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Abstract

Collective activity recognition is an important subtask of human action recogni-

tion, where the existing datasets are mostly limited. In this paper, we look into

this issue and introduce the “Collective Sports (C-Sports)” dataset, which is a

novel benchmark dataset for multi-task recognition of both collective activity

and sports categories. Various state-of-the-art techniques are evaluated on this

dataset, together with multi-task variants which demonstrate increased perfor-

mance. From the experimental results, we can say that while sports categories of

the videos are inferred accurately, there is still room for improvement for collec-

tive activity recognition, especially regarding the generalization ability beyond

previously unseen sports categories. In order to evaluate this ability, we intro-

duce a novel evaluation protocol called unseen sports, where the training and

test are carried out on disjoint sets of sports categories. The relatively lower

recognition performances in this evaluation protocol indicate that the recog-

nition models tend to be influenced by the surrounding context, rather than

focusing on the essence of the collective activities. We believe that C-Sports

dataset will stir further interest in this research direction.
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1. Introduction

Recognition of collective activities, which is defined as the collective be-

haviour of multiple people in a scene, is a recent topic of interest in computer

vision community. The task has various application domains, ranging from pa-

tient monitoring to collective sports analysis, to large scale surveillance and5

beyond. Despite the wide range of applicability, collective activity recognition

is a relatively less-studied topic, compared to human action recognition. More-

over, the existing datasets are mostly limited, in the sense that they are not

diverse enough to support the training of complex and representative models.

In this paper, we address this shortcoming for collective activity recogni-10

tion and present a novel collective activity dataset, called “Collective Sports

(C-Sports for short)”, which includes various collective activities occurring in

multiple sports videos. This dataset has an interesting property of being multi-

task in nature. Specifically, we collect several common collective activities, such

as gathering, dismissal, attack, etc., that take place in various sports matches.15

Different from the existing related datasets such as Volleyball dataset [1], our

dataset consists of videos ranging from a diverse set of sports, from basketball

to dodgeball, to ice hockey or waterpolo. This diversity makes the dataset more

interesting and compelling at the same time, from the recognition point of view.

A brief comparison of existing collective activity recognition datasets is pre-20

sented in Table 1. Firstly, as it can be seen, the number of collective activity

datasets is quite limited. Collective Activity Dataset (CAD), introduced in [2],

consists of only 44 sequences of 5 collective activities. The people in this dataset

is mostly seen orthogonally at relatively near distance. New Collective Activ-

ity Dataset (nCAD) [3], which is composed of 32 video clips with 6 collective25

activities, consists of artificially posed sequences. The more recent Volleyball

dataset[1], on the other hand, consists of collective activities that occur only in

Volleyball sport, therefore, the domain is limited to Volleyball activities only.

This limitation is likely to hinder the generalization ability of the methods tuned

for this dataset to other domains directly.30
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Table 1: Comparison of the collective activity video datasets in the literature.

Dataset #CollActs #Category #Videos #Frames
View

point

Camera

Movement

CAD[2] 5 N/A 44 25756 near stationary

nCAD[3] 6 N/A 32 19873 near stationary

Volleyball[1] 6 1 1636 67076 far stationary

C-Sports 5 11 2187 167935 near/far non-stationary

In order to address such limitations, C-Sports dataset tries to cover a wide

range of sports classes and to capture the collective activities that are more

general in nature. The videos are collected from web resources, indicating that

none of them are posed sequences, but rather taken from real-world shootings.

In addition, to form an inherently realistic and challenging generalization bench-35

mark, we introduce a novel evaluation protocol called unseen sports evaluation,

where the training and test splits consist of videos of disjoint sport categories.

A robust recognition model that is trained with the collective activities in a cer-

tain context, are expected to yield accurate classifications when same collective

activities take place in a previously unseen context, i.e. in a different sports en-40

vironment. When the training and test sequences come from different sports, it

forms a more realistic and challenging test-bed for evaluating the generalization

ability of collective activity recognition.

One of the most interesting aspects of C-Sports dataset is that it is multi-task

in nature. One can try to predict the collective activity and at the same time,45

the sports category label. This dataset provides such a testbed, investigating

whether the sports category and collective activity prediction can be carried out

simultaneously, and whether the recognition of one task is likely to benefit from

the other.

To set the benchmark on C-Sports, we experiment with several state-of-the-50

art action recognition methods which are representatives of the latest lines of

research on this topic. More specifically, we follow three fundamental strategies;

i) Two-stream ConvNets [4], where RGB and optical flow representations are
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explored in conjunction. ii) ConvNet+LSTM-based approach, where spatial

information is extracted via ConvNets, and temporal patterns are modeled via55

LSTMs, and iii) 3D-ConvNets, where spatial and temporal patterns are encoded

using 3D convolutions [5]. Each of these models has their own strengths and

weaknesses from the recognition point of view. We also introduce the multi-task

versions of the 3D-ConvNet [5] and Two-stream ConvNet [4] approaches, which

are shown to yield increased performances.60

To sum up, the main contributions of this work are as follows:

• We introduce a multi-task dataset called C-Sports, for collective activity

and sports category recognition.

• We experiment with several state-of-the-art action recognition methods to

set the benchmarks on this dataset.65

• We show that the multi-task learning strategy yields significant recognition

performance increase; hence suggesting that sport category recognition

and collective activity recognition can benefit from each other.

• We provide a new evaluation protocol to assess the generalization ability

of collective activity recognition across different sports categories.70

Our experimental evaluations demonstrate that using multi-task learning

yields promising results, indicating that there is shared knowledge between

tasks. The evaluations over unseen sports also indicate that the presence of con-

text influences the recognition performance dramatically; we argue that there

is a need for corresponding testbeds to assess whether it is the essence of the75

activities that is being recognized or other contextual elements. Experiments on

the newly introduced evaluation protocol for this purpose, demonstrates that,

whilst the standard supervised learning yields high recognition performances,

there is still a large room for improvement to recognize collective activities across

different sports categories.80
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2. Related Work

Human action recognition is addressed by hundreds of recent works in com-

puter vision literature (for a detailed survey, please see [6]), yet collective activity

recognition problem is relatively a new topic that is less explored. Collective

activity recognition is closely related to coherent motion detection in crowd85

scenes [7], group detection[8] and group activity recognition[9], but these are

considered separately because of their difference in problem domains. Collec-

tive activity recognition techniques can be grouped into two subcategories: a)

shallow approaches and b) deep learning techniques. Below, we give a brief

overview of these categories.90

2.1. Shallow Approaches

In one of the earliest works, Choi et al. [2] presented a local spatio-temporal

descriptor that captures spatial distributions of pedestrians along with their

pose over time. With a latent variable framework Lan et al. [10] focus on two

new types of interactions, i.e. person-person and person-group, and propose95

adaptive structures for inferring them. Choi and Savarese [3] look at the cor-

relation between motion and activity by means of a hierarchy of activity types

that jointly tracks people in a crowd, identifies individual activities together

with interactions and resulting the collective activity. Khamis et al. [11] pro-

pose combining per-frame and per-track cues. Choi and Savarese [12] create a100

model by first proposing a descriptor which gathers behaviors of a group of in-

dividuals in a spatial-temporal manner to form top-down evidence. Bottom-up

information coming from a fragment of tracks and detections are combined with

top-down evidence coherently.

Following these studies, recent work shifted focus to capture the relation105

between a spatio-temporal pattern of each person and their interactions with

the crowd. Antic and Ommer [13] use samples of local and group parts gathered

by considering their functions and visual similarities, then propose to use max-

margin instance learning to train an activity classifier. Tran et al. [14] introduce
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a graph-based framework for clustering, where edge weights of the graph show110

how much each person is in interaction with each other.

Amer et al. [15] propose another architecture called Hierarchical Random

Field(HiRF), to model higher-order temporal dependencies by only considering

dependency hierarchy of model variables. Amer et al. [16] addresses the prob-

lem of multi-scale activity recognition, where a three-layered AND-OR graph is115

proposed to model group activities, actions of individuals, and object participa-

tions. To this end, Amer et al. [16] created a new high-resolution video dataset,

from UCLA courtyard. Followingly, Amer et al. [17], a Sum-Product Network

(SPN) that consists of a mixture distribution of BoWs is used to capture the

activity of interest. Although these methods are expensive to implement, they120

reached state of the art on benchmarks as well as on the Volleyball Dataset[1].

2.2. Deep Approaches

Early works on action recognition and video classification tasks use only

CNNs[4, 18], whereas more recent studies Donahue et al. [19] use CNNs with

recurrent neural network (RNN) models. In this context, [4, 20, 21] use CNNs in125

a two-stream manner, where optical flow inputs are used together with RGBs.

Deng et al. [22] proposed a combination of hierarchical graphical models to

capture individual actions where a multi-step message passing approach was

used between neural network layers. Deng et al. [23] combines graphical models

and deep neural networks into a joint framework, where sequential inference is130

done by a RNN. Hajimirsadeghi et al. [24] presents a Multiple Instance Learning

(MIL) framework which uses cardinality relations between latent labels.

In a more recent study, Ibrahim et al. [1] use multiple hierarchical LSTMs,

where the first LSTM is used to capture individual actions and the second

LSTM is used to evaluate temporal group activity dynamics. This model is135

further improved in [25] by adding an energy layer instead of a softmax layer.

Qi et al. [26] propose an attentive semantic recurrent neural network (RNN),

called as stagNet, which uses the spatiotemporal attention and semantic graph

to recognize collective activity. A two-level attention based network, person and
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Figure 1: Example frames from the eleven sports categories of C-Sports dataset.

From top-left to bottom-right, sports categories are American football, basket-

ball, dodgeball, football, handball, hurling, ice hockey, lacrosse, rugby, volleyball,

waterpolo.

scene levels, is presented by [27] for modeling relationships in group activity140

recognition. This model modified two-stage Gated Recurrent Units (GRUs)

networks to handle temporal variability and consistency. Tang et al. [28] propose

a consistency constrained graph model that models the relevant movements of

individuals by reducing the importance of irrelevant ones. Tang et al. [29] use the

information obtained from the semantic domain for recognizing the collective145

activities in the training stage of the appearance domain. Zhang et al. [30]

present a weakly supervised method which jointly learns an actor detector and

collective activity classifier for getting the person-group interaction in scenes.

Lu et al. [31] design a graphical convolutional neural network, which investigates

interaction relationships in collective activities. Recently, [32] has proposed a150

multi-stream spatio-temporal convolutional neural network which focuses on

person regions in both temporal and spatial channels.
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3. Collective Sports (C-Sports) Dataset

3.1. An Overview of C-Sports

C-Sports dataset has been formed out of sports videos, since the sports is one155

of the most vivid domains that involve collective activities. In addition, sports

videos are more easily accessible through the Internet video sharing sites; hence,

collecting non-posed video sequences are relatively easier.

During the category selection phase, we have examined many sports cate-

gories, and among those, we select the ones that have more tendency to collec-160

tivity, where many samples of collective activities are available with relatively

higher visual quality. Candidate sports classes are selected from those that have

videos comprising least two of the collective activities. For example, football

sport class has passing and attacking collective activities. We keep this rule

of thumb for collective activity selection as well, i.e., the candidate collective165

activity must be observable in at least two sports classes.

In C-Sports dataset, there are 11 sports categories and five collective ac-

tivity categories. Sports categories are American football, basketball, dodgeball,

football, handball, hurling, ice hockey, lacrosse, rugby, volleyball and water polo,

whereas five collective activities are gathering, dismissal, passing, attack and170

wandering. Gathering can be defined as people approaching each other for a

specific purpose. Dismissal is the separation of people to different directions

after gathering. Pass is the act of passing items, such as balls, hockey rubbers,

etc., between players, whereas attack is the movement of the team players to-

wards a specific goal. Wandering activity, on the other hand, can be defined as175

the free movements of team players.

Sample video frames for sports classes are given in Fig. 1, and for collective

activity classes in Fig. 2, respectively. Each video in the dataset has two labels,

one indicating the sports category and the other indicating the class of the

ongoing collective activity.180

8



Figure 2: Sample frame sequences of the collective activities of C-Sports dataset.

From top to bottom, collective activities are gathering, dismissal, passing, attack

and wandering.

Table 2: The number of videos and frames in the train/val/test splits of C-

Sports in standard supervised evaluation protocol.

Train Validation Test Total

# videos 1317 435 435 2187

# frames 101300 33228 33407 167935

3.2. Pre-processing

In order to collect videos, several text queries containing the collective ac-

tivity and the sport class names are formed, and executed on YouTube. Long

videos are cropped manually to a range of 5-10 seconds delineating the collective

activities. The length is limited to a maximum of 100 frames; ensuring that the185

start and end of the activities are included within the clip.

After the videos are cleaned and clipped to a certain range, dense optical
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flows are computed using the method of [33]. The horizontal and vertical com-

ponents of the displacement vector fields are stored as two optical flow images

for a given pair of consecutive frames.190

3.3. Evaluation Protocols and Dataset Statistics

Protocol 1 - Standard: First protocol is the standard supervised evaluation

protocol; where all the video data is split into disjoint train/validation/test sets

and each split includes instances from each sport classes. In this setup, 60% of

the video clips are used for training, 20% for validation and 20% for test. The195

number of videos/frames for this setup are given in Table 2.

Protocol 2 - Unseen Sports: Second evaluation protocol, includes a more

interesting and challenging setup, where the training and test are performed on

different sport classes. Here, the idea is to assess the generalization ability of

models in collective activity recognition task. For this purpose, we divide the200

dataset based on the sports classes, such that the train and test sets include

disjoint sports , i.e. the train/test splits do not share any common sports

class. Formally, let Y = {1, . . . , Ca} denote the collective activity classes, and

L = {1, . . . , Cs} denote the set of sports classes. Each training video xi is

annotated with both a collective activity class label yi and a sports class label205

li. In the unseen sports protocol, in each split, we hold out a subset Lu ⊂ L of

sports classes for evaluation purposes as unseen sports classes. Therefore, the

training dataset Dtrain consists of training examples (xi, yi, li) such that yi ∈ Y

and li ∈ L \ Lu, and the test dataset Dtest consists of examples (xj , yj , lj)

such that yj ∈ Y and lj ∈ Lu. In this evaluation protocol, the task is to210

predict the collective activity class label yj . To create the splits, we use a cross-

validation (CV) approach; there are 11 folds, where each fold corresponds to a

particular sports class. In each iteration of CV, 10 folds (i.e. all the collective

activity videos from 10 sports classes) are used in training and the remaining

fold (collective activity videos of the remaining sports class) is used in test.215

More specifically, all of the collective activities (gathering, dismissal, attack,

pass, wandering) are trained on 10 out of 11 sports contexts (e.g. American
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Football, Dodgeball, Handball, etc.) and tested on one left-out sports context

(e.g. Water Polo) in each iteration of the cross-validation scheme. The task

is to assess whether the recognition models learnt over a set of sports contexts220

can accurately recognize the collective activities in previously unseen contexts.

In this way, it will be possible to evaluate whether the essence of the collective

activity is learned independent of the context.

Note that, this is not a zero-shot learning setup; in training, the models have

access to all the collective activity classes with a certain set of sports contexts,225

whereas test is carried out for the same set of collective activity classes on new

sports contexts that are not seen during training. When a video from an unseen

sports class is encountered, we expect a robust recognition model to recognize

the ongoing collective activity, even if it has not seen how that collective activity

is carried in the context of the new sport.230

In Table 3, the number of videos/frames per each sports classes/collective

activity, together with the corresponding totals, are given. According to these

statistics, in each split for the unseen sports evaluation, one row of Table 3 is

used for test, and the remaining rows are used for training. Note that, some of

the cells in this table are zero, indicating that there are no examples found for235

that particular activity/sports pair. This is mainly due to the unavailability of

those actions, for example in water polo, the players do not usually gather or

dismiss during match.

4. Methods

In order to provide benchmarks for the newly introduced dataset, we em-240

ploy three state-of-the-art action recognition models that are built upon recent

powerful deep learning strategies: i) ConvNets with LSTM [19], ii) two-stream

ConvNets[4], and iii) 3D-ConvNets [5]. In this section, we briefly describe these

architectures and also introduce the multi-task versions of the two of the best

performing ones. We discuss how these architectures can be utilized for multi-245

task learning of collective activities and/or sports categories.
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Table 3: Dataset statistics based on collective activity and sports classes. Each

cell of the table is defined in X/Y format in which X specifies the number

of videos and Y denotes the number of frames. Rows correspond to sports

classes, whereas the columns correspond to collective activities. In unseen sports

evaluation protocol, in each iteration of the cross-validation scheme, the training

is carried out over 10 of the rows, where the remaining row is spared for test.

Gather Dismissal Pass Attack Wander Total

A.Football 84/5580 11/920 60/3708 71/5146 38/2993 264/18347

Basketball 14/1290 10/960 36/2378 38/2920 44/3670 142/11218

Dodgeball 13/1200 13/1143 57/3625 81/5541 46/3762 210/15271

Football 11/891 13/1036 65/6076 50/4820 13/1300 152/14123

Handball 10/960 15/1470 23/1476 34/2438 29/2815 111/9159

Hurling 10/729 10/810 64/4174 59/4253 50/4134 193/14100

Ice Hockey 13/1106 10/809 48/3169 53/4098 44/3692 168/12874

Lacrosse 109/9222 87/7391 34/2192 45/3303 34/3034 309/25142

Rugby 11/984 11/1017 50/3099 59/4251 47/3786 178/13137

Volleyball 100/7576 99/7872 50/3289 0/0 47/3837 296/22574

Waterpolo 0/0 0/0 72/4812 50/3644 42/3534 164/11990

Total 375/29538 279/23428 559/37998 540/40414 434/36557 2187/167935

Conv

Conv

Conv

LSTM

LSTM

LSTM

Activity / Sports

Input Video

Figure 3: ConvNet + LSTM [19] model architecture.
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4.1. ConvNet+LSTM

Thanks to the state-of-the-art results on image classification, it has been ap-

pealing to use convolutional neural networks (ConvNets) in video classification

with certain adaptations. Karpathy et al. [34] experimented on different tech-250

niques to advance connections of ConvNets to make better use of local spatio-

temporal information. However, temporal information is likely to get lost if

pooling is applied to the extracted features. In order to model the long-range

temporal information more adequately, LSTMs Hochreiter and Schmidhuber

[35] have been utilized in the literature. Since such a base architecture, i.e.255

using CNNs followed by LSTMs, is frequently used for modeling video content,

we choose this model to be the first model to experiment on C-Sports dataset.

Donahue et al. [19] are amongst the first to introduce ConvNets+LSTMs

idea and their method is called Long-Term Recurrent Convolutional Networks

(LRCN). We adopt their method in our benchmarking. In this architecture,

ConvNet layers are used to extract features, and a stack of LSTMs is used to

support variable-length sequence prediction. This main idea is illustrated in

Fig. 3. We use the model shared by [19], where the LSTM cells are identified

with the following equations:

it = σ(Wxixt +Whiht−1 + bi) (1)

ft = σ(Wxfxt +Whfht−1 + bf ) (2)

ot = σ(Wxoxt +Whoht−1 + bo) (3)

gt = tanh(Wxcxt +Whcht−1 + bc) (4)

ct = ft � ct−1 + it � gt (5)

ht = ot � tanh(ct) (6)

where t denotes the timestep, xt is input vector at timestep t, ht is hidden state,

W is weight matrix of associated gate, b is bias term. ft denotes forget gate, it

is input gate, ot is output gate, ct is memory cell state. � denotes the element-260

wise product of vectors at each side. σ is sigmoid function, tanh is hyperbolic

tangent function.
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Figure 4: Two-Stream ConvNet architecture.

4.2. Two-Stream Networks

Another dominant idea in modeling video content is the two-stream net-

works, initially proposed by the seminal work of [4]. Here, the main idea is to265

use two different CNN streams operating on RGB and optical flow separately,

and then to fuse both streams at later stages of the network. The RGB stream is

used to capture the spatial information, whereas the optical flow stream is used

to capture important movement information across the frames. As stated in [4],

static appearances that are associated with particular objects (i.e., basketball,270

football, hockey rubber) can be used as a clue extracted with the first stream.

The second stream, using optical flow as input, brings the crucial information

of movement. The two streams have almost identical architecture except for the

first convolutional layer. Both of the streams uses the initial weights pre-trained

on ImageNet [36]. Figure 4 demonstrates the two-stream model.275

4.3. 3D Convolutional Neural Networks

The third model that is frequently used for modeling video sequences is 3D

ConvNets. 3D ConvNets are effective for spatio-temporal feature learning via

3-dimensional convolutions and they are commonly used for video modeling and

analysis in recent works [37],[38],[39].280

The base model of 3D ConvNets is demonstrated in Fig. 5. In 3D ConvNets,

instead of the 2D convolutions, 3D kernels are used and convolution is done along

3 dimensions including the temporal dimension. In 2D ConvNets, pooling and
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Input Video

Activity /
Sports

Figure 5: 3D ConvNet architecture.

convolution operations are performed only spatially, whereas in 3D ConvNets,

these operations are performed both temporally and spatially. The main idea is

to capture temporal information of videos more naturally with 3D convolution

and pooling. 3D convolution operation can be formulated as follows [40]

vxyzij = tanh

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)
(7)

where tanh(.) is the hyperbolic tangent function, bij is the bias term of the

feature map, m indexes over the set of feature maps in the (i − 1)th layer

connected to the current feature map, wpqr
ijm is the (p, q, r)th value of the kernel

connected to the mth feature map in the previous layer, Pi and Qi are the height

and width of the kernel and Ri is the size of the 3D kernel.285

Since convolutions are done in 3D, there are more parameters to estimate

and therefore, 3D ConvNets are harder to train, requiring a larger volume of

data. In our experiments, we have used the base C3D model proposed by [5].

Basically, in this model there are 49 3D convolutional layers, 2 pooling layers

and 1 fully connected layer. Batch normalization is used after all convolutional290

layers and cross-entropy loss is chosen as the loss function.

4.4. Multi-Task Learning (MTL)

Multi-Task Learning (MTL) is a learning method in which multiple learn-

ing tasks are solved consequently using a shared model that is learnt jointly.

Mathematically, there are k learning tasks Ti for i = 1, ..., k and each task is295

associated with ni training samples {
(
xj , y

i
j

)
}ni
j=1, where xj is the jth training
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Figure 6: Multi-task version of Two-Stream ConvNet architecture.

instance in Ti and yij is its label. So, there are ni pairs of data instances and

label for each ith task.

In this work, we aim to simultaneously estimate the collective activities and

sports categories via a joint estimation model. In order to learn these tasks

together, we jointly train our model using multiple loss functions. Specifically,

since each problem is a multi-class classification task, we use cross-entropy loss

function for each task. In this context, Lact represents the loss function for

collective activity recognition as follows

Lact = −
a∑
j

yj log (
eoj∑
i e

oi
) (8)

where a represents the number of activity classes, oj is the output score of the

jth collective activity class, and yj represents the ground truth score of the

given class. Similarly, the loss for the sport category recognition, denoted with

Lsport, is defined as

Lsport = −
s∑
j

yj log (
epj∑
i e

pi
) (9)

where where s represents the number of sports class, pj is the output score of

the jth sports class, and yj represents the corresponding ground truth score.300

The total loss Ltotal is computed as the equal-weighted sum of these tasks’
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Figure 7: The Multi-task version of 3D ConvNet architecture.

losses as

Ltotal = Lact + Lsport. (10)

In order to evaluate the effect of multi-task learning on our tasks, we in-

troduce multi-task versions of both two-stream networks and 3D ConvNets. In

both of these methods, we use hard parameter sharing [41] that is applied by

sharing layers between all tasks while holding several task-specific output layers.

In MTL version of the two-stream network, FC layer in each stream is trained305

separately. Then, the softmax scores of each stream are added together. This

architecture is illustrated in Fig. 6.

The multi-task version of 3D ConvNet is illustrated in Fig. 7. In this method,

all layers until the last convolutional layer are trained jointly for both tasks.

After the last convolutional layer, we modify the network to have two separate310

fully connected (FC) layers and two separate softmax classification layers. These

FC and classification layers for each stream is trained independently, where a

single joint loss is optimized during backpropagation.

5. Experimental Evaluation

5.1. Implementation details315

For the ConvNet+LSTM model, we use the same architecture with [19].

The model is based on CaffeNet [42]. Initial ConvNets are trained on UCF101

dataset, then LRCN models are fune-tuned on C-Sports dataset. In the two-

stream ConvNet, we use ResNet-50 architecture pre-trained on ImageNet [36].

For the motion stream, we adapt the pre-trained weights on ImageNet [36] as320
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Table 4: Comparisons of baseline model accuracies using the standard super-

vised evaluation. The top part shows the performances of the single-task learn-

ing methods. The bottom part shows the results of the multi-task versions.

Architecture Collective Activities Sports

si
n

gl
e

ta
sk

ConvNet+LSTM [19] 43.6 70.6

3D ConvNet [5] 51.5 85.0

Spatial ConvNet[4] 30.5 80.4

Temporal ConvNet[4] 69.2 95.8

Two Stream [4] 76.5 98.3

m
u

lt
i-

ta
sk

3D-ConvNet-MTL 72.6 98.3

Spatial-MTL 25.7 78.1

Temporal-MTL 81.3 97.4

Two-Stream-MTL 80.5 99.0

well and duplicated these weights to coincide with the 20 channels of optical

flow. Then, both streams are fine-tuned using the C-Sports dataset. For 3D-

ConvNet, we utilize the ResNet-50 model pre-trained on Kinetics dataset [43],

and fine-tuned on the C-Sports dataset.

For Two-Stream and 3D-ConvNet architectures, we train the models for 100325

epochs with a learning rate 0.01 and batch size 32. For ConvNet+LSTM model,

we train the model for 40K iterations with an initial learning rate 10−4 and then

decrease the learning rate by a factor of 10 at every 5K iterations. All models

are trained on a 12 GB NVIDIA TitanX GPU.

5.2. Results and Discussions330

In this section, we present the experimental evaluations of the benchmark

methods over C-Sports dataset.
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5.2.1. Results with the standard evaluation protocol

As described in Section 3.3, the standard evaluation protocol tests the reg-

ular supervised classification case, where examples from each class are available335

both in training and test. Table 4 shows the results using this standard pro-

tocol. Here, the Spatial ConvNet and Temporal ConvNet denote the single

ConvNet streams that operate over RGB and optical flow inputs independently,

where both ConvNets have ResNet50 architectures. Similarly, Spatial-MTL and

Temporal-MTL corresponds to the multi-task versions as described in Section340

4.4. Upper part of Table 4 compares the different single-task techniques, whereas

the lower part of the table presents the multi-task versions.

When we look at the comparisons in Table 4, for collective activity recogni-

tion, we see that the best performance is achieved by the two-stream networks

[4], whereas the Temporal ConvNet [4] yields the second best recognition per-345

formance. While the Spatial ConvNet produces much lower results compared

to the temporal counterpart, we can say that it still includes complementary in-

formation, since the fusion of the two streams yields superior performance. The

ConvNet+LSTM [19] seems to achieve relatively less successful results amongst

the three baseline architectures, whereas the 3D-ConvNet [44] performs compa-350

rably better than ConvNet+LSTM approach.

In Table 4, we observe that MTL versions have better recognition perfor-

mance when compared with the corresponding single task learning (STL) ver-

sions, except for Spatial ConvNet. The MTL version of the temporal Con-

vNet, Temporal-MTL yields the overall best performance for the collective ac-355

tivity recognition, with an accuracy of 81.3%. Another observation is that,

3D-ConvNet method benefits largely from the introduction of the multi-task

learning component; where the accuracy has increased more than 20% in col-

lective activity recognition.

Table 4 includes the results for sports category recognition as well. We ob-360

serve that the recognition rates are higher for sports category recognition. The

ConvNet+LSTM[19] method performs considerably lower for this task, whereas,
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gathering dismissal pass attack wandering

gathering

dismissal

pass

attack

wandering

92.0% 2.7% 2.7% 0.0% 2.7%

3.6% 83.5% 3.6% 0.0% 9.3%

1.8% 0.0% 68.2% 15.6% 14.5%

0.0% 0.0% 15.6% 82.8% 1.7%

0.0% 4.6% 5.8% 3.5% 86.2%

Figure 8: Confusion matrix for the C-Sports dataset using the Temporal-MTL

for supervised evaluation protocol. Here, the rows represent the true classes,

whereas the columns represents the predicted classes.

similar to collective activity recognition, the introduction of the multi-task learn-

ing component raises the recognition ratios for this task as well, yielding a sur-

prisingly high rate of 99% for Two-stream-MTL approach. This suggests that365

the two tasks, i.e., collective activity recognition and sports category recognition

have complementary elements; and joint training of these two tasks is beneficial

for the recognition of both.

Figure 8 presents the confusion matrix for the Temporal-MTL method, which

achieves the highest accuracy 81.3% for collective activity recognition. Accord-370

ing to this matrix, most confusion occurs between the pass and attack classes.

Similarly, a large amount of confusion occurs between the pass and wandering

classes.

In order to investigate further into these confusions, we present the t-SNE

visualization of the 3D ConvNet features of the dataset in Fig. 9. In this t-SNE375

visualization, we observe that the data points are quite scattered; indicating

the difficulty of the dataset. Moreover, we observe that the pass and attack

example sequences appear closer in tSNE space. Another observation is that

wandering class examples are largely scattered, explaining the higher likelihood
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Figure 9: The t-SNE [45] visualization of 3D ConvNet features on the whole

C-Sports dataset.

of confusion with other classes.380

Fig. 10 shows the class-based accuracies of the MTL based methods in collec-

tive activity recognition. Amongst all classes, wandering class has the highest

recognition ratio, whereas pass class has the lowest recognition rates. In four

out of five classes, two-stream MTL method performs significantly better, and

for pass activity, the 3D-ConvNet method yields more successful performance.385

5.2.2. Results on Unseen Sports Protocol

While the above supervised evaluation protocol is used as the standard

means of evaluation in many collective activity recognition studies, the results

may not reflect the generalization ability of the trained classifiers to new types

of videos. In order to assess this ability, we introduce another evaluation pro-390

tocol called unseen sports protocol (details given Section 3.3), in which the

recognition models trained on a set of sports videos are test on videos of other

sport classes, i.e. unseen sports classes. The rationale behind this assessment
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Figure 10: Class-based accuracies of the 3D-ConvNet-MTL and Two-Stream-

MTL methods on collective activity recognition using standard supervised eval-

uation protocol.

is to test whether the classifiers are indeed capturing the essence of collective

activities, rather than being largely influenced by the context of the sports.395

Since 3D-ConvNet-MTL and Two-Stream-MTL methods produce the most

successful results in standard evaluation protocol, we test these two approaches

for unseen sports evaluation. Fig. 11 shows the comparative results of 3D-

ConvNet-MTL model with the Two-Stream-MTL model. The results are in

accordance with the findings in the supervised setting, that the Two-Stream-400

MTL approach yields significantly superior results compared to 3D-ConvNet-

MTL, achieving an accuracy of 59.9% on average.

The individual class accuracies of Two-Stream-MTL method are presented

in Table 5. In this table, the columns represent sports classes; rows represent

the collective activity classes. For example, the first cell of Table 5 indicates405

that for recognizing the gathering activity of American Football videos, Two-

Stream-MTL model yields 69.0% accuracy when trained on videos of sports

classes other than American Football.

According to the results in Table 5 and class-wise average results presented
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Table 5: Class-based accuracies of Two-Stream-MTL model using unseen sports

evaluation protocol. Each row represents the test results with the corresponding

sports videos, when trained on the videos of the rest of the sports classes.

Gathering Dismissal Pass Attack Wandering Avg

A. Football 69.0 27.2 20.0 91.5 86.8 58.9

Basketball 71.4 70.0 22.2 86.8 90.9 68.2

Dodgeball 15.3 76.9 21.0 0.0 76.0 37.8

Football 54.5 69.2 46.1 94.0 84.6 69.7

Handball 90.0 53.3 52.1 97.0 79.3 74.3

Hurling 40.0 40.0 64.0 89.8 62.0 59.1

Ice Hockey 92.3 60.0 35.4 98.1 59.1 68.9

Lacrosse 97.2 83.9 44.1 66.6 70.5 72.5

Rugby 72.7 54.5 52.0 66.1 95.7 68.2

Volleyball 49.0 54.5 18.0 N/A 87.2 41.7

Waterpolo N/A N/A 50.0 60.0 85.7 39.1

Average 59.2 53.6 38.6 68.2 79.8 59.9
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Figure 11: Class-based accuracies of the 3D-ConvNet-MTL and Two-Stream-

MTL methods on collective activity recognition using unseen sports evaluation

protocol.

in Fig. 11, for individual sports classes, higher accuracies are observed for410

“Football” and “Lacrosse” classes, which are visually close to each other. On

the contrary, lower results are observed for the “WaterPolo” and “Volleyball”

classes, which have less visual similarity with the other classes.

When we investigate the results in Table 5 columnwise regarding collective

activity classes, we observe that recognition accuracies of attack and wandering415

classes are relatively higher, since the visual properties of these classes across

different sports do not vary much. We can also say that some of the collective

activities, such as pass, have a more sport-specific nature, meaning that passing

in American Football is quite different than passing in Volleyball; therefore, it

is relatively harder to generalize the classifiers for such activities.420

Gathering activity is especially recognizable in the Handball, Ice Hockey

and Lacrosse sports, yielding impressive recognition results over 90% using Two-

Stream-MTL approach. Dismissal activity is mostly recognizable in the Lacrosse

videos (83.9% accuracy). The overall accuracy for the pass activity is the

lowest. One noticeable issue is with the recognition of the attack activity in the425
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Dodgeball videos, where both Two-Stream-MTL and 3D-ConvNet-MTL models

completely fail. This may be due to the significant difference in movement

direction of the Dodgeball’s attack. While the attack activity of the Dodgeball

is in the vertical plane, the attack activities in all the other sports classes are

carried out in the horizontal plane.430

On average, we observe that the recognition results in this “unseen sports”

evaluation protocol is significantly lower than the supervised evaluation. In su-

pervised evaluation, the average accuracy of Two-Stream-MTL model is 80.5%,

whereas it is 59.9% for unseen sports evaluation. This difference verifies that

the recognition models are indeed affected by the surrounding context and they435

are inclined to fit to context information rather than the essence of collective ac-

tivities. C-Sports unseen sports evaluation protocol provides a setup for such an

evaluation on collective activity recognition domain. We believe that this is an

issue that needs further attention from the research community; since collective

activity recognition may not be the only domain in which such an phenomenon440

is likely to happen.

6. Conclusion

In this paper, we present a new benchmark collective activity dataset, called

“Collective Sports (C-Sports)”, which includes collective activities of sports.

The dataset is multi-task in nature; opening up interesting directions to ex-445

plore. In order to set the benchmarks in this dataset, we experiment with

several state-of-the-art sequence recognition approaches in the literature, such

as Two-Stream ConvNets and 3D-ConvNets. We also introduce the multi-task

versions of the 3D-ConvNet and Two-Stream ConvNet architectures and demon-

strate that the multi-task learning improves the recognition accuracies for both450

collective activity recognition and sports class recognition tasks. To estimate

the generalization ability of collective activities more promptly, we introduce a

new evaluation protocol that evaluates the recognition models on unseen sports

categories. The experimental results on this protocol indicates that the gen-

25



eralization of certain collective activities may be quite limited and this issue455

remains as an open problem that needs further attention.

To contribute research in this direction, all the data and annotations are

available to download1, together with the extracted optical flow features and

trained models.
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