BIL-722 ADVANCED TOPICS IN COMPUTER VISION

Çağdaş Baş, N10266943

Paper: Searching for objects driven by context

Authors: Bogdan Alexe, Nicolas Heess, Yee Whye Teh, Vittorio Ferrari

PURPOSE: OBJECT DETECTION

Among many problems, all the methods exhaustively search the object with help of the sliding windows approach.

- All the methods evaluates all the possible windows.
- This process is very slow and also unnatural.

Cognitive search shows that humans don't do that. Instead search intelligently.

PROPOSITION: INTELLIGENT SEARCH

- Learn an object's relative position to its surroundings.
- An ideal search strategy would be like this:
 - W₁ is sky, cars occur below sky so look below.
 - 2. W₂ is road, cars occur on the road, look just below the road
 - There is a car part inside W_3 , look surrounding patches.
 - 4. W_4 is a car.

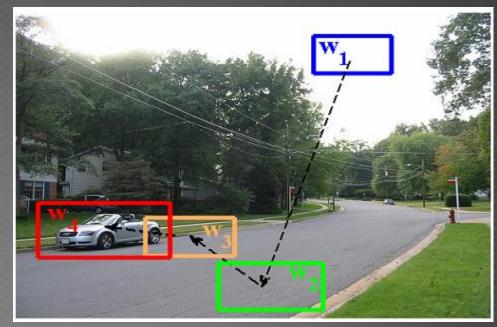


Figure Credit: Alexe Bogdan

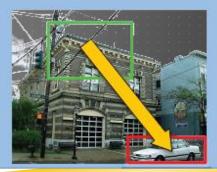
OVERVIEW OF THE METHOD

find similar training windows

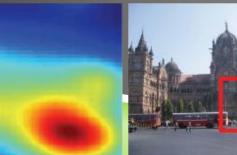
÷

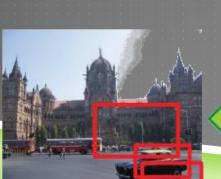
current vote map

test image



updated vote map





transfer displacement vector

training **displacement ground** window **vector** truth

Figure Credit: Alexe Bogdan

ALGORITHM IN A NUTSHELL

Method randomly picks one window at the beginning. Search Policy π^{S} :

Similar position/appearance duo searched in the training set.

Each of these similar patches votes for a new position.

Method accumulates these votes as probability maps and decides where to look next.

Output Policy π^0 :

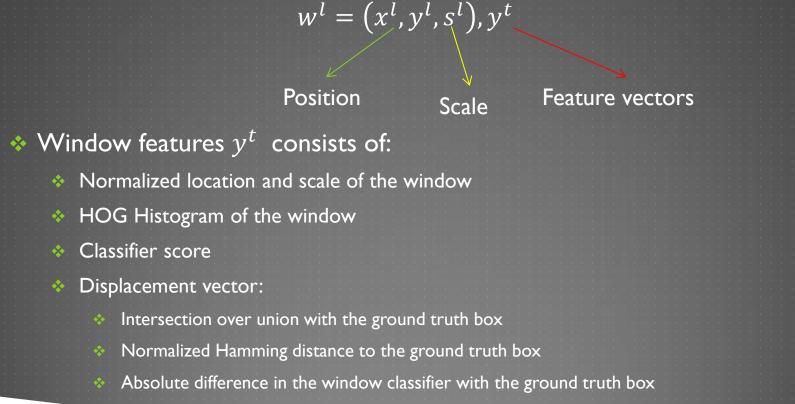
2.

3.

If current window similar enough to a car, search is over.

ALGORITHM IN DETAIL: FEATURE VECTOR

A window is represented by these vector:



ALGORITHM IN DETAIL: SEARCH POLICY

- Extract uniformly distributed windows from all the training images, store features.
- For a test image:

2.

3.

- Select a window, find it's K-NN from training windows.
- Map new window and acquire the new probability map.
- Choose next window with the highest probability:

$$\mathbf{w}^{t+1} = \pi^S(\mathbf{w}^1, \mathbf{y}^1, \dots, \mathbf{w}^t, \mathbf{y}^t) = \arg\max_{\mathbf{w}} M^t(\mathbf{w}|\mathbf{w}^1, \mathbf{y}^1, \dots, \mathbf{w}^t, \mathbf{y}^t; \Theta).$$

ALGORITHM IN DETAIL: SEARCH POLICY (2)

* Calculate probability map with the new window in test image w^t

$$\tilde{m}(\mathbf{w};\mathbf{w}^t,\mathbf{y}^t,\Theta) = \sum_{l=1}^{L} K_F(\mathbf{y}^t,\mathbf{y}^l;\Theta^F) \cdot K_S(\mathbf{w},\mathbf{w}^t\oplus\mathbf{d}^l;\Theta^S).$$

Feature similarity kernel Spatia

Spatial Smoothing Kernel

w^t: Current window in test image.
w^l: Window from training set.

ALGORITHM IN DETAIL: SEARCH POLICY (3)

Normalize each probability map and integrate all the past maps.

$$\tilde{m}(\mathbf{w};\mathbf{w}^t,\mathbf{y}^t,\Theta) = \sum_{l=1}^{L} K_F(\mathbf{y}^t,\mathbf{y}^l;\Theta^F) \cdot K_S(\mathbf{w},\mathbf{w}^t\oplus\mathbf{d}^l;\Theta^S).$$

Feature similarity kernel Spatial Smoothing Kernel

 Integrate all maps to form the overall probability map using exponentially decaying mixture.

$$M^{t}(\mathbf{w}|\mathbf{w}^{1},\mathbf{y}^{1},\ldots,\mathbf{w}^{t},\mathbf{y}^{t};\Theta) = \sum_{t'=1}^{t} a(t,t')m(\mathbf{w}|\mathbf{w}^{t'},\mathbf{y}^{t'},\Theta),$$

ALGORITHM IN DETAIL: OUTPUT POLICY

 After T iteration, output a single window which has highest classification score amongst all:

 $w^{out} = \underset{t}{argmax} c(w^t)$

 This is a downside. Method assumes that there is only one instance in the image.

ALGORITHM IN DETAIL: LEARNING WEIGHTS

There is a weight for each class in similarity kernel stage.

* This weights defines each patch's importance for each object class.

$$\mathcal{J}(\Theta^F; \hat{\mathbf{h}}) = \sum_{t=1}^T \sum_{\mathbf{w}} M^t(\mathbf{w} | \hat{\mathbf{w}}^1, \hat{\mathbf{y}}^1, \dots, \hat{\mathbf{w}}^t, \hat{\mathbf{y}}^t; \Theta) \cdot K_S(\mathbf{w}, \mathbf{w}_{\mathrm{GT}}^b)$$

OBJECT CLASSIFIER

An object classifier is trained for each class.

- * For each class, one root HOG filter and several part HOG filters are trained.
- Root and part filters summed with weights according to Felzenswab's work.
- * For each class, training split is used for classifier learning.

EXPERIMENTS

Experiments conducted on PASCALVOC 2010 dataset.

- A highly challenging dataset which contains 20 object classes witch bounding box annotations.
- Validation set is used for testing.

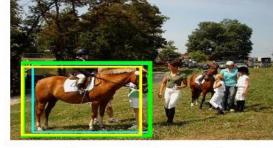
* Mean Average Precision over all classes and detection rate and number of windows evaluated by the detector used as performance measures.

EXPERIMENTS: QUANTITATIVE

	Sliding Window [12]	Our	Random Chance	Objectness [1]	Selective Search [29]
mAP	0.266	0.293	0.070	0.259	0.261
DR	0.372	0.409	0.124	0.366	0.370
#win	25000	100	100	1046	408

EXPERIMENTS: QUALITATIVE

(motorbike-left)



(horse-right-rear)



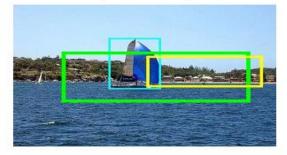
(car-right)

(boat-rear)

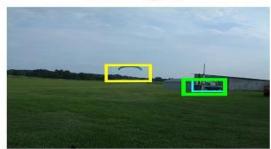
(chair-frontal)



(cow-left)



(boat-right)

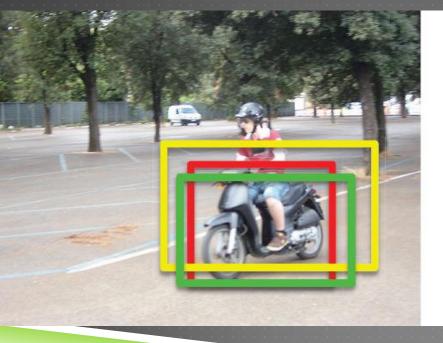


(car-right)

(tvmonitor-frontal)

EXPERIMENTS: QUALITATIVE

Comparison of ? With Felzenszwalb et al. PAMI 2010



EXPERIMENTS: PERFORMANCE

- * Experiments run on a Intel i7 processor powered PC.
- It can be seen that compared window count is significantly lower than the usual deformable part model approach.
- It is said that deformable part model approach takes 92s while proposed method takes only 2s.

	Sliding Window [12]	Our	Random Chance	Objectness [1]	Selective Search [29]
mAP	0.266	0.293	0.070	0.259	0.261
\mathbf{DR}	0.372	0.409	0.124	0.366	0.370
#win	25000	100	100	1046	408

PROS - CONS

Pros:

- Fast and logical search
- Can be applied with any classifier/feature

Cons:

- Assumes only one instance exists.
- Dataset dependent?

THANKS