Data-driven Crowd Analysis in Videos

Mikel Rodriguez Josef Sivic Ivan Laptev Jean-Yves Audibert

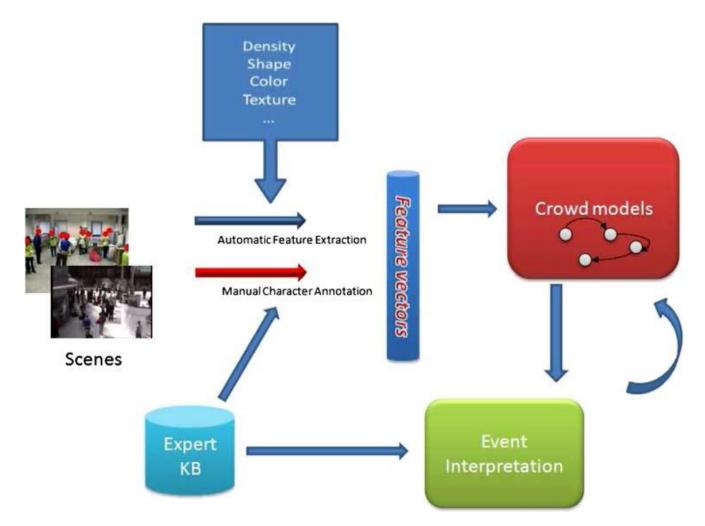
WILLOW project

Crowd Analysis

Production construction de la co

<u>Crowd analysis: a survey</u>, Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L., Machine Vision and Applications, Vol 19, No 5-6, p. 345-357, DOI: 10.1007/s00138-008-0132-4.

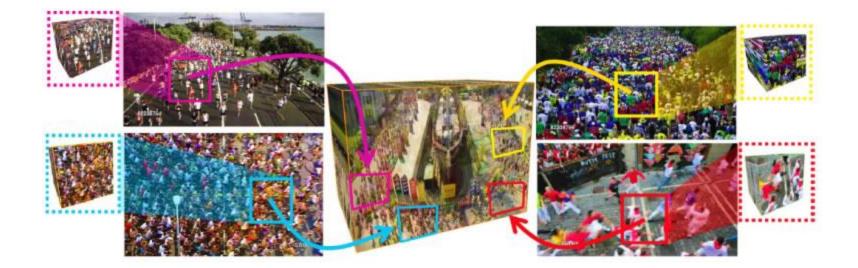
Crowd Analysis

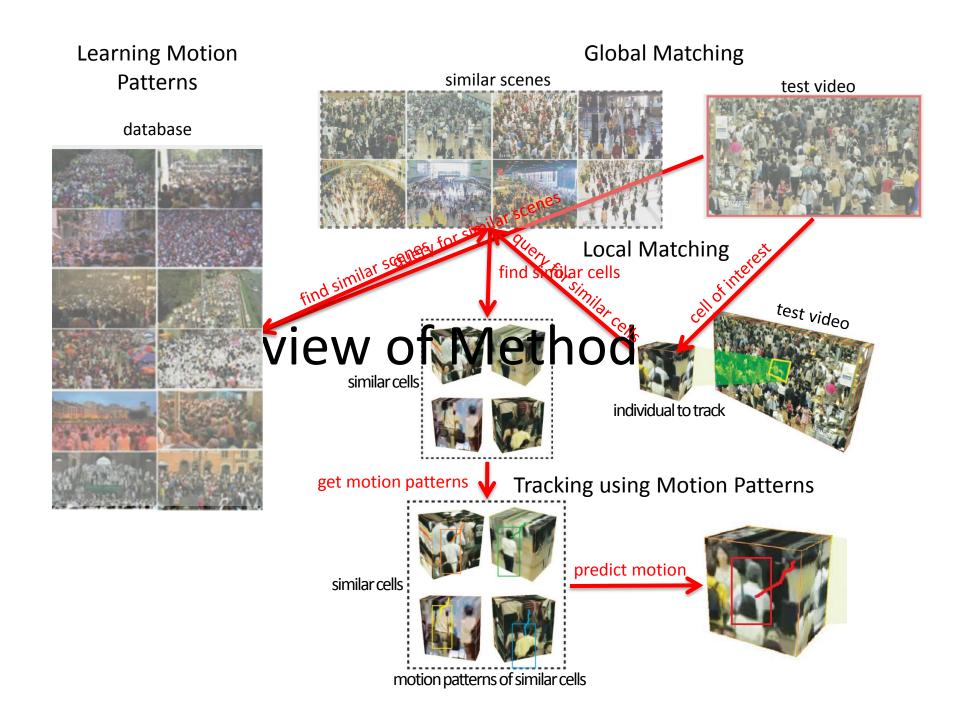


<u>Crowd analysis: a survey</u>, Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L., Machine Vision and Applications, Vol 19, No 5-6, p. 345-357, DOI: 10.1007/s00138-008-0132-4.

Data-driven Crowd Analysis

• Any given video can be thought as being a mixture of previously observed videos.





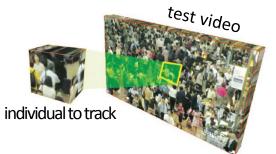
Learning Motion Patterns

database

Global Matching

test video

Local Matching



Tracking using Motion Patterns

similar cells

similar cells

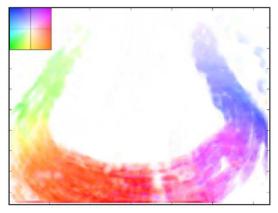
motion patterns of similar cells



Learning Motion Patterns

Low-level Representation: Dense Optical Flow

- For each pixel in each frame, calculate average optical flow.
- Combine the optical flow vectors into a global motion field for a temporal window.
 - temporal window ω = 60 frames
 - spatial window 20 pixel x 20 pixel

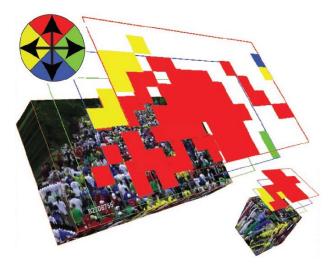


<u>An iterative image registration technique with an application to stereo vision.</u> B. Lucas and T. Kanade. In IJCAI, volume 3, pages 674–679, 1981.

Learning Motion Patterns

Mid-level Representation: Correlated Topic Model

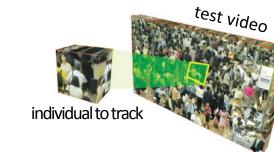
- CTM captures spatial dependencies of different behaviors in the same scene.
- Video(720x480)=> 10 sec clips
 => 36x24 cells(20x20)
- Optical flow is quantized into directions
 => {V₀, V_{up}, V_{down}, V_{left}, V_{right}}
- Motion word dictionary is constructed
- Behavior is (hidden) topic from which motion words are generated.



Learning Motion Patterns

database

Local Matching



Tracking using Motion Patterns

similar cells

similar cells

motion patterns of similar cells

Global Crowded Scene Matching

- Gist scene descriptor is used to retrieve similar scenes from the database.
- Global matching provides semantically similar scenes.

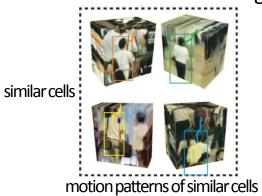
Learning Motion Patterns

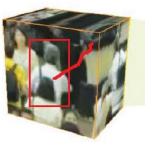
database

Global Matching

test video

Tracking using Motion Patterns





Local Crowd Patch Matching

- HOG3D is used to retrieve similar patches from the selected scenes.
- HOG3D demonstrates good performance in action recognition.

Learning Motion Patterns

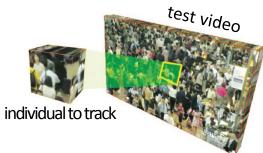
database

Global Matching

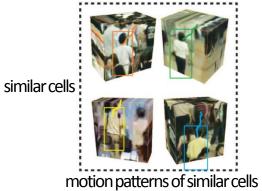
test video

Local Matching

similar cells



Tracking using Motion Patterns



Tracking using Motion Patterns

Prediction by Kalman filter

Tracker position for person at location *O*

Prediction of system

Using:

- Optical Flow(low-level)
- CTM(mid-level)

Learnt from:

- Test video
- Database of videos

 $P_0 = K + \lambda S$

Proposed Tracking Algorithm

- Combines:
 - The linear Kalman Filter on the test video
 - The two-step matching process
 - Gist
 - HOG3D

The CTM of the local parts of the selected video

Experiments

- Data: Downloaded from video web sites using text queries like "crosswalk", "political rally", "festival", "marathon".
- 2 types of experiment:
 - 1. Tracking Typical Crowd Behavior
 - 2. Tracking Rare and Abrupt Events

Experiments

- <u>Test videos</u> are manually annotated to measure the error in pixels.
 - Blue = Typical crowd behavior
 - Red = Rare events

Experiments

- Error = # of pixels between the positions of tracker and individual in each frame
 - Yellow = ground truth
 - Red = tracking results

1st Experiment Tracking typical crowd behavior

No Prio

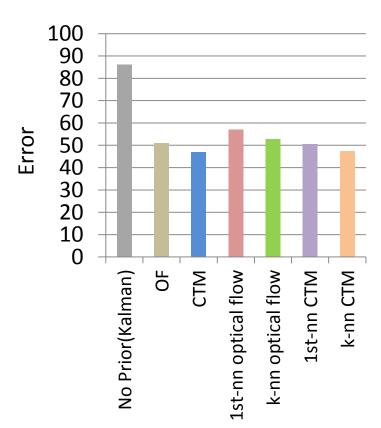
Batch-mode tracking Training and testing video are from the same scene

Proposed data-driven tracking Motion priors are transferred from the database of crowd videos

Results for tracking typical crowd behavior

		Error
No prior		86.24
Learned on test video	OF	50.93
	СТМ	46.93
Learned on database	1 st -nn OF	57.06
	3-nn OF	52.76
	1 st -nn CTM	50.59
	3-nn CTM	47.47

Error is measured in pixels.



2nd Experiment Tracking rare events

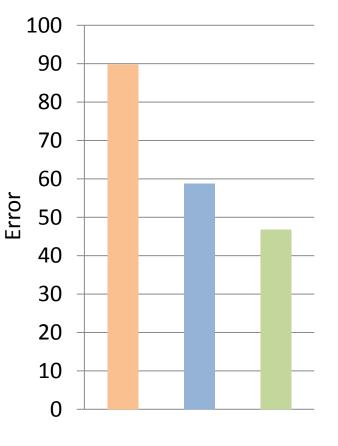
Results for tracking rare events

- Red Ground Truth
- YellowBatch mode
- Green
 Data-driven

Results for tracking rare events

		Error
No prior		89.8
Learned on test video	СТМ	58.82
Learned on database	k-nn CTM	46.88

k=3



Error is measured in pixels.

Resources

• Website:

http://www.di.ens.fr/willow/research/datadri ven/index.html