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Discriminative Patches 

Two key requirements 

1.  Representative : Need to occur frequently enough. 

2.  Discriminative: Need to be different enough from 
the rest of  the visual world. 



First some examples 



Unsupervised Discovery of  
Discriminative Patches 

Given “discovery dataset” 

Find a relatively small number of  discriminative 
patches that represent it well. 

We assume access to a “natural world” dataset, which 
captures the visual statistics of  the world in general. 

Dataset: Subset of  Pascal VOC 2007 with six 
categories. 



Visual Word Approach 

•  Sample a lot of  patches from the discovery dataset 
(represented in terms of  their features*) at various 
locations and scales. 

•  Perform some form of  unsupervised clustering (e.g. K-
Means) 

Doesn’t work well. 

 

* We use Histogram of  Oriented Gradients (HOG) features 



K-Means Clusters 



Chicken-Egg Problem 

•  If  we know that a set of  patches are visually similar, 
we can easily learn a distance metric for them 

•  If  we know the distance metric, then we can easily 
find other members. 



Discriminative Clustering 

•  Initialize using K-Means 

•  Train a discriminative classifier to represent the 
distance function (treating other clusters as negative 
examples). 

•  Re-assign the patches to clusters whose classifier 
gives highest score 

•  Repeat 



Discriminative Clustering* 

•  Initialize using K-Means 

•  Train a discriminative classifier to represent the 
distance function (Using “natural world” as negative 
data). 

•  Detect the patches and assign to clusters. 

•  Repeat 



Discriminative Clustering* 
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Discriminative Clustering+ 

•  Split the discovery dataset into two equal parts 
{Training, Validation} 

•  Perform the training step of  Discriminative 
Clustering* on Training set. 

•  Perform the detection step of  Discriminative 
Clustering* on Validation set. 

•  Exchange the roles of  Training and Validation sets. 

•  Repeat. 



Discriminative Clustering+ 

KMeans 

Iter 4 

Iter 3 

Iter 2 

Iter 1 



Discriminative Clustering+ 
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Iter 4 
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More Results 



Image in terms of  D+ Patches 



Ranking Patches 

•  Purity: Homogeneity of  the clusters. Approximated 
by the mean SVM score for top few members 

•  Discriminativeness: How rare are the patches in the 
“natural world”. Approximated by term frequency 
in “discovery dataset” with respect to both 
combined. 

 



Top Ranked Patches 
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Figure 6. Examples of discovered discriminative patches that were ranked highly by the algorithm.

age is defined as the number of images in the dataset “cov-
ered” by a given cluster. Figure 8(b) shows coverage as we
increase the number of clusters.

As we mentioned, however, the experiment above under-
reports the purity of our clusters, since semantic equiva-
lence is not the same as visual similarity. Therefore, we
performed a mini-experiment with human subjects, measur-
ing the visual purity of our clusters. We selected the top 5
clusters from each of the six categories. For each cluster,
we asked human labelers to mark which of the cluster’s top
ten firings on the validation set are visually consistent with
the cluster. Based on this measure, our average purity for
these 30 clusters was 73%.

4.1. Supervised Image Classification

Unsupervised clustering approaches, such as visual
words, have long been used as features for supervised tasks,

Figure 8. Quantitative Comparison of discriminative patches com-
pared to visual words. We evaluate the quality of clustering in
terms of purity and coverage.

such as image classification. In particular, bag of visual
words and spatial pyramids [15] are some of the most pop-
ular current methods for the image classification. Since
our mid-level patches could be considered the ideal visual
words (as opposed to “visual letters”), it makes sense to see
how they would perform on a classification task. Our task
has the same six categories from PASCAL VOC. Our base-
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Doublets : Spatially Consistent 
Pairs 



Doublets : Refinement 



Discovered Doublets 
3 Few samples of discovered doublets
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Discovered Doublets 

1212



Evaluation 

•  Comparison with Visual Words 

•  Dictionary of  1000 visual words to compare against 
1000 Discriminative clusters. 



Evaluation : Purity 
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Our Approach



Evaluation : Coverage 
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Our Approach



Supervised Image 
Classification 

Bus Horse Train Sofa Dining 
Table 

Motor 
Bike 

Average 

Vis-
Word 

0.45 0.70 0.60 0.59 0.41 0.51 0.54 

D-Pats 0.60 0.82 0.61 0.67 0.55 0.67 0.65 

D-Pats + 
Doublets 

0.62 0.82 0.61 0.67 0.57 0.68 0.66 



Going Further : More 
Supervision 

•  Discovering using category labels. 

•  Per-category Clustering. 



Using Labels 

4 Patches sampled only at Bounding Boxes

This section presents results for discriminative patches discovered when image patches are restricted to bounding
boxes of six PASCAL VOC categories – Horse,Motorbike,Bus, Train, Sofa,DiningTable without regard to
actual label. However, after discovery, we rank the patches with respect to the six categories independently.
This allows us to quantitatively measure Precision-Recall. Here we show the top six discriminative patches for
each category and their P-R curve. Note that even the patches with low overall recall usually exhibit very good
precision. (AP: Average Precision)

Table 1: horse
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Using Labels 

Table 4: train
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Per-Category Clustering 
•  Discovery Dataset: Images belonging to a single category 



Top Patches Per-Scene 

Bookstore 

Cloister 

Buffet 

Bowling 



Top Patches Per-Scene 

Computer 
Room 

Laundromat 

Shoe Shop 

Waiting 
Room 



Thank You 

Fun Fact: Only ~300,000 CPU Hours consumed 



•  Histogram of  gradient orientations 
-Orientation     -Position 

•  Weighted by magnitude 

*Borrowed From Alyosha’s Slides 



Average Precision 

4 Patches sampled only at Bounding Boxes

This section presents results for discriminative patches discovered when image patches are restricted to bounding
boxes of six PASCAL VOC categories – Horse,Motorbike,Bus, Train, Sofa,DiningTable without regard to
actual label. However, after discovery, we rank the patches with respect to the six categories independently.
This allows us to quantitatively measure Precision-Recall. Here we show the top six discriminative patches for
each category and their P-R curve. Note that even the patches with low overall recall usually exhibit very good
precision. (AP: Average Precision)

Table 1: horse

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP: 0.356

AP at 0.1 Recall: 0.098

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP: 0.340

AP at 0.1 Recall: 0.094

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP: 0.326

AP at 0.1 Recall: 0.094

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP: 0.325

AP at 0.1 Recall: 0.093

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP: 0.339

AP at 0.1 Recall: 0.091

Recall

P
re

c
is

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AP: 0.332

AP at 0.1 Recall: 0.091

Recall

P
re

c
is

io
n

16

*Formulas from Wikipedia 



Spatial Pyramid 

get the following definition of a pyramid match kernel:

κL(X,Y ) = IL +
L−1∑

ℓ=0

1
2L−ℓ

(
Iℓ − Iℓ+1

)
(2)

=
1
2L

I0 +
L∑

ℓ=1

1
2L−ℓ+1

Iℓ . (3)

Both the histogram intersection and the pyramid match ker-
nel are Mercer kernels [7].

3.2. Spatial Matching Scheme

As introduced in [7], a pyramid match kernel works
with an orderless image representation. It allows for pre-
cise matching of two collections of features in a high-
dimensional appearance space, but discards all spatial in-
formation. This paper advocates an “orthogonal” approach:
perform pyramid matching in the two-dimensional image
space, and use traditional clustering techniques in feature
space.1 Specifically, we quantize all feature vectors into M
discrete types, and make the simplifying assumption that
only features of the same type can be matched to one an-
other. Each channel m gives us two sets of two-dimensional
vectors, Xm and Ym, representing the coordinates of fea-
tures of type m found in the respective images. The final
kernel is then the sum of the separate channel kernels:

KL(X,Y ) =
M∑

m=1

κL(Xm, Ym) . (4)

This approach has the advantage of maintaining continuity
with the popular “visual vocabulary” paradigm — in fact, it
reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (3) is simply a
weighted sum of histogram intersections, and because
c min(a, b) = min(ca, cb) for positive numbers, we can
implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted
histograms of all channels at all resolutions (Fig. 1). For
L levels and M channels, the resulting vector has dimen-
sionality M

∑L
ℓ=0 4ℓ = M 1

3 (4L+1 − 1). Several experi-
ments reported in Section 5 use the settings of M = 400
and L = 3, resulting in 34000-dimensional histogram in-
tersections. However, these operations are efficient because
the histogram vectors are extremely sparse (in fact, just as
in [7], the computational complexity of the kernel is linear
in the number of features). It must also be noted that we did
not observe any significant increase in performance beyond
M = 200 and L = 2, where the concatenated histograms
are only 4200-dimensional.

1In principle, it is possible to integrate geometric information directly
into the original pyramid matching framework by treating image coordi-
nates as two extra dimensions in the feature space.
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Figure 1. Toy example of constructing a three-level pyramid. The
image has three feature types, indicated by circles, diamonds, and
crosses. At the top, we subdivide the image at three different lev-
els of resolution. Next, for each level of resolution and each chan-
nel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (3).

The final implementation issue is that of normalization.
For maximum computational efficiency, we normalize all
histograms by the total weight of all features in the image,
in effect forcing the total number of features in all images to
be the same. Because we use a dense feature representation
(see Section 4), and thus do not need to worry about spuri-
ous feature detections resulting from clutter, this practice is
sufficient to deal with the effects of variable image size.

4. Feature Extraction

This section briefly describes the two kinds of features
used in the experiments of Section 5. First, we have so-
called “weak features,” which are oriented edge points, i.e.,
points whose gradient magnitude in a given direction ex-
ceeds a minimum threshold. We extract edge points at two
scales and eight orientations, for a total of M = 16 chan-
nels. We designed these features to obtain a representation
similar to the “gist” [21] or to a global SIFT descriptor [12]
of the image.

For better discriminative power, we also utilize higher-
dimensional “strong features,” which are SIFT descriptors
of 16× 16 pixel patches computed over a grid with spacing
of 8 pixels. Our decision to use a dense regular grid in-
stead of interest points was based on the comparative evalu-
ation of Fei-Fei and Perona [4], who have shown that dense
features work better for scene classification. Intuitively, a
dense image description is necessary to capture uniform re-
gions such as sky, calm water, or road surface (to deal with
low-contrast regions, we skip the usual SIFT normalization
procedure when the overall gradient magnitude of the patch
is too weak). We perform k-means clustering of a random
subset of patches from the training set to form a visual vo-
cabulary. Typical vocabulary sizes for our experiments are
M = 200 and M = 400.


