Locality-constrained Linear Coding for Image Classification

Jinjun Wang, Jianchao Yang, Fengjun Lv, Thomas Huang, Yihong Gong

H. Tuğrul Erdoğan

Hacettepe Universty

23.02.2014

How do we classify visual object categories?

Monkey?

Monkey?

How do we classify visual object categories?

Monkey?

Monkey?

Recent approaches

- Bag Of Features (BOF)
- Generative Part Models
- Geometric Correspondence Search
- Discriminative Codebook Learning
- Spatial Pyramid Matching (SPM)

Bag of Features

Desriptor codes $\gamma_i = \phi(x_i)$ where ϕ is a non-linear mapping

Related Work

• BOF + SPM with Locality-constrained Linear Coding (LLC)

Coding Alternatives

Vector Quantization

- ✓ Fast
- × Quantization a problem
- Assigns features to single visual word based on locality
- Does not minimize reconstruction error

ScSPM (sparsity regularization)

- ✓ Minimizes reconstruction error $\sum_{i=1}^{N} ||x_i N\gamma_i||^2$
- Optimization is computationally expensive
- Regularization term is not smooth

codebook: B={b_i}_{j=1,...,M}

codebook: B={b_j} _{j=1,...,M}

LLC (locality regularization)

- ✓ Minimizes reconstruction error $\sum_{i=1}^{N} ||x_i N\gamma_i||^2$
- ✓ Local smooth sparsity
- Fast computation through approximated LLC

Advantages

- Sparsity Regularization Term
 - Able to find a solution on over-complete codebook (multi base response)
 - Detecting salient local descriptors
 - Less reconstruction error
- LLC
 - VQ links to only one word
 - SC is so homogeneous, farther inputs generate close outputs
 - SC computation complexity is so high. LLC can be performed by a covariance matrix computation
 - Fast encoding with k-nn search

The Codebook

- Kmeans generated results of K-means generated codebook is satisfactory.
- Update codebook with modified Coordinate Descent method
- If the weigth bigger than a threshold refit the corresponding element

Results

Algorithm	15 training	30 training
SVM-KNN (Zhang CVPR '06)	59.10	66.20
KSPM (Lazebnik CVPR '06)	56.40	64.40
NBNN (Boiman CVPR '08)	65.00	70.40
ML+CORR (Jain CVPR '08)	61.00	69.60
Hard Assignment		62.00
KC (Gemert ECCV '08)		64.14
ScSPM (Yang CVPR '09)	67.00	73.20
LLC	65.43	73.44

↑ Results over Caltech-101 dataset

↓ Results over Caltech-256

Algorithm	15 training	30 training
Hard Assignment		25.54
KC (Gemert ECCV '08)		27.17
ScSPM (Yang CVPR '09)	27.73	34.02
LLC	34.36	41.19

Thanks