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Abstract. Recognizing group activities from still images is a challenging
problem since images lack motion and temporal information that makes
it easier to differentiate foreground from background. Nevertheless, im-
ages present rich spatial content that can be effectively leveraged for
better feature representation and recognition. In this paper, we propose
a two-stream convolutional neural network approach for group activity
recognition. Our proposed approach is based on using person segment
mask images to guide feature learning process. Our method is capable of
inferring group relations without the need of bottom-up approaches and
low-level annotations. To this end, we utilize three ways of fusing RGB
and person segment mask feature maps. Experimental results demon-
strate that person mask guidance provides a complementary learning
process by outperforming previous methods with a large margin.

Keywords: Group Activity Recognition - Multi-stream Fusion - Person
Segments.

1 Introduction

Group activity recognition is a challenging task in various ways. It shares similar
challenges with human activity recognition problem such as occlusions, back-
ground clutter and change of appearance over time. However, recognizing group
activities needs a more refined semantic understanding of the group scene, inter-
relations between members and their possible appearance features like view
points. Although group activity recognition in videos is a considerably active
topic of interest for computer vision community, group activity recognition in
images is seldomly studied. It should be noted that recent successful methods
[11], [10], [15] for group activity recognition in videos need complex hierarchi-
cal designs to explore semantic understanding of interactions with a bottom-up
approach. Although bottom-up approaches are effective to make use of such con-
textual information; they require intense annotation work and complex design of
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Fig. 1. The main framework of the proposed method.

low level components. This is partly because there is an exponential possibility
of interactions between individuals and group activities show high variance in
appearance.

In this paper, we tackle with the problem of recognition of group activities
in images and we demonstrate an effective and simple method to deal with the
aforementioned challenges. Our method improves spatial feature learning that
possibly includes rich interaction and orientation features fiercely needed for
group activity recognition. We intend to use the guidance of binary pose mask
stream onto RGB stream to achieve a better representation of group activities
in still images. Group activities can be inferred as a product of the interaction
between individuals, their orientation and appearance information. Therefore,
we explore ways of utilizing mask information to lead feature representation
process by localizing some potentially significant parts of the image. Namely, our
goal is to emphasize rich potentials of the image more than the remaining parts
to capture valuable information for representing interactions and appearances
within a group.

A simple illustration summarizing the proposed method is given in Figure 1.
In our framework, for each input RGB image, a binary pose mask pair is gen-
erated using DeepLab[3] semantic image segmentation algorithm. Then, both
RGB image and the binary pose mask are fed to separate CNN streams for fea-
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ture extraction. Both RGB and Mask stream have identical CNN architectures.
At intermediate steps, extracted feature maps from intermediate layers of Mask
stream are fused into corresponding RGB stream to guide final feature map rep-
resentation. We utilize three ways of fusing RGB and binary pose segment mask
feature maps. Finally, fully connected layers at the end of the fused network is
followed by the classification layer to compute group activity class scores.

The main contribution of this paper is three-fold. Firstly, we present a frame-
work in which binary pose masks can guide feature learning from RGB images
so that rich interaction between individuals and spatial appearance information
can be extracted. Secondly, we evaluate different ways of fusing binary pose mask
and RGB features in a convolutional network. Finally, we use SGD dataset [4]
comprehensively to test our hypothesis against previous work and baselines.

2 Related Work

Group activity recognition research can be classified according to the type of
source data. Research based on both video and image have been utilized in liter-
ature resulting in two distinctive approaches to this task. Although this paper fo-
cuses on activity recognition from still images, it is worth to mention video-based
works in order to underline the similar motives behind both approaches. [8] is a
GAN-based method in which generator can learn action codes from person level
and group level features in a fusion scheme, while discriminator performs group
activity recognition by validating the action codes as real or fake. In video-based
research, RNNs are general preference to temporally reason over video frames.
Authors in [2], propose a framework that is composed of fully-convolutional net-
works to extract a fixed-size representation and RNN to reason temporally for
sequence of frames. In [11] and [10], LSTMs are utilized to capture temporal
relations of the video and to represent and aggregate action dynamics. Another
work using LSTMs is [15] in which authors designs a hierarchical LSTM network
to model individual actions and interaction representations to reason on group
activity. In [6], authors combine graphical models with RNN layers to leverage
both rich spatial information and individual interactions. Inference algorithm
reasons over individual estimates within a graphical model consisting of RNN
nodes.

Group activity recognition using still images as the source of data has been
limited by the availability of related datasets. One example is the work of Choi et.
al [4], in which pose classifier, interaction classifier and group context classifier
are learned using manually annotated RGB images. This bottom-up, hierarchi-
cal method makes a strong baseline for comparison. While this method uses
rich low-level ground truth annotations including group, pose, orientation and
interaction information during learning and detection (ground truth or poselet
detector) information during test, we only use group information during the
learning process.

Lack of crucial information in still images like temporal and motion compo-
nents has been a natural force to find peculiar approaches for exploiting the most
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out of the spatial data. In [13], authors propose a method to compensate lack
of temporal information. A Segnet based encoder-decoder framework is trained
with segments of videos to learn temporal images hypothetically representing a
sequence of frames. Then, these temporal representations are used to reason over
still images for action recognition. Distinctively, [14] proposes a method to com-
pensate for motion information missing in images. Unfortunately, both methods
require manually annotated frames extracted from videos to recognize actions

in images. Our method only relies on images during training without requiring
extensive annotation burden.

Fig. 2. A pair of RGB and mask inputs.

3 Proposed Method

3.1 Problem Definition

Given a set of images Iy, the task of group activity recognition is defined as
prediction of group activity classes for each image I;. Let (I;,Y;) denotes the
training set of RGB images and corresponding group activity class labels where
Y; takes labels from finite set, L = {1,2,...C} for C classes. Then, we first
obtain binary mask poses M; for every image and form (I7*Wx3 ppHxWx1
input pairs. The final form of dataset can be denoted as {(Iz,Ml,Y) | I, €
RIXWX3 ¢ REXWXLy, ¢ £1.2,...0} for i = 1,...N} where H and W
denotes the resolution of the input. A pair of RGB and mask images is given in
Figure 2.

3.2 Approach

We propose a CNN-based two-stream framework to fuse RGB and binary pose
masks as shown in Figure 3. Streams of the network are fed with RGB images
and its corresponding pose masks are extracted by a recently developed semantic
image segmentation algorithm [3]. We use this segmentation tool for person class
without any fine-tuning.
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Fig. 3. Binary pose mask and RGB two-stream Convolutional Neural Network fusion
architecture.

Our work is inspired by the encoder-decoder architecture proposed in [9]
that uses depth images for semantic segmentation. Since we focus on classifica-
tion task, our network streams consist of encoder architectures only. RGB and
Mask streams include identical network architectures consisting of five sequen-
tial blocks of convolution, batch normalization and ReLU layers. Output of the
encoder part is a combined feature map from two streams fused by one of the
three fusion strategies. This is a high-level representation of a given image learnt
from both RGB and binary pose masks. Finally, the combined feature map is
fed to fully connected layers and a classification part to compute class scores.

The network extracts feature maps in the guidance of masks through fusion
operation. Then, classification scores for input image I is computed as f.(I, W)
for each class ¢ where W refers to parameter set of the network and C' is number
of classes. In order to transform scores to a class probability distribution, Softmaz
function is used:

exp(fo(I; W))
SO exp(fi(I; W)

ple |z, W) = (1)

To learn network parameters, we follow the optimization process used in [9]
and [1], and use cross-entropy loss that is very useful for multi-class classification
problems. Cross-entropy loss measures the Kullback-Leibler(KL) divergence be-
tween an input probability distribution and a target distribution. Since number
of samples per each class show an unbalanced nature, median frequency balanc-
ing [7] is applied. This method balances classes of large sample numbers with
smaller weights to compensate the unbalance of class size during training.
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3.3 Network Architecture

We use a VGG-16 based network with 13 convolutional and 3 fully connected
layers as shown in Figure 3. RGB and Mask streams are identical in terms
of layer structure. We have 5 sequential blocks stacking convolutional, batch
normalization and rectified linear unit layers (RELU). First two blocks have 2 x
(64,128) weight layers respectively. Remaining 3 blocks have 3 x (256,512,512)
weight layers. We keep the original pooling layers from VGG-16 network at the
end of each block. At the end of the network, 3 fully connected layers reside
as in the original VGG-16 model. We think VGG-16 is a sufficient and well-
purposed architecture for exploring fusion methods; nevertheless, more complex
architectures can also be explored.

3.4 Fusion Methods

We fuse features from both streams to explore the effect of guidance. Here, we
follow the approach from [9], in which fusion of maps is performed by addition
operation. There could be multiple ways to fuse feature maps from two-stream
networks. In fact, fusion by element-wise addition operation is simply shown to
have a stronger signal than single channel activations [9].

We utilize two of proposed fusion methods in [9], sparse fusion (SF) and dense
fusion (DF) and we explore one additional fusion strategy called late fusion (LF).
In sparse fusion, fusion is applied at the end of each (Conv.+Batch N.4+ReLU)
block. In Fig.4-a, sparse fusion is shown for second and third (Conv.+Batch
N.+ReLU) blocks. Feature map after second Convolution-BatchNorm-ReLU layer
from Mask stream, referred as MASK2-2 is added to the corresponding fea-
ture map from RGB stream and fed to pooling layer of second (Conv.4Batch
N.4+ReLU) block. Therefore, there are five fusion connections for five (Conv.+Batch
N.+ReLU) blocks in SF experiment. Dense fusion is a more dense one in which
features are fused after each layer in every block. As can be seen in Fig.4-b,
number of dense fusion connections are two for second (Conv.+Batch N.4+ReLU)
block. In other words, there will be 13 fusion connections in total for DF exper-
iment as number of layers in each block are (2,2,3,3,3) for all five blocks. In late
fusion (LF), we only fuse features for once at the end of fifth block, before FC
layers. Illustration of these fusion types are given in Fig.4.

4 Experiments

In this section, we present our results of the proposed approach for group activity
recognition in still images.

4.1 Dataset

We use the Structured Group Dataset [4] that contains 600 images of groups
of individuals generally encountered in daily life, such as at bus stop, cafete-
ria, classroom, conference, library and park. The dataset is rich in annotation-
wise; group annotations, individual bounding boxes, 8 different viewpoints and
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Fig. 4. Fusion methods for RGB and Mask streams of convolutional neural networks.
a. Sparse Fusion at 2nd and 3rd (Conv.+Batch N.4+ReLU) block b. Dense Fusion at
2nd (Conv.+Batch N.4+ReLU) block c. Late Fusion at 5th (Conv.+Batch N.4+ReLU)
block are shown.

individual poses (standing, sitting on an object, sitting on the floor) are pro-
vided for each image. There are 7 labeled group activities: queuing (Q), standing
facing-each-other (SF), sitting on an object facing-each-other (OF), sitting on
the ground facing-each-other (GF), standing side-by-side (SS), sitting on object
side-by-side (OS) and sitting on the ground side-by-side (GS). Since there can
be multiple groups in a single image, 600 images contain 1743 group bounding
boxes in total. We exclude 19 erroneous ones that have no person or only one
person with no collective activity. This results in 1724 group images. It is also
stated in [4] that similar amount of group images are removed as being outliers
but no information on these images was disclosed in detail.

We split 1724 images into 80%-20% train-test split. Training set is augmented
by flipping all 1379 images horizontally, resulting in 2758 images in total. Test
split contains 345 images. The original work [4] also performed augmentation by
flipping operation on the whole dataset, of which we only did for training part.
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4.2 Training

We train all models with a batch size of 8 for 250 epochs (86250 iterations in
total) with random shuffling at each epoch. All models are trained end-to-end
with stochastic gradient descent (SGD). Learning rates were initially assigned
between [0.0003, 0.0005] and decayed 10% at every 20 epochs. All networks are
initialized with the standard VGG-16 model [16] pretrained using ImageNet [12].

Pose masks were generated using a DeepLabV 3 [3] pretrained on Inception [5]
using MS-COCO and VOC2012. Next, we transform all mask images into binary
masks by filtering out every detected segments except for human segments. Mask
images were resized to the resolution of 240x320 and paired with RGB images.

4.3 Baselines

The closest previous work that we can compare our method is [4], where authors
apply a bottom-up solution to recognize group activities by learning individual
poses, interactions and group context classifiers. Throughout their learning pro-
cess, they make use of ground truth information including individual poses, indi-
vidual bounding boxes, view points and group annotations. Unlike their method,
our method uses only group annotations.

Our interest is to find out whether pose masks provide strong signals in
emphasizing group interaction inference by masking out irrelevant surrounding
context. Therefore, we also train baselines using only RGB-stream or mask-
stream to evaluate the effect of the fusion.

Table 1. Accuracy comparison with previous work for group activity recognition on
Structured Group Dataset [4].

Method Accuracy
Choi[4] (Poselet Det.) 52.7
Choi[4] (Ground Truth Det.)  64.9
VGG-16 (RGB-only) 60.3
VGG-16 (Mask-only) 64.6
Dense Fusion 64.6
Late Fusion 65.8
Sparse Fusion 70.4

4.4 Results

We report experimental results for group activity recognition in Table 1 and
in Table 2. Table 1 shows the overall accuracies of the baselines and related



Mask Guided Fusion For Group Activity Recognition In Images 9

Table 2. Class-wise average precision, recall and F1 scores over the Structured Group
Dataset.

Method P/R| Q | SF |OF | GF | SS | OS | GS || Avg
Prec |41.86]55.78|62.48|60.19|39.08|53.85[37.65|| 50.13
Choi[4] (Ground Truth Det.) Recall|27.48|64.55(65.56|65.00|21.33|40.86|26.52|| 44.47
F1 [33.18]59.85|63.98]62.50|27.60|46.46|31.12|| 47.13

Our method (SF) Recall|38.89|66.23|87.50|71.42|58.53|72.06|58.62||64.75

Prec [58.33(68.92|72.91|83.33|45.28|73.13|89.47||70.19
F1 |46.67|67.55|79.54|76.92|51.06|72.59|70.83||66.45

work, whereas Table 2 shows the classwise average precision, recall and F1 score
comparisons between [4]’s best model and our best model.

As can be seen in Table 1, RGB-only model has the lowest accuracy amongst
all of our models, whereas it still produces more accurate results than [4]’s model
that operates on poselet detections. When using ground truth person detections,
[4] method outperforms RGB-only CNN. Mask-only model is nearly on par with
[4]-GT model; and this shows that person mask images can be a rich source for
group activity recognition. It can be stated that dense fusion do not add much
to learning more representative feature maps; probably due to the saturation in
addition of similar inputs. This result also confirms findings in [9] where similar
level of saturation observed for dense connections.

Late fusion of the RGB and pose mask streams seems to slightly increase
the recognition performance; indicating that these two streams indeed carry
complementary information, and pose masks extracted this way can be used as
a guidance for focusing on the foreground and inferring collective group activity.

It is remarkable that sparse fusion of mask stream is able to improve group
activity recognition accuracy with high margin. This result is interesting in two
ways. Firstly, mask-guided fusion can lead network to learn high-level represen-
tative features within an end-to-end framework. This can help improvement of
learning process for similar vision tasks even when a large-scale annotated data
is not available. Secondly, the result implies that an optimum fusion method as
in the case of sparse fusion is implicitly possible and can be searched in a finite
architecture search space.

5 Conclusion

We have proposed a CNN-based two-stream fusion network to develop rich high-
level representations of group activities. Our method does not require any low
level annotations except for group activity label. In contrast to related work on
the subject, our method directly infers interactions using binary person pose
mask guidance. Experimental results show that mask guidance is complemen-
tary to learning feature maps from RGB stream, yielding superior recognition
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performance over bottom-up, annotation-heavy approaches for group activity
recognition in images. Mask-based fusion can be applied to other tasks that
need interaction inference for a better scene understanding.
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