Unsupervised Discovery Of Mid-level Discriminative Patches

Saurabh Singh (ss1@andrew.cmu.edu), RI

Which representation seems intuitive?

Spectrum of Visual Features

Low-Level
High-Level

Pixel Filter-Banks Sparse-SIFT

Parts, Segments

Visual Words

Visual Words or Letters?

Spectrum of Visual Features

Low-Level
High-Level

Pixel

Parts, Segments

Objects

Our Approach (Mid-Level Discriminative Patches)

Discriminative Patches

Two key requirements

1. Representative : Need to occur frequently enough.
2. Discriminative: Need to be different enough from the rest of the visual world.

First some examples

Unsupervised Discovery of Discriminative Patches

Given "discovery dataset"
Find a relatively small number of discriminative patches that represent it well.

We assume access to a "natural world" dataset, which captures the visual statistics of the world in general.

Dataset: Subset of Pascal VOC 2007 with six categories.

Visual Word Approach

- Sample a lot of patches from the discovery dataset (represented in terms of their features*) at various locations and scales.
- Perform some form of unsupervised clustering (e.g. KMeans)

Doesn't work well.

* We use Histogram of Oriented Gradients (HOG) features

K-Means Clusters

Chicken-Egg Problem

- If we know that a set of patches are visually similar, we can easily learn a distance metric for them
- If we know the distance metric, then we can easily find other members.

Discriminative Clustering

- Initialize using K-Means
- Train a discriminative classifier to represent the distance function (treating other clusters as negative examples).
- Re-assign the patches to clusters whose classifier gives highest score
- Repeat

Discriminative Clustering*

- Initialize using K-Means
- Train a discriminative classifier to represent the distance function (Using "natural world" as negative data).
- Detect the patches and assign to clusters.
- Repeat

Discriminative Clustering*

Initial

Final

Initial

Final

Discriminative Clustering+

- Split the discovery dataset into two equal parts \{Training, Validation\}
- Perform the training step of Discriminative Clustering* on Training set.
- Perform the detection step of Discriminative Clustering* on Validation set.
- Exchange the roles of Training and Validation sets.
- Repeat.

Discriminative Clustering+

KMeans

Iter 2

Iter 3

Iter 4

Discriminative Clustering+

KMeans

Iter 1

Iter 2

Iter 3

Iter 4

More Results

Image in terms of $\mathrm{D}+$ Patches

Ranking Patches

- Purity: Homogeneity of the clusters. Approximated by the mean SVM score for top few members
- Discriminativeness: How rare are the patches in the "natural world". Approximated by term frequency in "discovery dataset" with respect to both combined.

Top Ranked Patches

Doublets : Spatially Consistent Pairs

Doublets : Refinement

Discovered Doublets

Discovered Doublets

Evaluation

- Comparison with Visual Words
- Dictionary of 1000 visual words to compare against 1000 Discriminative clusters.

Evaluation : Purity

Evaluation : Coverage

Coverage

Supervised Image Classification

	Bus	Horse	Train	Sofa	Dining Table	Motor Bike	Average
Vis- Word	0.45	0.70	0.60	0.59	0.41	0.51	0.54
D-Pats	0.60	0.82	0.61	0.67	0.55	0.67	0.65
D-Pats + Doublets	0.62	0.82	0.61	0.67	0.57	0.68	0.66

Going Further : More Supervision

- Discovering using category labels.
- Per-category Clustering.

Using Labels

AP: 0.356
AP at 0.1 Recall: 0.098

AP: 0.340
AP at 0.1 Recall: 0.094

Using Labels

AP: 0.270
AP at 0.1 Recall: 0.088

AP: 0.240
AP at 0.1 Recall: 0.084

Per-Category Clustering

- Discovery Dataset: Images belonging to a single category

Top Patches Per-Scene

Bookstore

Cloister

Buffet

Bowling

Top Patches Per-Scene

Computer Room

Laundromat

Shoe Shop

Waiting Room

Thank You

Fun Fact: Only ~300,000 CPU Hours consumed
\(\left.\left.\left.$$
\begin{array}{l}\text { Input } \\
\text { image }\end{array}
$$ \rightarrow $$
\begin{array}{l}\text { Normalize } \\
\text { gamma \& } \\
\text { colour }\end{array}
$$\right] \rightarrow $$
\begin{array}{l}\text { Compute } \\
\text { gradients }\end{array}
$$ \rightarrow $$
\begin{array}{l}\text { Weighted vote } \\
\text { into spatial \& } \\
\text { orientation cells }\end{array}
$$\right] \rightarrow \begin{array}{l}Contrast normalize

over overlapping

spatial blocks\end{array}\right] \rightarrow\)| Collect HOG's |
| :--- |
| over detection |
| window |$\rightarrow \rightarrow$| Linear |
| :--- |
| SVM |\rightarrow| Person/ |
| :--- |
| non-person |
| classification |

\uparrow

- Histogram of gradient orientations
-Orientation -Position

- Weighted by magnitude
*Borrowed From Alyosha’s Slides

Average Precision

$$
\text { precision }=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { retrieved documents }\} \mid}
$$

$$
\text { recall }=\frac{\mid\{\text { relevant documents }\} \cap\{\text { retrieved documents }\} \mid}{\mid\{\text { relevant documents }\} \mid}
$$

$$
\mathrm{AveP}=\int_{0}^{1} p(r) d r
$$

*Formulas from Wikipedia

Spatial Pyramid

level 1

level 2

