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A shirtless guy lies on a park bench with his dog .
A white dog is tied to a bench while its owner sleeps 

How would you succinctly describe this image?

2

Friday, March 21, 14



A shirtless guy lies on a park bench with his dog .
A man lays on a bench while his dog sits by him .
A shirtless guy lies on a park bench with his dog .
A white dog is tied to a bench while its owner sleeps 

How would you succinctly describe this image?

2

Description: 
Guy at the falls
I went to the falls to check out the wildlife, and look what I found.
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Talk Outline

3

Data and the Task:  (Hodosh et al. 2013)

Motivating Related Work: KCCA (Hodosh et al. 2013)

Alternative Model: Ranking SVM

Experiments and Results

Representational Issues of Image Descriptions
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Our Datasets
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1,000 PASCAL Images (2010)  
8,000 Flickr Images (2010)

31,000+ Flickr Images (2013)
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Our Datasets

4

Mostly people “doing things”

5 independently written 
captions from Amazon 
Mechanical Turk

1,000 PASCAL Images (2010)  
8,000 Flickr Images (2010)

31,000+ Flickr Images (2013)
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Image description as a ranking task

Dogs are running on a 
wet beach

A snowboarder is sitting 
on a mountain

The footballer is tackling 
the other football player

...

Test Images Test Captions

...
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Image description as a ranking task

Dogs are running on a 
wet beach

A snowboarder is sitting 
on a mountain

The footballer is tackling 
the other football player

...

Test Images Test Captions

For each test image, rank the pool of test captions
Evaluation: rank of the test image’s original caption
Can also augment the data with relevance judgments

...
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Why evaluate against human captions?
Do the underlying semantics of the 
image and description line up?
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Why evaluate against human captions?
Do the underlying semantics of the 
image and description line up?

Would someone actually say it?

Generation: semantically correct but 
grammatically unsound?

A woman is playing tennis.

An outside picture with some 
blue and blue-green

6

Tennis woman play ?
Correlates better with human judgments than 
BLEU/ROUGE (recall/precision) (Hodosh et al. ‘13) 
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Dogs are running on a 
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Induced space: Linear projection on implicit 
feature spaces to maximize correlation (KCCA)
Image: Spatial Pyramid with Color, SIFT, Texture
(Intended as a baseline for future work)
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KCCA approach (Hodosh et al. 2013)

Dogs are running on a 
wet beach

...

Images CaptionsInduced Space

...

Induced space: Linear projection on implicit 
feature spaces to maximize correlation (KCCA)
Image: Spatial Pyramid with Color, SIFT, Texture
(Intended as a baseline for future work)

Text: Bag of words and beyond
(Increases in complexity increase performance)
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Text kernel of (Hodosh et al. 2013)

8

A boy does a skateboard trick off a metal plank
A young man jumps in the air on a skateboard

Skateboarder on a rail
A skater does a trick on a rail
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Text kernel of (Hodosh et al. 2013)
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Sequence kernel: Beyond BoW
Similarity kernel(s): Partial matches 
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Text kernel of (Hodosh et al. 2013)

8

Sequence kernel: Beyond BoW
Similarity kernel(s): Partial matches 

Alignment: Translation modeling on our corpus
Distributional: Co-occurrence to capture topic info

A boy does a skateboard trick off a metal plank
A young man jumps in the air on a skateboard

Skateboarder on a rail
A skater does a trick on a rail
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Qualitative KCCA Examples*:

*See JAIR paper (Hodosh et al’13) for more discussion
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smiles.
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Tractability

10

Datasets are growing rapidly

  8,000 Flickr Images (2010)
 31,000+ Flickr Images (2013)
1 Million+ (Ordonez et al 2011) ?

KCCA Memory: O(n2) (kernels & learned weights)
KCCA Running Time: O(n3) (exactly)
Pre-computation: O(n2) kernel operations
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Understandability

11

?Interpreting the why of induced 
implicit spaces can be difficult

How does one feature or component affect 
the much larger kernel?

How does one change in a kernel effect the 
space KCCA learns?
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Appropriate loss metric
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KCCA’s loss isn’t the same as the task’s loss
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hAwA,BwBi
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Appropriate loss metric
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KCCA’s loss isn’t the same as the task’s loss

argmaxwA,wB

hAwA,BwBi
kAwAkkBwBk

A woman hiding her face 
behind an umbrella

A man is running in a city 
park

: >
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Rank-SVM*
A woman hiding her face 

behind an umbrella

A man is running in a city 
park

Two men are playing 
soccer on a field.

People are playing 
volleyball on the beach

*Related to Grangier et al (2008) (PAMIR)
13
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 classifier

Rank-SVM*

Representation: Simple cross-product of active 
image and text features. 
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Linear
 classifier

Rank-SVM*

Representation: Simple cross-product of active 
image and text features. 
Image: Binary MetaClass (Bergamo & Torresani ’12)
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park

Two men are playing 
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Linear
 classifier

Rank-SVM*

Representation: Simple cross-product of active 
image and text features. 
Image: Binary MetaClass (Bergamo & Torresani ’12)
Text: Currently just binary “BoW”

A woman hiding her face 
behind an umbrella

A man is running in a city 
park

Two men are playing 
soccer on a field.

People are playing 
volleyball on the beach

*Related to Grangier et al (2008) (PAMIR)
13
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Rank-SVM formally

min
w

�

2
||w||2 +

1
|Dtrain |

X

(i,c+,c�)2Dtrain

`((i, c+, c�),w)

Let Dtrain be a set of pairwise preferences of captions 
for the training images
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14

Rank-SVM formally

min
w

�

2
||w||2 +

1
|Dtrain |

X

(i,c+,c�)2Dtrain

`((i, c+, c�),w)

Let Dtrain be a set of pairwise preferences of captions 
for the training images

`((i, c+, c�),w) = max(0, 1 � hw,�(i, c+
)��(i, c�)i)

Loss is hinge-loss on each of these preferences
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Allows for more compact storage in memory
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Binary text features
Allows for more compact storage in memory

A man with a black shirt 
giving another man a tattoo 

 A man wearing jeans gets a 
new tattoo

When words repeat: more of the concept?
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15

Binary text features
Allows for more compact storage in memory

A man with a black shirt 
giving another man a tattoo 

 A man wearing jeans gets a 
new tattoo

When words repeat: more of the concept?

Incorporating the KCCA features?
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The quantitative task

16

Test Set: 1000 unseen images and captions
Task: For each image, rank the captions
Metric: Recall of gold (correlates with human)
Models: Independent Baseline
KCCA Model of Hodosh et al. 2013
Rank SVM w/ IDF + Extra training
(See paper for more models / description / etc)
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Automatic Evaluation

17

Recall at 1Recall at 1 Recall at 5Recall at 5 Recall at 10Recall at 10
Median rank of 

gold
Median rank of 

gold

Independent

Rank SVM

KCCA*

4.1 13.2 20.3 51.0

6.8 19.2 28.7 34.7

8.3 21.6 30.3 34.0

See workshop and JAIR paper for more experiments
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Automatic Evaluation

17

Recall at 1Recall at 1 Recall at 5Recall at 5 Recall at 10Recall at 10
Median rank of 

gold
Median rank of 

gold

Independent

Rank SVM

KCCA*

4.1 13.2 20.3 51.0

6.8 19.2 28.7 34.7

8.3 21.6 30.3 34.0

*Different visual/text features etc, so not directly comparable

See workshop and JAIR paper for more experiments

Friday, March 21, 14



What is the Rank-SVM learning?

18

Crowd

Table

Bicycle

Two
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All descriptions are not created equal
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A meal is on a table 
in a restaurant.

Model responsesModel responses

Overall 0.96

Meal 0.39

Restaurant 0.34

Table 0.22

All descriptions are not created equal
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A well lit room, with 
three glasses on the 
table and two plates.

Model responsesModel responses

Overall -0.85

Three -0.45

Two -0.26

Well -0.25

A meal is on a table 
in a restaurant.

Model responsesModel responses

Overall 0.96

Meal 0.39

Restaurant 0.34

Table 0.22

All descriptions are not created equal
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giving another man a tattoo 

 A man wearing jeans gets a 
new tattoo

The left image isn’t less of “tattoo” 
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20

L2 Normalization
L2 normalization doesn’t help

A man with a black shirt 
giving another man a tattoo 

 A man wearing jeans gets a 
new tattoo

The left image isn’t less of “tattoo” 
Without L2 Normalization, worst case position is bounded
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21

Annotators miss “salient” information

A man on 
an orange 

bike

Might not be able to localize the color of the bike

If we knew “in the air” (etc) could be implied it would 
push the correct picture closer in the learned space

Is “in the woods” more likely for biking? 
Is “in the woods” more likely to be implied? 
(less salient)?
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Different saliency: Red
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The same word can vary in overall notability for an image

A man is getting into 
a red car

A small dog tries to 
catch a red ball

 A woman in red 
shoes walking in the 

street 
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Different saliency: Red

22

The same word can vary in overall notability for an image

A man is getting into 
a red car

A small dog tries to 
catch a red ball

 A woman in red 
shoes walking in the 

street 

Localization alone isn’t all that is needed
(People don’t mention every adjective or color)
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“Scene” words

23

Certain words inherently constrain the image better than others

Man

Table

Sled
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Different context: Sleeping
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Different context: Sleeping
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Is having one representation for a word appropriate?
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Different context: Sleeping

24

A man asleep in a chair 
in front of a full bookshelf

A woman in a red shirt is 
sleeping on a tan couch.

Is having one representation for a word appropriate?
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Non-visual words: “Two”
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Non-visual words: “Two”

25

Two women 
laughing together 

at a table.

Two soccer players 
are going after the 

ball.

A well lit room, with 
three glasses on the 
table and two plates.

“Two” by itself is rather meaningless a priori
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“Repetition” of concepts
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A little boy at a lake 
watching a duck

Model responsesModel responses

Overall 1.21

Lake 0.89

Duck 0.17

Boy 0.13

“Repetition” of concepts

Friday, March 21, 14



26

A little boy at a lake 
watching a duck

Model responsesModel responses

Overall 1.21

Lake 0.89

Duck 0.17

Boy 0.13

A man standing on a 
deck above a lake or 
river

Model responsesModel responses

Overall 1.81

Lake 0.89

River 0.70

Deck 0.17

“Repetition” of concepts
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In Conclusion

27

Image description as an retrieval task 
simplifies cross-model comparison

Important to consider models that will 
scale to increasingly large datasets

In order to make progress, the linguistic 
issues of English need to be considered
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