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Crowd Analysis 

Crowd analysis: a survey, Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L., Machine Vision and 
Applications, Vol 19, No 5-6, p. 345-357, DOI: 10.1007/s00138-008-0132-4. 
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http://www.springerlink.com/content/f503786574543172/
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Data-driven Crowd Analysis 

• Any given video can be thought as being a 
mixture of previously observed videos. 
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Learning Motion Patterns 

• For each pixel in each frame, calculate 
average optical flow. 

 

• Combine the optical flow vectors into a 
global motion field for a temporal 
window. 
– temporal window ω = 60 frames 

– spatial window 20 pixel x 20 pixel 

Low-level Representation: Dense Optical Flow 

An iterative image registration technique with an application to stereo vision. B. Lucas and T. Kanade. In IJCAI, 
volume 3, pages 674–679, 1981. 

http://ijcai.org/Past Proceedings/IJCAI-81-VOL-2/PDF/017.pdf


Learning Motion Patterns 

• CTM captures spatial dependencies of 
different behaviors in the same scene.  

• Video(720x480)=> 10 sec clips  
=> 36x24 cells(20x20) 

• Optical flow is quantized into directions 
=> {V0, Vup, Vdown, Vleft, Vright} 

• Motion word dictionary is constructed 

• Behavior is (hidden) topic from which 
motion words are generated. 

Mid-level Representation: Correlated Topic Model 

A correlated topic model of science. D. Blei and J. Lafferty. AAS, 1(1):17–35, 2007 

http://repository.cmu.edu/cgi/viewcontent.cgi?article=2034&context=compsci
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2034&context=compsci
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Global Crowded Scene Matching 

• Gist scene descriptor is used to retrieve similar 
scenes from the database. 

• Global matching provides semantically similar 
scenes. 

 

Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope, Oliva, A., Torralba, A., 
International Journal of Computer Vision 42(3), 145-175, 2001. 

http://www.cs.cmu.edu/~efros/courses/AP06/Papers/oliva-ijcv-01.pdf
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Local Crowd Patch Matching 

• HOG3D is used to retrieve similar patches from the 
selected scenes. 

• HOG3D demonstrates good performance in action 
recognition.  

A Spatio-Temporal Descriptor Based on 3D-Gradients, Kläser, A., Marszałek, M., Schmid, C., British Machine Vision 
Conference - sep 2008  

http://lear.inrialpes.fr/pubs/2008/KMS08/
http://lear.inrialpes.fr/pubs/2008/KMS08/
http://lear.inrialpes.fr/pubs/2008/KMS08/
http://lear.inrialpes.fr/pubs/2008/KMS08/
http://lear.inrialpes.fr/pubs/2008/KMS08/
http://lear.inrialpes.fr/pubs/2008/KMS08/
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Tracking using Motion Patterns 

Prediction by Kalman filter  

Prediction of system 

Using: 
• Optical Flow(low-level) 
• CTM(mid-level) 

Learnt from: 
• Test video 
• Database of videos Tracker position for 

person at location O 

PO    =   K   +   λ S 



Proposed Tracking Algorithm 

• Combines: 

– The linear Kalman Filter on the test video 

– The two-step matching process 

• Gist 

• HOG3D 

– The CTM of the local parts of the selected video 



Experiments 

• Data: Downloaded from video web sites using 
text queries like “crosswalk”, “political rally”, 
“festival”, “marathon”.  

• 2 types of experiment: 

1. Tracking Typical Crowd Behavior 

2. Tracking Rare and Abrupt Events 



Experiments 

• Test videos are manually annotated to measure 
the error in pixels. 
– Blue = Typical crowd behavior 

– Red = Rare events 



Experiments 

• Error = # of pixels between 
the positions of tracker and 
individual in each frame 

– Yellow = ground truth 

– Red = tracking results 



1st Experiment 
Tracking typical crowd behavior 









Results for tracking typical crowd 
behavior 

Error 

No prior 86.24 

Learned on 
test video 

OF 50.93 

CTM 46.93 

Learned on 
database 

1st-nn OF 57.06 

3-nn OF 52.76 

1st-nn CTM 50.59 

3-nn CTM 47.47 
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2nd Experiment 
Tracking rare events 









Results for tracking rare events 

 Red 
Ground Truth 

 Yellow  
Batch mode 

 Green 
Data-driven 



Results for tracking rare events 

Error is measured in pixels. 

Error 

No prior 89.8 

Learned on test 
video 

CTM 58.82 

Learned on 
database 

k-nn CTM 46.88 
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Resources 

• Website: 
http://www.di.ens.fr/willow/research/datadri
ven/index.html 

 

http://www.di.ens.fr/willow/research/datadriven/index.html
http://www.di.ens.fr/willow/research/datadriven/index.html
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