.0 %78.0 %77.0
BOW [18] %75.0 — %75.0
Slimani et al. [20] %40.6 %66.7 %53.6
The best scores are highlighted in bold font.
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TV Human Interactions it takes <10 min. The space complexity of
the algorithm is similar to the time complexity, the mining
algorithm uses <4 Gb memory for both of the data sets.

5 Conclusion
In this work, we propose a novel representation for human
interaction recognition in videos. The idea is to build histogram of
local feature sequences to model the relations between local spatio-
temporal feature points. To this end, we incorporate sequence
mining methods from data mining research. We show that
extracting temporal relations between local feature points via
frequent sequence mining and representing them via HoS
framework can improve the recognition performance.

By using sequence mining algorithms and sequence selection
step, the experiments show that our final set of sequences not only
frequent but also discriminative. According to the experiments, the
hierarchical sequences and the soft clustering improves the
recognition performance in all cases. With the help of the temporal
pyramid for enhancing the histograms, the sequential patterns
cover the whole video at multiple temporal scales and this
hierarchical structure makes the HoS more robust and
comprehensive.

The evaluation on two benchmark data sets shows the
effectiveness of the proposed approach. Our method can be used
with different local feature representations as desired and the local
features which are robust to camera movements may improve the
performance. While being on par with the state-of-the-art methods
for human interaction recognition, our framework has several
advantages, like requiring less supervision and manual annotations,
less auxiliary tools, offering an easily extendible framework to
work with other types of features.

Future work includes enhancing the proposed representation
further with local CNN features and using this representation in
conjunction with other deep learning techniques.
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