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Abstract—We propose an approach for improving object
recognition and localization using spatial kernels together with
instance embedding. Our approach treats each image as a bag
of instances (image features) within a multiple instance learning
framework, where the relative locations of the instances are
considered as well as the appearance similarity of the localized
image features. The introduced spatial kernel augments the
recognition power of the instance embedding in an intuitive and
effective way, providing increased localization performance.
We test our approach over two object datasets and present
promising results.
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I. INTRODUCTION

Object recognition and localization are two major prob-

lems in computer vision. For the object recognition problem,

bag-of-words approaches [1], [2] have recently gained a lot

of interest in the community, due to their simplicity and

effectiveness. In such approaches, extracting local features

and representing the image with the histogram of these

local features is a common practice. However, bag-of-words

approaches have certain shortcomings. First, using pure

histogramming over the image ignores the important spatial

information present in the 2D image domain. Second, hard

assignment of interest points to codewords is prone to noise

caused by background features.

Using localized features, the problem of object recogni-

tion and localization can be formulated as a multiple instance

learning (MIL) problem, where the image features/regions

represent the instances and the whole image or a subwindow

can be considered as a bag. Then, the problem reduces to

finding the correct set of instances, i.e. features, that repre-

sent a particular class. Following the instance embedding

approach of Chen, et al. [3], we can define a mapping

so that each image is represented by the overall distances

of its regions to a global dictionary of localized features.

This approach overcomes the shortcomings of the bag-of-

words approach such that: 1) using interest points as is,

the overhead introduced by the codebook generation step

is eliminated, and 2) each image is represented in terms

of a dictionary, which provides a higher level of tolerance

for noisy features. This approach is powerful in finding

the relevant patches in images. However, in the 2D image

domain, the spatial layout of the image patches is also

important. Therefore, we propose to add spatial reasoning to

the formulation of instance embedding by means of a spatial

kernel. In this way, we aim to achieve better localization and

recognition. Moreover, this spatial information is likely to

improve the instance selection process of the MIL problem.

Some approaches have looked at exploiting spatial in-

formation by means of spatial binning [4], spatial pyramid

histograms [5], generalized Hough transform [6], [7]. None

of these approaches has formulated the problem in a multiple

instance learning (MIL) framework. In this paper we look

at how we may improve over the current solutions by

incorporating this spatial information. We achieve this by

formulating a spatial kernel, which is easily compatible with

the multiple instance embedding approach of [3].

We evaluate both the object recognition and localization

performance of our proposed algorithm, using the Caltech-

4, the UIUC multi-scale cars and Graz-02 datasets. The

results show that our approach is successful in both recog-

nition and localization of the objects. In these experiments,

we show that spatial reasoning provides more successful

localization for the instance embedding approach, and the

results compare favorably to various methods presented in

the literature [8], [9], [10], [11].

II. OUR APPROACH

Our approach is built upon the localized features within

the image and is an alternative to the bag-of-words represen-

tation. The regular bag-of-words approach first generates a

codebook by clustering the image patches. Then, each image

is represented with a subset of this codebook, such that each

image patch is represented with the closest codeword. Then,

the overall image is represented using a histogram of these

codewords and all the image contents are accumulated into

bins.

There are several shortcomings of this approach. First, the

codebook generation can be imperfect. Once the codebook

is formed, hard assignment of the interest points to the

closest cluster centers, i.e. assigning each patch to the closest

codebook entry, may cause information loss. That is why

some approaches use soft-assignment [4], rather than using

the closest cluster center.

Following [3], an image can be represented by not only

the closest codewords, but in terms of all the dictionary.

A discriminative classifier can then be used to select the



important features and dictionary points. In this setting,we

define an instance embedding space such that, given the

entire instance space or codebook C = {c1, c2, . . . , cN},
we represent each image i with embedded feature vec-

tor m(Bi) = {s(Bi, c
1), s(Bi, c

2), . . . , s(Bi, c
N )}, where

s(Bi, c
k) represents the similarity between the image, and

the codeword ck in the dictionary. In this way, we convert the

input data vector to its alternative representation in the space

of the codebook dictionary. By using the exact distances to

all codebook entries, the pitfalls of the hard assignment are

avoided. In [3], s is formulated as follows:

s(Bi, c
k) = max

j
exp

(

−

∥

∥xij − ck
∥

∥

2

σ2

)

(1)

where xij represents the jth feature vector for image i.

This is a multiple instance learning (MIL) formulation

where the task is to select “correct” instances towards

learning a good model. This embedded space converts the

instance selection problem into a feature selection problem.

The noisy instances are expected to be inconsistent in the

dataset, and in this embedding, they will appear as less

informative feature dimensions.

In this image-based MIL setting, spatial locations of in-

stances (interest points) can provide strong additional infor-

mation that can be considered as a prior to select the positive

instances in each image. Fortunately, it is straightforward

to add such spatial reasoning to this MIL framework. We

introduce a multiplicative spatial kernel to the feature-based

similarity measure, and represent s as follows:

s(Bi, c
k) = max

j

(

φfeat(xij , c
k)φspatial(xij , c

k)
)

(2)

where φfeat is the similarity between feature vectors of

instances and φspatial is the spatial closeness. φfeat and

φspatial are defined as

φfeat(xij , c
k) = exp

(

−
D(xij , c

k)

σ2
feat

)

, (3)

φspatial(xij , c
k) = exp

(

−

∥

∥P (xij)− P (ck)
∥

∥

2

σ2
spatial

)

. (4)

In Eq. 3, D corresponds to the distance measure used

to compute the similarity of two feature vectors, and the

choice of D depends on the application. In our case, we

use D(xij , c
k) = χ2(xij , c

k) = 1
2

∑

n

(xij(n)−ck(n))2

xij(n)+ck(n)
to

compute the similarity of two SIFT vectors.

In Eq. 4, the spatial positions P (x) of the image patches
are compared and their distances are encoded within the

final similarity measure. This extended formulation allows

us to consider the relative spatial locations of the feature

vectors as well as their content similarity. This is achieved

by using the direct Euclidean distance between feature loca-

tions, without any spatial binning. Each feature location is

Table I
TRUE POSITIVE RATES AT THE EQUAL ERROR RATE POINT(EER) ON

CALTECH-4 DATASET.

Approach Airplanes Cars Faces Mbikes

spMILES 98.25 93.25 99.08 98.75
MILES [3] 96.0 89.75 99.54 97.75

normalized with respect to the search window size, in order

to achieve invariance to differences in scale. The scalars

σfeat and σspatial are predefined bandwidth parameters that

are used to scale each of the distance kernels. The bandwidth

parameter helps to adjust the sensitivity of the measure to

the spatial differences. These parameters can be selected by

using cross-validation over the training set.

We then apply L1-regularized linear SVM over this in-

stance embedding representation as in [3]. L1 regularization

SVM provides us implicit feature selection, so that in the

test phase, we only use those instances that have non-zero

weights. In this case, L1 SVM associates a weight wj with

each instance, by minimizing

||w||1 + C
∑

i

L(f(m(Bi)), yi) (5)

where L is the hinge loss. f(Bi) is the linear classification
function defined as

f(m(Bi)) =
∑

k

wks(Bi, c
k) + b. (6)

III. EXPERIMENTS

We have conducted two sets of experiments: the first one

is to measure the object recognition performance, and the

second one is to measure the object localization perfor-

mance.

A. Object Recognition

For the object class recognition problem, we use the

Caltech dataset from [8]. This dataset contains four ob-

ject classes, namely airplanes, cars, faces and motorbikes,

together with the background images. We extracted 128-

dimensional SIFT features [12] from the interest point

regions detected by the Harris-Hessian-Laplace [13] interest

point detector. We used the same set of features both for

MILES [3] and our spatial MILES (spMILES) approach.

The whole instance set xk in the training phase yields

≈ 30000 instances. We can either use the whole set or a
random subset of instances, or apply an initial clustering to

reduce the instance space. In our preliminary experiments,

we have not seen any significant performance difference

between using the whole set versus using the cluster centers;

thus, we chose to cluster the instances first (using k-means

with k = 3000) and use the instances that are closest to
the cluster centers as our reduced instance space. Note that

this clustering step is not as critical as in quantization-based

approaches. Here, clustering is used only as a well-defined



Table II
TRUE POSITIVE RATES AT THE EQUAL ERROR RATE POINT(EER) ON

CALTECH-4 DATASET.

Approach Airplanes Cars Faces Mbikes

spMILES 98.25 93.25 99.08 98.75
Fergus [8] 90.2 90.3 96.4 92.5
Opelt [11] 88.9 90.1 93.5 92.2
Loeff [9] 97.0 98.0 98.7 97.0

Bar-Hillel [10] 93.3 99.4 93.7 95.1

procedure to reduce the number of features to a computa-

tionally feasible subset, rather than building a quantization

codebook. We observe that L1-regularized SVM provides

good generalization with selecting as few as ∼ 200 instances
in the final model.

Table I shows the object recognition performance of the

proposed approach (spMILES). To make direct comparison

possible, we evaluate MILES and spMILES over the same

set of SIFT features, which are extracted as described above.

As can be seen, the spatial kernel helps in improving the

recognition rates in most of the classes.

Table II shows the recognition performance relative to the

other methods proposed. The recognition rate of spMILES is

quite competent. We should note that the methods presented

in this table are not directly comparable, because they

operate over different feature sets. Our method possibly

uses sub-optimal features. Nevertheless, our main point is to

demonstrate the improvement that is possible when instance

embedding is done with spatial reasoning. Various studies

have shown that optimized or multiple sets of features may

yield further performance improvement and this remains as

a topic for future work.

B. Object Localization

A main strength of the proposed approach is in its power

to localize object instances. Figure 1 shows examples of

localization. While MILES is quite powerful in the binary

decision about the presence of the object of interest, it is not

quite good at localization. By adding spatial reasoning in the

form of the spatial kernel, spMILES correctly localizes the

object. We perform localization by using a sliding window

approach over multiple scales. Candidate subwindows are

evaluated with respect to their SVM output over the spatial

embedding domain.

For evaluating object localization, we use the UIUC

multi-scale cars dataset [14] which consists of images of

cars at multiple scales and in multiple locations. There

can be more than one car in an image and there can be

some occlusions. Figure 2 shows example car detections

in this dataset and Table III shows the comparison of the

localization performance. The average precision rates are

calculated by ranking the positive detections by their output

score and the detections that have more than 50% overlap
with the ground truth locations are considered to be true

positives.
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Figure 1. Spatial reasoning helps multiple instance learning and improves
localization of the objects.

Table III
AVERAGE PRECISION (AP) RATES FOR OBJECT LOCALIZATION

EXPERIMENT ON UIUC CARS DATASET.

MILES spMILES [2]

localization AP 19.17 90.3 90.6

As can be seen, although MILES has high recognition

rates, without the spatial reasoning, it tends to yield incorrect

localization. This situation can also be observed from the

example images given in Fig. 2.

Figure 3 shows some localization results from the more

challenging Graz-02 dataset [11]. In this dataset there are

severe occlusions, as well as viewpoint and scale changes. In

order to compensate for viewpoint changes, we apply sliding

window technique over multiple aspect ratios (i.e. 0.5,1,1.5).

As seen from the examples in Fig 3, the spMILES approach

is able to detect the object of interest successfully in many

difficult cases.

IV. CONCLUSION

In this paper, we present a multiple instance

learning(MIL)-based approach for object recognition and

localization. Our approach extends the discriminative MIL

framework to image domain by using spatial information

by means of a spatial kernel. Our formulation is directly

compatible with the instance embedding framework

introduced in [3]. The results demonstrate that the proposed
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Figure 2. Localization examples from UIUC multi-scale cars dataset.

 

 

2.472

 

 

2.5315

 

 

2.62

 

 

6.696

 

 

3.1039

 

 

1.4495

 

 

3.591

 

 

1.3443

 

 

2.3811

Figure 3. Localization examples for bicycle class from Graz-02 dataset.
We perform a sliding-window search over multiple scales and aspect ratios
to accommodate for differences in orientations of objects.

approach offers considerable improvement over the object

recognition and localization performance as compared to

using multiple instance embedding [3] alone.
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