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Visual Words or Letters?
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Our Approach (Mid-Level Discriminative
Patches)




Discriminative Patches

Two key requirements
1. Representative : Need to occur frequently enough.

2. Discriminative: Need to be different enough from
the rest of the visual world.




First some examples




Unsupervised Discovery of
Discriminative Patches

Given “discovery dataset”

Find a relatively small number of discriminative
patches that represent it well.

We assume access to a “natural world” dataset, which
captures the visual statistics of the world in general.

Dataset: Subset of Pascal VOC 2007 with six
categories.




Visual Word Approach

« Sample a lot of patches from the discovery dataset
(represented in terms of their features®) at various
locations and scales.

* Perform some form of unsupervised clustering (e.g. K-
Means)

Doesn’t work well.

* We use Histogram of Oriented Gradients (HOG) features




K-Means Clusters




Chicken-Egg Problem

« If we know that a set of patches are visually similar,
we can easily learn a distance metric for them

» If we know the distance metric, then we can easily
find other members.




Discriminative Clustering

Initialize using K-Means

Train a discriminative classifier to represent the
distance function (treating other clusters as negative
examples).

Re-assign the patches to clusters whose classifier
gives highest score

Repeat




Discriminative Clustering™

Initialize using K-Means

Train a discriminative classifier to represent the
distance function (Using “natural world” as negative
data).

Detect the patches and assign to clusters.

Repeat




Discriminative Clustering™

Initial




Discriminative Clustering+

Split the discovery dataset into two equal parts
{Training, Validation}

Perform the training step of Discriminative
Clustering® on Training set.

Perform the detection step of Discriminative
Clustering™ on Validation set.

Exchange the roles of Training and Validation sets.

Repeat.




Discriminative Clustering+

KMeans
Iter 1
Iter 2

Iter 3

Iter 4




Discriminative Clustering+




More Results
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Ranking Patches

* Purity: Homogeneity of the clusters. Approximated
by the mean SVM score for top few members

Discriminativeness: How rare are the patches in the
“natural world”. Approximated by term frequency
in “discovery dataset” with respect to both
combined.




Top Ranked Patches




Doublets : Spatially Consistent
Pairs




Doublets : Refinement




Discovered Doublets




Discovered Doublets




Evaluation

e Comparison with Visual Words

* Dictionary of 1000 visual words to compare against
1000 Discriminative clusters.




Evaluation : Purity
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Evaluation : Coverage

Coverage
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Supervised Image
Classification

Horse Train Sofa Dining | Motor | Average
Table Bike

Vis-
Word

D-Pats  0.60 0.82 0.61

D-Pats + 0.62 0.82 0.61
Doublets




Going Further : More
Supervision

* Discovering using category labels.

» Per-category Clustering.




Using Labels

AP: 0.356 AP: 0.340
AP at 0.1 Recall: 0.098 AP at 0.1 Recall: 0.094

Precision
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Using Labels

AP: 0.270 AP: 0.240
AP at 0.1 Recall: 0.088 AP at 0.1 Recall: 0.084
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Per-Category Clustering

» Discovery Dataset: Images belonging to a single category




Top Patches Per-Scene
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T op Patches Per-Scene

Computer
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Thank You

Fun Fact: Only ~300,000 CPU Hours consumed




Input Normalize

image
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—» | into spatial &
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Contrast normalize
over overlapping
spatial blocks

Collect HOG's
over detection
window
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Weighted by magnitude

*Borrowed From Alyosha’s Slides




Average Precision

|{relevant documents} N {retrieved documents}|
|{retrieved documents}|

precision =

|{relevant documents} N {retrieved documents}|

Il =
reca | {relevant documents}|

1

Precision

*Formulas from Wikipedia
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Spatial Pyramid

level O level 1 level 2
® & + + e & + + + +
o




