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Background

Query scuba+diving from Flickr
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Our Ultimate Goal

An example of scuba+d/v1ng storyllne

beach boat on boat diving underwater coral sunset dinner

cf) ranking and retrieval by Google

Narrative structural summary vs. independently retrieved images

Reconstructing photo storylines from large-scale online images



Objective of This Paper

As a first technical step, jointly perform two crucial tasks...

Mutually rewarding!
Alignment Cosegmentation
Match images from Segment K common regions
- different photo streams * from aligned M images

PS2 User 1 at 10/19/2008 (Cayman Islands)




Objective of This Paper

As a first technical step, jointly perform two crucial tasks...

Mutually rewarding!

Alignment [ > Cosegmentation

* Online images are too diverse to segment together at once

* The alignment discovers the images that share common

regions
S2 User 1 at 10/19/2008 (Cayman Islands)




Objective of This Paper

As a first technical step, jointly perform two crucial tasks...
Mutually rewarding!
Alignment < I Cosegmentation

* Improve image matching by a better image similarity measure

Closing a loop between the two tasks
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Flickr Dataset

Flickr dataset of 15 outdoor recreational activities

* Experiments with more than 100K images of 1K photo streams

* Larger than those of previous work by orders of magnitude
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Image Descriptor and Similarity Measure

Image description
* HSV color SIFT and HOG features on regular grid

* L1 normalized spatial pyramid histogram using 300 visual words

Image similarity measure :
* (Our assumption) Segmentation enhances the image alignment.

o(Iy, ) = max (Z os(s, f 3)))

se€F

1. No segmentation available 2. Segmentation available
* Histogram intersection on SPH Histogram intersection on the
@Not robust against location/pose * best assignment of segments
* changes

g (11,12) =1.21 0'(11,12) =1.83 10
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Alighment of Photo Streams

Input: A set of photo streams (PS): P = {P1,...,PL}

Photo Stream: a set of photos taken in sequence by a single user
* inasingle day

Idea: Align all photo streams at once after building K-NN graph
* Naive-Bayes Nearest Neighbor(NBNN) [Boiman et al. 08] for similarity metric

12



Alighment of Photo Streams

Input: A set of photo streams (PS): P = {P1,...,PL}

Photo Stream: a set of photos taken in sequence by a single user
* inasingle day

Idea: Align all photo streams at once after building K-NN graph
* Naive-Bayes Nearest Neighbor(NBNN) [Boiman et al. 08] for similarity metric

For simplicity, first consider pairwise alignment of two photo streams
Pairwise { -
alignment L/
" )




Pairwise Alignment

Goal of alignment: find a matching btw a pair of PS f:P' - P*0{0}
» f(/)=0 means Iin P1 has no match in P2.

Optimization: MRF-based energy minimization

* Flexibility: Various energy terms

* Solved by discrete BP

V)

E(P,P)=Y di, i)+ Y nmin(td)-tl)n+ 5 pmin(td)-t)

1;0pP! 1;0pP (j,1 )05
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Pairwise Alignment

Obijective function

E(P,PY)=Y dilp+ Y nmin(td)-td), )+ Y pmin(td)-td),v)
1;0pP! 1;0pP! (il jHoo
Data term The Time term : The : The
matched image pairs matched image pairs matched images to
should be visually should be temporally neighbors in P1 should be
similar. similar. neighbors in P2.

-} (- )
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Alighment of Multiple Photo Streams

Objective : MRF-based energy minimization

Ep = zE(Pi, P’)
(P',P/)O0 = |: All pairs of NN photo streams

Message-passing based optimization

* until convergence or for fixed iterations

P{ E
Pairwise ’7 -

alignment VA

I\ Pairwise

P = fﬁ - b Pgirwise \ alignment
R @4 “ alignment \l

Pairwise
alignment Lr
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Alighment of Multiple Photo Streams

Objective : MRF-based energy minimization

Ep = zE(Pi, P’)
(P',P/)O0 = |: All pairs of NN photo streams

Message-passing based optimization

* until convergence or for fixed iterations
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Build an Image Graph

ldea: Connect the images that are similar enough to be cosegmented
Image Graph G = (I, E)

* I:The set of images. E : The set of edges.

* E=EBUEw

EB : Edges between different photo streams (results of
alignment)
EW : Edges within a photo stream

For each image I, consider the images such that |t(/)—t(/;)|<J

links I with the K-NN of I (EW).




Scalable Cosegmentation

Iteratively run the MFC algorithm [Kim and Xing, 2012] on the image graph

Review of MFC algorithm

Cosegmentation: Jointly segment M images into K+1 regions
* (K foregrounds (FG) + background (BG))

Foreground > Region
Modeling < Assignment

Learn appearance lterate Allocate the regions

models of K FGs of image into one of
* andBG * KFGsorBG

Any region classifiers Very efficiently solve
* or their combination using the idea of

= . ° = = -
Ex. Gaussian mixture on combinatorial auction

e RGB, linear SVM on
SPH

20



Scalable Cosegmentation on Image
Graph

Message-passing based optimization

(7 * Learn FG Models from neighbors of II.

™ ¢ Run region assignment on I1.

lteratively solve...

FG 1 (car) U/l\/z.

m




Scalable Cosegmentation on Image
Graph

. L Initialization
Message-passing based optimization

* Supervised: start from seed

Ulah@iervised: use the algorithm

(7 * Learn FG Models from neighbors of Ii.
™ ¢ Run region assignment on Ii. « of CoSand [Kim et al. 2011].

lteratively solve...

FG 1 (car) _ vy,
. : 3

C_ij;\z.l*

R
FG 2
(road)
T W
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Evaluation — Two Experiments

Evaluation for Alignment

@ Very hard to obtain groundtruth!
* Correspondences btw two sets of thousands of images?

Task: Temporal localization (inspired by geo-location estimation)
When are they likely to be taken? Is it likely to be taken?

Timeline
% >

Evaluation for cosegmentation

£}

[Hays and Efros. 2008] |

Task: Foreground detection

 We manually annotate 100 images per class

_GT,nR

 Accuracy is measured by intersection-over-unionAcc =
GIL.OR. 2




Evaluation of Alignment

Procedures of temporal localization

Training (80%) 1. Given a set of photo streams,

T Test (20%
G R - o (20%)

S e T - - -
b I LS | ENEEPMEEE 3. Estimate timestamps of all images

A TLaer B R in test photo streams

randomly split training and test sets

B e 2. Run alignment

Y o o e [ 4. Temporal localization is correct if
D o N N <
t—ta|se
_ @ Better temporal localization # Better Alignment
Baselines
* BPS: Our Alignment + Cosegmentation
« BP: Our alignment only } Justity closing a loop
* KNN: K-nearest neighbors — Image similarity only (the simplest)
* HMM: Hidden Markov Models : :
Popular multiple sequence alignment
* DTW: Dynamic Time Windows 25



Evaluation of Alighment

70
gso—
5‘50_
g 40~
3 30
<0
10}
(@) o |
Average AB FF FO HR LM MC RA RC RO SP SD SN SB TF YA
70 * Temporal localization is correct
~ ifr _
9 Ite—tal<e
o 30
3 40
= -~ BPS BPS: Our Alignment + Cosegmentation
Q 30t = BP _ :
- BP: Our alignment only
20 -v HMM )
— DTW KNN: K-nearest neighbors
(b)lg_ | _ ; |- xN HMM: Hidden Markov Models
30 60 9 120 150 180 DTW: Dynamic Time Windows

E  Time limit (min.)
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Accuracy (%)

Evaluation of Cosegmentation

Task: Foreground detection

60 T T ¢ T T 1 + T 1 | | I

50 - brrsrsssnrriissdeneeess B ccouerisanees frovsseanes . i St | Y S

wo-p i ]BP+MFC

RT)] NN FURTRTRR R N NEONREEEN DN RSN RN NN  NNWRNY 00 0 MERSENNS | W FEN GUNGREN  RERRENNNN T T (R - MFC

20060000 FtLE FELET BELEY Pee P BB b B o] I:l CcoS

lg |7] oA
Average AB FF FO HR IM MC RA RC RO SP SD SN SB TF YA

BP+MFC: (Proposed) Alignment + Cosegmentation
MFC: Our cosegmentation without alignment
COS : Submodular optimization [Kim et al. ICCV11]
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Conclusion

Ultimate goal: building photo storylines from large-scale online images

horse+riding
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