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Collective activity recognition, which analyses the behavior of groups of people in videos, is an important
goal of video surveillance systems. In this paper, we focus on collective activity recognition problem and
propose a new multi-stream convolutional neural network architecture that utilizes information
extracted from multiple regions. The proposed method is the first work that uses a multi-stream network
and multiple regions in this problem. Various strategies to fuse multiple spatial and temporal streams are
explored. We evaluate the proposed method on two benchmark datasets, the Collective Activity Dataset
and the Volleyball Dataset. Our experimental results show that the proposed method improves collective
activity recognition performance when compared to the state-of-the-art approaches.
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1. Introduction

In the last decade, the field of computer vision has witnessed a
dramatic increase in research regarding human actions and activi-
ties. This increase is mostly due to the proliferation of cameras in
our everyday lives and the increase in the number of collected
images and video data. Understanding what people are doing is
critical for surveillance applications, where automatic labeling of
day-long videos is necessary.

Sub-topics of human action recognition are becoming progres-
sively active. However, most of the research in this area is directed
toward action recognition and detection of individual humans. The
aim of such research is to recognize and/or localize the action of
individual persons in isolation. There are many situations where
the actions of the individuals are not in an isolated setting. In these
situations, the actions of individuals are interconnected, resulting
in interactions between each other and/or collective activities. In
this context, while human interactions can be categorized as pair-
wise interactions between human-human, human-object and
human-scene, collective activities are identified as group activities,
involving more than two people and that have a complex structure.
Gathering, walking together, queuing of multiple people can be
given as examples of collective human activities.
Due to its nature, collective activity recognition has a more
complex underlying structure than individual action recognition.
In addition to singleton actions, person-person interaction and
group-person interactions are also very important in collective
activity recognition. These interactions solve the ambiguity pre-
sent in the representation of a collective activity. For example, con-
sider a person standing still in a frame, as shown in Fig. 1. If we
only consider the person, disregarding the environment, the activ-
ity of this person is just standing. However, he/she might as well be
talking with other people or waiting in a queue, as it is shown in
Fig. 1. In order to understand the collective activity, all the persons
and the scene information must be considered together to get the
idea of the ongoing collective activity. For this reason, detecting
and encoding the interactions are very important for collective
activity recognition. Furthermore, there may be cases where not
every person in the frame is engaged in the collective activity. They
may barely be standing, i.e. not doing anything, or do some other
activities. These cases introduce noise to the domain and signifi-
cantly increase the difficulty of the problem to a great extent.
The task is to recognize the collective activity in the presence of
such distractors. By using the person region that has the maximum
score of a group activity, we include additional information that is
based on person regions to the recognition process, besides the
existing shape and motion information extracted globally from
the whole frame. As the experimental results demonstrate, this
local information gives further cues about the collective activities.

In recent years, the interest in collective activity recognition has
significantly risen. This problem has been the focus of research [1–
4]. These works consider the collective activity recognition prob-
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Fig. 1. Illustrating the collective activity recognition problem. While the actions of
the individuals can be largely similar, interaction and relation context between
individuals makes the collective activities distinctive.
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lem by modeling individual person and their relations by using a
Long Short Term Memory (LSTM) framework. In contrast, we
approach the problem by adopting the successful two-stream con-
volutional neural network framework that had been originally pro-
posed for action recognition [5], and extending this framework to
handle the intrinsic properties inherent to the collective activity
recognition problem. Specifically, we propose to use region-based
streams in conjunction with the regular RGB and optical flow con-
volutional neural network(CNN) streams so that the collective
structures of activities are more promptly captured.

Our main contributions in this paper are as follows: First, we
present a new multi-stream architecture based on person-regions
for collective activity recognition. In addition to using the overall
image information, our framework analyzes multiple local regions
while deciding collective activities. Our study is the first work that
uses a multi-stream network and multiple regions in collective
activity recognition. Then, we analyze various ways of fusing mul-
tiple spatial and temporal streams so that the accuracy of recogni-
tion can be improved. Our experimental evaluation on two
benchmark datasets demonstrates that our method yields better
results compared to the state-of-the-art approaches on collective
activity recognition.

The rest of the paper is organized as follows: In Section 2, we
first give a brief overview of the related work on human collective
activity recognition. Then in Section 3, we introduce the proposed
region-based multi-stream CNN approach. Experimental results on
two benchmark datasets are presented in Section 4. Finally, in Sec-
tion 5 we present the conclusions together with possible future
research directions.
2. Related work

While there are hundreds of recent works in computer vision
literature that try to address the problem of human action recogni-
tion (for a recent review on human action recognition, the reader is
referred to [6]). The collective activity recognition problem is a rel-
atively newer topic that has been rarely addressed. We should also
note that crowd analysis [7], group detection[8] and group activity
recognition[9] topics are closely related to the collective activity
recognition problem, but due to the variations in problem domains,
they are handled separately.

The main approaches to the collective activity recognition prob-
lem can be categorized into two main groups. The first approach
uses hand-crafted features together with learning frameworks
such as graphical models, while the second approach uses the
recently introduced powerful deep learning techniques. Our frame-
work follows the second category, where multi-stream CNNs are
used. We now review the main works from the above-mentioned
approaches.

2.1. Hand-crafted approaches

One of the earliest works in the field of collective activity recog-
nition was presented by Choi et al. [10], where ‘‘crowd context” is
defined by means of a spatio-temporal descriptor which uses only
people’s poses and their velocity to extract visual cues about the
activities that are performed by individuals in a crowd. Following
this work, Lan et al. [11] proposed ”action context” which models
hierarchical relations from person-level information to group-
level interactions using an adaptive latent structure learning
algorithm.

In addition to spatio-temporal features, tracking people pro-
vides contextual information about the people in a crowd
[12,13]. Khamis et al. [13] proposed a unified model which combi-
nes frame and track cues for activity recognition. Subsequent
works of Choi and Savarese [12,14] merge multiple target tracking
and collective activity recognition problems together and propose
to use a bottom-up approach. This approach transfers the informa-
tion about the activity from the estimation of the trajectory of peo-
ple. First, they obtained the persons pose and atomic actions from
the semantic attributes of tracklets then determine the interac-
tions, which are the pairwise relationships between individuals.
Each interaction in this method is described by pairs of atomic
activities. Finally, they illustrated the collective activity by using
collections of interactions.

More recent works attempt to model the relation between the
spatio-temporal pattern of persons and their interactions. Antic
and Ommer [15] use small semi-local parts extracted from person
regions and group related parts based on visual and functional sim-
ilarities. Max-margin multiple instance learning is then used to
classify activities. Tran et al. [16] introduced a top-down approach
and represented all detected people in an undirected-weighted
graph where each edge describes a social interaction between
two people. Similarly, [17] proposed a hierarchical random field
(HiRF) to model temporal and frame-wise relations of a video.

Amer et al. [18] detected and localized a wide range of activities
by using a three-layer AND-OR Graph model. The AND-OR Graph is
a hierarchical model that is recursively defined for effective visual
knowledge representation. In this model, the authors use top-
down and bottom-up processes together while deciding primitive
actions and group activities. In their following work, Amer et al.
[19] proposed a spatiotemporal AND-OR Graph. This AND-OR
Graph model required a multitude of detectors (object and activ-
ity) at different levels. The requirements to apply such approaches
are extremely expensive for the problem of collective activity
recognition.

Group detection is a problem that is similar to collective activity
recognition. Solera et al. [8] built a structural SVM-based frame-
work for the task of group detection. In their proposed model,
social features like proxemics and causality were utilized in a
supervised hierarchical bottom-up correlation clustering.

2.2. Deep approaches

With the recent development of deep learning architectures,
computer vision literature has witnessed significant improvements
in a variety of computer vision tasks including image classification
[20], human action recognition [5,21–23], and video classification
[24,25] to name a few. For action recognition and video classifica-
tion, early works [5,21] use only the power of Convolutional Neural
Networks (CNNs). Some recent studies combine CNNs with recur-
rent neural network (RNN) models [26]. Another line of approaches
uses two-stream convolutional neural networks [5,27,28] by
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taking into account the optical flow information together with raw
RGB information. Some works [29–31] utilize region information
together with two stream approaches, however, these studies use
only local information while recognizing the actions.

Various deep learning approaches have been proposed for col-
lective activity recognition [1–4,32,33]. Deng et al. [1] proposed a
combination of hierarchical graphical models, where a multi-step
message passing approach was used between neural network lay-
ers. Following this approach, Deng et al. [32] develop a general
framework by integrating graphical models and deep networks
with a structure learning. In their study, RNN architecture was
used for sequential inference. Hajimirsadeghi et al. [33] introduced
Multiple Instance Learning (MIL) approach to recognize activities
by embedding cardinality models into a structured kernel, called
Cardinality Kernel.

In a recent study, Ibrahim et al. [2] propose a hierarchical model
that employed multiple LSTM RNNs. In their framework, the first
LSTM is used to recognize individual actions, whereas the other
was used to analyze temporal dynamics of the group activities.
Shu et al. [3] extended the existing two-stage hierarchical LSTM
model of [2] by using an energy layer instead of a common softmax
layer. Li and Chuah [4] proposed a semantics-based method that
generated a caption for each of the video frames and then recog-
nized the collective activities based on these semantic captions
for each video with the two-stage LSTM model. Bagautdinov
et al. [34] introduce a unified framework for understanding multi-
person social behaviors. Their architecture jointly detects multiple
people, infers their social actions, and predicts the collective activ-
ities with a single pass through a neural network.

The aforementioned techniques, especially those that are based
on deep learning methods, achieve good recognition performance
in collective activity recognition. Nevertheless, all studies use the
video frames as a whole, while deep learning approaches have
focused on the temporal relations of people. In our work, we ana-
lyze multiple regions of the images in various ways to capture the
spatial relations between people in the group, together with vari-
ous fusion strategies to merge information coming from multiple
channels. Our results demonstrate that this region-based strategy
is an effective solution for the collective activity recognition
problem.
3. Our approach

In the collective activity recognition problem, multiple people
are involved in an activity. Unlike the large body of work that
focuses on the activities of a single person, the multiple people
regions and their activities should be taken into account. Therefore,
apart from analyzing the whole image, we must also consider mul-
tiple subregions. We do this by defining multiple CNN streams
based on regions.

We propose a multi-stream CNN architecture that uses individ-
ual frame RGB and optical flow information together with regional
features. This proposed architecture extends the two-stream archi-
tecture proposed in [5], such that multiple region information is
utilized in an additional stream. In this section, we first review
the basic two-stream model of Simonyan and Zisserman [5], and
then present our extensions over this model.

In [5], Simonyan and Zisserman propose a two-stream CNN
architecture for the purpose of individual action recognition. This
architecture utilizes two individual CNNs, namely the spatial and
the temporal streams. Basically, the spatial stream operates on
RGB input and is intended to carry shape information about the
scene. The temporal stream operates over the optical flow input
between consecutive frames and carries the motion information.
The inputs are passed through standard convolutional, pooling
and fully connected layers. Their original network architecture
contains 8 layers, 5 of which are convolutional, and the last 3 are
fully-connected. The spatial and temporal streams have exactly
same layer configurations. In this method, the softmax loss is used
as the loss function.

Adapting this idea of using more than one stream of convolu-
tional neural network(CNN) to the problem of collective activity
recognition, our proposed architecture has four independent CNN
streams, which are referred to as spatialCNN for spatial stream,
motionCNN for optical flow stream extracted from the whole frame,
spatialRCNN (sRCNN) for RGB information extracted from regions
of interest and finallymotionRCNN (tRCNN) for representing optical
flow information extracted from RoIs. The overall proposed
method is shown in Fig. 2. The two streams, i.e. spatial (top) and
temporal (bottom) streams are identical to the two-stream archi-
tecture [5], with the exception that we adopt a deeper network
architecture, VGG_16 [35]. VGG_16 has 13 convolutional layers,
as compared to the 5 convolutional layers of [5]. The spatial stream
is intended to extract information from the general scene and
holistic shape information, whereas the temporal stream operating
over the whole frame extracts information about the motion flow
of the whole scene. Our intuition is that paying a closer attention
to person regions will be beneficial for collective activity recogni-
tion. In this way, our aim is to capture more fine-grained shape
and temporal information from the person regions. To this end,
we extend the two-stream architecture with two additional
streams that operate over person detection regions. Below, we
describe each of these additional streams in detail.
3.1. Spatial Region Stream – sRCNN

Spatial Region Stream CNN (sRCNN for short) is a spatial CNN
stream that takes individual RGB video frames as input. Different
from the spatial stream of [5], it operates over individual person
regions, as opposed to whole frames.

Specifically, the initial layers of sRCNN are convolutional layers,
same as the original CNN architecture that has been proposed for
image classification in [35]. Unlike their standard spatial stream
that uses max-pooling after the last convolutional layer, we use a
Region-Of-Interest (RoI) pooling layer [36]. For RoIs, we use person
detection bounding boxes that are acquired by running the person
detector of [36]. Then, the RoI pooling layer extracts a fixed-length
feature vector using the output of the convolutional layers on each
RoI. Each fixed-length feature vector is then fed into a sequence of
fully-connected layers. A softmax layer estimates the classification
score for each region. After class scores are computed for each per-
son region, max-operation is applied to select the region with the
maximum score.

The RoI Pooling Layer [36] is a type of pooling layer which per-
forms max pooling on feature maps of non-uniform sizes and pro-
duces a smaller feature map with a fixed spatial extent of width
and height, where height H and width W are predefined network
hyper-parameters (H ¼ W ¼ 7 for VGG architecture). The RoI is a
rectangular window within a convolutional feature map. It can
be defined either as ðl; c;h;wÞ, where ðl; cÞ is the top-left corner
and ðh;wÞ are height and weight. The RoI can also be defined as
ðXmin;Ymin;Xmax;YmaxÞ which represent the X and Y coordinates of
the top-left and bottom-right corners respectively. The ROI pooling
layer divides the h�w ROIs as H � W sub-windows, after this
operation max-pool each sub-window to get H � W map to repre-
sent the ROIs. In our study, the RoI pooling layer inputs are the con-
volutional feature map which is produced as the output of the last
convolutional layer (Conv5_3) and the bounding box locations of
all person detections. The output of this layer is a fixed-size feature



Fig. 2. Our multi region-based multi-stream architecture. Our proposed method has four CNN streams which are from top to the bottom Spatial CNN, Spatial Region CNN,
Temporal Region CNN and Temporal CNN.

Fig. 3. Person detection region information is fed to the RoI pooling layer together
with the CNN features.
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map for each bounding box. The process of RoI pooling layer is
shown in Fig. 3. The operation is as follows in Eq. (1)

yðr;jÞ ¼ xi�ðr;jÞ ð1Þ

in which i�ðr; jÞ ¼ argmaxi� �Rðr;jÞxi� where xi is the i-th activation map
into the RoI pooling layer and yðr;jÞ is the j-th output of the r-th RoI.
Rðr; jÞ is a set of inputs in the subwindow of the yðr;jÞ max pools. The
RoI pooling layer uses an adaptive max pooling strategy to obtain a
fixed sized representation for a variable sized region.

Following [36], we use the function in Eq. (3) to back-propagate
through RoI pooling layer. This function computes the partial
derivatives of the loss function L given in Eq. (2), which is a stan-
dard softmax loss function where oj is the output class score of
the each region.

L ¼ �
X
j

yj log
eojX
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¼
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j
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ð3Þ

For each pooling output unit of the pooling layer (yðr;jÞ), the gradi-
ents are computed and passed to the feature map with the selected
activation map which has the maximum score during the forward
pass. After the pooling operation, each fixed sized feature map
passes through the fully connected (FC) layers and is then classified
into one of the classes, as in Fast RCNN [36]. The difference is that
while predicting the class label of the video, we use image regions
extracted from consecutive frames in the video.

The usage of multiple regions in this manner is similar to the
Multiple instance learning (MIL) paradigm [37] that is used fre-
quently in computer vision. MIL provides a framework for training
models when full supervision is not available during training. In
our study, we choose the bounding box label with the highest score
to decide the frame label. This decision making is quite similar to
MIL in the sense that we do not have annotations for the bounding
boxes, yet, we can leverage regional information by selecting from
a bag of regions.
3.2. Temporal Region Stream – tRCNN

In the temporal region stream, the network takes stacked opti-
cal flows as input instead of the RGB frames. Dense optical flows,
which can be seen as a set of displacement vector fields between
consecutive frames, are computed by using the method of Brox
et al. [38]. The horizontal and vertical components of the displace-
ment vector fields are stored as two optical flow images for a given
pair of consecutive frames. Then these components are stacked
together for a length of L consecutive frames. The network archi-
tecture and training processes are almost identical to the sRCNN,
except the input type and the number of channels of the input
image. While for the spatial stream the input is I�Rw�h�3, for the
temporal stream, it is I�Rw�h�2L. where L is the number of consec-
utive frames. Similar to sRCNN spatial stream, we replace the last
pooling layer with the RoI pooling layer and operate over the per-
son detection regions of the optical flow images. The rest of the
training process is the same as the sRCNN stream.



Fig. 4. Different fusion strategies. (a) Early Fusion done after the last pooling layer,
(b) Late Fusion is done after the softMax layer.

Fig. 5. Hybrid fusion (HF) is a combination of early and late fusion strategies. In the
early fusion (EF) phase of HF, streams are fused after the last pooling layer. Besides
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3.3. Fusion strategies

In this section we consider different kinds of fusion strategies
for combining the information coming from multiple streams that
are identified above. Specifically, we consider spatial and temporal
fusion methods. All streams, including region-based streams, are
fused with these fusion methods. We have used similar spatial
(sum, max, concatenation) and temporal fusion strategies with
[28]. Actually, the spatial fusion methods are used in many studies
in the same way. The main difference from [28] is our hybrid fusion
method which has been shown to yield effective results in the
experiments. Below, we give the details of these fusion strategies.

3.3.1. Spatial fusion
Our intention is to fuse the spatial network and motion context

information at the level of the spatial location so that the channel
responses at a given pixel position corresponding to each other. For
all streams including region based streams, every feature map that
is produced by each layer have exact spatial location correlation
with other networks due to the networks having the same
structure.

A fusion function f : xsn; x
t
n ! ynfuses two feature maps

xsn �R
H�W�Dand xtn �R

H0�W 0�D0
, spatial and temporal feature maps

respectively, at time n, to produce an output map yn �R
H00 �W 00 �D00

where H ! height, W ! width, and D ! the number of channels.
For simplicity, we assume that H ¼ H0 ¼ H00;W ¼ W 0 ¼ W 00;
D ¼ D0. We now discuss different fusion functions:

Sum Fusion: Sum fusion ysum ¼ f sumðxs; xtÞ computes the sum of
two feature maps at the same pixel location (i,j) and the same fea-
ture channel d:

ysumi;j;d ¼ xsi;j;d þ xti;j;d ð4Þ

where 1 6 i 6 H;1 6 j 6 W;1 6 d 6 D and xa; xb; y�RH�W �D.
Max Fusion: Max fusion ymax ¼ f maxðxs; xtÞ takes the maximum

of the two feature maps:

ymax
i;j;d ¼ maxfxsi;j;d; xti;j;dg ð5Þ

where other variables are the same as the above (4).
Concatenation fusion: Concatenation fusion ycat ¼ f catðxs; xtÞ

stacks the two feature maps at the same pixel location (i,j) across
the feature channel d:

ycati;j;2d ¼ ½xsi;j;d xti;j;d� ð6Þ

where y�RH�W �Dc ;Dc ¼ Dþ D0

While the previous fusion methods fused the networks with the
same spatial location, in this method does not require to define any
correspondence between the networks.

3.3.2. Temporal fusion
In temporal fusion, we combine feature maps xt over time t, to

get an output map yt (as in [28]). We now consider the input to a
temporal pooling layer to be feature maps which are generated by
stacking spatial maps across time t ¼ 1 . . . T.

3D Conv + 3D Pooling: 3D Pooling is a simple extension of 2D
pooling to the temporal domain. 3D pooling applies max-pooling
to the stacked data. In general 3� 3� 3 max-pooling is used across
the stacked corresponding channels. There is no pooling across dif-
ferent channels.

In this technique 3D pooling is performed after a convolution
operation. In that operation, the input is four-dimensional, the fil-

ter is f �RW 00 �H00 � T 00 �D�D0
and bias is b�RD.

y ¼ xt � f þ b ð7Þ
This convolution operation is a 3D convolution operation which
convolves 3D kernels into a cube formed by stacking multiple adja-
cent frames together.

3.3.3. Where to fuse the streams
In our work, we use three different strategies for fusing the net-

works: early fusion, late fusion and hybrid fusion.
Early fusion: The early fusion method, also referred to as fea-

ture level fusion, unifies the extracted features from different
streams by integrating them into a single stream for training. The
way the stream outputs are fused are shown in Fig. 4a. In our
study, we fuse networks after the convolution layers. Both tempo-
ral and spatial fusion strategies can be used in this method.

Late fusion: Simple late fusion was adopted to combine the
softmax scores of two networks by either averaging or using a lin-
ear classifier as shown in Fig. 4b. This fusion method is also called
decision level fusion or semantic level fusion. This method has
been widely used for image and video analysis. Note that, we can
use only basic mathematical operations when doing late fusion,
since we are operating on softmax scores. To this end, we use spa-
tial fusion techniques identified above.

Hybrid fusion: Hybrid fusion is basically a combination of early
and late fusion strategies. In the beginning, the streams are fused
using temporal fusion at the last convolutional layer (after ReLU).
Then, unlike the previous works which use early fusion, we do
not end the temporal stream; this stream continues with fully con-
nected layers, as well as the fused spatiotemporal stream. This pro-
cess is illustrated in Fig. 5. For the classification decision, we fuse
these streams with spatial max fusion at the end just after the soft-
Max layer.

4. Experimental evaluation

In this section, we present the experimental evaluations of our
proposed multi-stream approach for collective activity recognition.
this fusion, the temporal stream also continues, and later, it is fused with the spatio-
temporal stream of EF part after the softMax layer (shown with LF).



Fig. 6. Sample images on Collective Activity Dataset [10].

Table 1
Comparison of the single streams on Collective Activity Dataset. The reported
performance measure is per video accuracy.

Architecture Method Accuracy

Single stream Spatial (S) 55.6
Temporal (T) 77.8

SpatialRCNN (sRCNN) 61.1
TemporalRCNN (tRCNN) 77.8

Table 2
Comparison of late and early fusion architectures using different strategies on
Collective Activity Dataset. The best accuracies are shown in bold.

Architecture Method Fusion type Accuracy

S + T Max 66.7
S + T Sum 72.2

sRCNN + tRCNN Max 77.8
Late fusion (LF) sRCNN + tRCNN Sum 77.8

S + T + sRCNN Max 66.7
S + T + sRCNN Sum 72.2
S + T + tRCNN Max 72.2
S + T + tRCNN Sum 77.8

S + T + sRCNN + tRCNN Max 77.8
S + T + sRCNN + tRCNN Sum 77.8

S + T Max 66.7
S + T Sum 72.2
S + T Concat 77.8

Early fusion (EF) sRCNN + tRCNN Max 77.8
sRCNN + tRCNN Sum 77.8
sRCNN + tRCNN Concat 83.3

S + T 3DConv + 3DPool 77.8
sRCNN + tRCNN 3DConv + 3DPool 83.3
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To this end, we first present the details of the benchmark datasets
that are used in the experiments. Then, we present the implemen-
tation details and experimental outcomes.

4.1. Dataset

4.1.1. Collective activity dataset [10]
This dataset contains 44 short video sequences, where the

videos are 640 � 480 pixels in size and are recorded by a consumer
hand-held digital cameras with varying viewpoints. Fig. 6 illus-
trates sample images from this dataset. There are five collective
activity categories in the dataset. These categories are crossing,
walking, waiting, talking, and queuing. Every 10th frame in all
video sequences were annotated with the locations of people with
bounding boxes and an activity label. Each frame is assigned a col-
lective activity label based on the activity of the majority of people.
We follow the train/test split provided by Lan et al. [11].

4.1.2. Volleyball dataset [2]
In order to evaluate our method’s performance, we also conduct

experiments using the more recent Volleyball dataset [2]. This
dataset contains 1525 annotated frames that are handpicked from
15 videos with seven player action labels and six team (group)
activity labels. The group activities are spiking, setting, passing

and the left/right team variants. We use frames from 2=3rd of the

videos for training, and the remaining 1=3rd for testing, following
the same setup as in [2].

4.2. Implementation details

In our convolutional streams, we adopt the framework of VGG-
16 model [35] that has 13 convolutional and 3 fully-connected lay-
ers. Since training network streams from scratch requires an exten-
sive amount of training data and we are very short of such a large
scale data for collective activity problem, we use the pre-trained
convolutional streams that are originally trained on UCF101 [39]
for action recognition [5]. First, we train all streams separately
with the same momentum of 0.9 and a weight decay of 0.0005.
For training the spatial networks, we use dropout ratios of 0.85
for the first fully-connected layers and the batch size is 256. The
learning rate starts from 10�2 which is reduced by a factor of 10
as soon as the validation accuracy saturates. For temporal net-
works, we use optical flow stacking with L ¼ 10 frames, the drop-
out ratio is 0.8, the batch-size is 128 and the learning rate starts
from 10�3 and is reduced in the same way as in the spatial net-
work. We pre-compute the optical flows before training. In all
streams, we use standard softMax loss function given in Eq. (2).

For fusion, the same parameters as the temporal networks are
used except for dropout ratios. A dropout ratio of 0.85 is used as
in spatial networks.
4.3. Results and discussions

4.3.1. Experiments on collective activity dataset
In the following, we first evaluate the base performance of the

single streams that we propose. Table 1 shows this evaluation.
From these results, we observe that spatial streams when used in
isolation yields comparatively worse results than the temporal
streams (with or without RoI). Using the RoI pooling layer has
made a significant contribution to the results, especially in the spa-
tial stream.

In order to evaluate the effect of the noise of the person detec-
tion scheme and its effect on or SRCNN method, we also carry out
an experiment using ground truth bounding boxes provided with
the dataset. In this experiment, since only every 10th frame is
annotated with ground truth person bounding boxes, we use the
same subset of the frames. We observe that sRCNN method over
the automated person detections yields an accuracy of 38.9%,
whereas using groundtruth bounding boxes, it yields an accuracy
of 44.4%. This shows that our sRCNNmethod is likely to benefit fur-
ther from correct person region detections. Note that this experi-
ment is run using only every 10th frame, not the whole videos,
so the accuracies are lower than the case when the whole videos
are used.

In Table 2, different late and early fusion strategies are com-
pared. As it can be observed, the late fusion of streams does not
yield any improvement of the results, compared to single stream
results of Table 1. In late fusion, the best results are achieved when
using region-based streams and temporal region stream (tRCNN)
produces the best results whether it is used in isolation or in con-
junction with other streams via late fusion. We have also looked at
the late fusion of multiple streams and even using multiple
streams in this fusion does not affect the overall best accuracy of
77.8%. On the other hand, compared to late fusion, early fusion
yields better results, especially using concatenation with spatial



Table 3
Comparison of hybrid fusion architecture with different fusion architectures in
Collective Activity Dataset. The best accuracies are shown in bold.

Architecture Method Accuracy

Late fusion sRCNN + tRCNN 77.8
Early fusion sRCNN + tRCNN 83.3
Hybrid fusion (S + T) (HF) + sRCNN (LFsum) 83.3

(S + T) (HF) + tRCNN (LFsum) 88.9
(S + T) (HF) + sRCNN + tRCNN (LFsum) 88.9

Table 5
The performance comparison of single streams and other fusions on Volleyball
dataset. The best accuracies are shown in bold.

Architecture Method Accuracy

Single Spatial (S) 42.5
Temporal (T) 51.4

SpatialRCNN (sRCNN) 47.8
TemporalRCNN (tRCNN) 64.3

Late fusion (LF) S + T 57.6
sRCNN + tRCNN 68.3

Early fusion (EF) S + T 61.2
sRCNN + tRCNN 70.2

Hybrid fusion (HF) (S + T) (HF) + tRCNN (LFsum) 72.4
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pooling or using temporal pooling. We also observe that for spatial
pooling, using concatenation yields a significant improvement in
the results (more than 5% improvement in accuracy) compared
to late fusion. We have also observed that temporal pooling is
effective when used with region-based streams. In Table 2, we
have tested different fusion types (sum, max and concat) with
early and late fusion architectures. From those results, we observe
that 3DConv + 3DPool works best for early fusion (EF) and sum
fusion type for late fusion (LF) architectures. Therefore, in the fur-
ther experiments, we utilize these best performing fusion types
when EF or LF architectures are used, respectively.

Table 3 shows the comparison of several architectures that
involve hybrid fusion with respect to the late and early fusion.
From these results, it can be observed that the proposed hybrid
fusion architecture has further improved the results. The best
result is obtained when spatial and temporal streams are fused
with hybrid fusion architecture and further fused with tRCNN
stream by late fusion, shown by (S + T) (HF) + tRCNN (LF). A
further combination that we have tried in our experiments is the
addition of sRCNN with late fusion method to this architecture.
Both of these combinations have shown a remarkable improve-
ment, achieving an accuracy of 88.9%.
Table 4
Comparison of our method with the related work on Collective Activity Dataset. The
best accuracies are shown in bold.

Method Accuracy

Contextual model [40] 79.1
Deep structured model [1] 80.6
Two-stage hierarchical model [2] 81.5
Cardinality model [33] 83.4
SBGAR [4] 86.1
CERN [3] 88.3
Our method 88.9

Fig. 7. The qualitative results of the our models on Collective Activity Dataset with person
Here, the first row shows Crossing, the second row shows Waiting and the last row show
We compare our proposed approach with the previous state-of-
the-art methods for collective activity recognition and Table 4
summarizes the results. For a fair comparison, we use the same
train/test split provided by Lan et al. [40] in this comparison. As
shown in Table 4, our model outperforms the state-of-the-art
methods on the Collective Activity Dataset. In this dataset, our
hybrid fusion architecture that utilizes region based streams
achieves an accuracy of 88.9%, which is 0.6 % higher than the recent
CERN model [3] that is based on a multi-level hierarchy of LSTMs
with energy layer and outperforms the Two-Stage Hierarchical
Model [2] by a margin of 7.4%. Here, we should note that CERN
[3] model has fewer parameters to estimate; our model has
� 280 Mparameters, whereas CERN[3] model has � 210 M
parameters.

Some example qualitative results from Collective Activity data-
set are given in Fig. 7. These examples show that when the regions
are detected correctly, our method gives good results. In this data-
set, we observe that when the people are seen from a distance, the
person detection may fail to find accurate regions for people, and
this may adversely affect the classification performance. In addi-
tion, some of the individual actions (such as those actions in wait-
ing and queuing, walking and crossing) are very similar in nature
and this may cause misclassification of the corresponding collec-
tive activities.

4.3.2. Experiments on volleyball dataset
In Table 5, we present the experimental results on Volleyball

dataset [2]. The first part of Table 5 indicates the performance of
single stream approaches, namely spatial stream, temporal stream,
sRCNN stream with Fast-RCNN results, sRCNN stream with ground
truth information of people and tRCNN stream. When we look at
detection results. Green labels are correct classifications and red ones are incorrect.
s Walking examples.
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the results, a similar pattern is observed in this dataset; the tempo-
ral streams yield better recognition performance in general. The
Fig. 9. The correct classification results of our models on Volleyball Dataset with person
Spike, the third row shows Right Pass, the fourth row shows Left Pass, the fifth row show

Fig. 8. Confusion matrix for the Volleyball dataset using hybrid fusion architecture
ðSþ TÞðHFÞ þ tRCNNðLFsumÞ.

Table 6
Comparison with related works on Volleyball Dataset. We report per video accuracy
on this dataset. The best accuracies are shown in bold.

Method Accuracy

Two-stage hierarchical model [2] 51.1
SBGAR [4] 66.9
Our method 72.4
spatial streams do not perform as well as the temporal streams,
mostly due to the similarity of background context in this dataset,
i.e. the volleyball videos are acquired in similar settings, where the
viewpoints and the contexts are mostly stable.

Regarding the experiment with detected person regions versus
ground truth bounding boxes, we perform a similar experiment on
Volleyball dataset: sRCNN method on detected person regions
yields an accuracy of 47.8% whereas, on ground truth bounding
boxes, the performance raises up to 50.2%. The results show that
if we have perfectly detected all the people on the videos, the accu-
racy would be increased by 2.4%. This observation also confirms
that there is room for improvement for our method with better
person detection techniques.

We also observe that the proposed region-based streams yield
significant improvements over the standard CNN streams. tRCNN
stream achieves a performance improvement � 13% over the reg-
ular temporal CNN stream. This is a notable improvement, showing
the potential of region-based processing as opposed to working on
full frames. Working on regions provides important cues about the
ongoing collective activities.

In the second part of Table 5, we present the late and early
fusion results of these CNN stream architectures. We use sum
fusion method in the late fusion and 3D Conv + 3D Pooling method
in the early fusion. As can be seen in the obtained results, the
fusion of region-based streams yields a significant improvement
when compared to single streams in this dataset. Compared to
the late fusion, early fusion yields better results in both stream
types. Moreover, we observe that the proposed hybrid fusion archi-
tecture improves the accuracy further, as in the case of Collective
Activity dataset.

Then, we compare our region-based approach with the previous
state-of-the-art results on Volleyball dataset and the results are
detection results. Here, the first row shows Right Set, the second row shows Right
s Left Spike and the last row shows Left Set examples.



Fig. 10. Somemisclassification cases of our hybrid fusion model on Volleyball Dataset with overlaid person detection results. The correct classes for these example frames are
Right Spike, Right Pass, Left Pass, Left Spike in first row, and Left Spike, Left Set, Left Pass, Right Set in second row, respectively.
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listed in Table 6. Our method performs better than the previous
work, 21.3 % performance increase compared to [2] and 5.5 % accu-
racy increase compared to [4]. Shu et al. [3] does not report any
result on this dataset. Fig. 8 shows the confusion matrix obtained
on the volleyball dataset using our best performing hybrid method
ðSþ TÞðHFÞ þ tRCNNðLFsumÞ. From this confusion matrix, we see
that most of the confusion occurs between set and pass activities
and actually, these activities are indeed very similar to each other.

Some qualitative results, where the frames of correctly classified
and misclassified videos on Volleyball dataset are shown in Figs. 9
and 10. When we look at these visual examples, we see that person
detection works reasonably well in this dataset, even though the
person regions are relatively small. On the other hand, some of
the confusions occur between categories that are likely to cooccur
or follow each other such as pass and spike, or pass and set.
5. Conclusion

In this paper, we tackle the problem of collective activity recog-
nition in videos. To this end, we propose a novel multi-stream
spatio-temporal architecture with a convolutional fusion. We pro-
pose to use RoI pooling layer and form separate region-based
streams that operate over spatial and temporal information. The
proposed architecture fuse these region-based convolutional
streams with standard spatio-temporal streams in several ways.
The experimental results demonstrate that fusing streams in the
early phases of the process and using RoIs produce effective results
for recognizing the activities. Compared to the existing state-of-
the-art approaches, our proposed approach yields promising
recognition accuracies on two benchmark datasets.

Currently, our model does not have any explicit modeling of
sequential information within frames, other than the short-term
3D temporal convolutions. In the future, we plan to extend the pro-
posed multi-stream architecture using RNN and LSTM models for
capturing the temporal relationships of the sequences.
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