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Abstract— Type 2 fuzzy systems have been under investigation 
for a while and the projection of type 2 understanding for 
uncertainty management onto the connectionist models –i.e. 
neural networks- seems an interesting field of research. This 
paper considers neurons having multiple bias values defining a 
new structure that resembles the uncertainty handling capability 
of type 2 fuzzy models. Such a neuron provides many activation 
levels that are combined to obtain the neuron response. A neural 
network with this new model is presented. Several simulation 
results are shown and the universal approximation property is 
emphasized. 
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I.  INTRODUCTION 
A multilayer perceptron network with error 

backpropagation was a standard setting for a long time. 
Research towards improving this configuration has two major 
lines, first is the changing of the training scheme for better 
performance, e.g. Levenberg-Marquardt algorithm, terminal 
attractor based algorithms or those based on sliding mode 
learning, [1-3]. The other direction is to change the structure, 
reinterpreting the biology, assuming a different scheme of 
connections might result in better performance. This paper 
considers the second line for obtaining similar performance 
with lower computational cost. 

In the literature, several studies reporting new neuron 
models have appeared. Among those, Scott discusses the 
construction of McCulloch neuron via utilizing the tools of 
linear programming, [1]. An optimal design is presented with 
the models having at most 3 inputs. A survey of artificial 
neuron models is presented in [2], where the models having 
tunable activation functions with a preselected type of neuronal 
activation function, or changeable activation functions with 
tunable parameters are reported together with models fuzzy 
neuron models, quantum neuron models and those based on 
chaos systems. In [3], Yadav et al present a generalized mean 
type activation performing a net sum computation according to 
S=Σj(wjxj

r+θ)1/r where the inputs are powered up to n adjustable 
level of generalization parameter. Classification and function 
approximation examples are presented and superiority of the 
approach is emphasized. Use of logical operators to build 
logical separators is achieved by a multi valued logic neuron 
model discussed in [4], defining multiple dendritic activity and 
aggregation of these is presented in [5] and wavelet based 

neuronal structures are elaborated in [6], all having the goal of 
improving the capabilities of classical neuron model. Another 
model utilizing the residue reduction is discussed in [7] within 
the context of classification and random search method is 
adopted as the training scheme. In [8], Karaköse and Akın 
emphasize that a conventional activation function could be 
realized by an embedded type 2 fuzzy model, so a neural model 
exploiting type 2 formalism indirectly could help to some 
extent. This study differs from [8] in the implementation of 
activation functions. Current work directly describes the 
neuronal activation functions as type 2 entities whereas these 
functions are described by type 2 membership functions in [8]. 

Clearly, the efforts toward obtaining a versatile model is a 
continuing, and the results presented here extend the subject 
area to the realm of type 2 fuzzy systems, [9-10], and their 
capabilities in representing and manipulating vagueness hidden 
in the reality. This paper is organized as follows: The second 
section introduces the type 2 neuron model, the third section 
describes the data sets used for comparison, the fourth section 
presents a comparison of the performances and finally the 
concluding remarks are given at the end of the paper. 

II. TYPE 2 NEURON MODEL 
Consider a type 1 neuron model admitting the net sum S 

given by (1) as the input to the neuronal activation function. 
The inputs are denoted by ujs and the associated weights are 
wjs. Typically a bias value (θ ) is added to the net sum (See (2)) 
to obtain a translation along the horizontal axis and this enables 
to realize maps that do not pass through the origin, i.e. y ≠ 0 for 
S = 0. 

 
1

m

j j
j

S w u
=

=∑  (1) 

 tanh( )y S θ= +  (2) 
 

A number of such neurons connected in a networked fashion 
constitute a neural network as shown in Figure 1. Typical 
feedforward computation for a single (linear) output, single 
hidden layer (having hc neurons) neural network structure like 
the one depicted above can be computed as follows: 
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where 1
ijw  corresponds to the weight matrix on the left, which 

is the hidden layer’s weight matrix, and 2
1 jw .denotes the entries 

of the output layer weight matrix. The output of this classical 
neural structure is denoted by yc. Total number of adjustable 
parameters in this setting is Cp==(m+2)hc+1. 

 

 

 

 
 

 

Figure 1.  m-input single-output neural network structure 

Expressing the model of a neuron in type 2 formalism 
would produce the following excitation picture. 

 

Figure 2.  Activation scheme of a type 2 neuron compared to type 1 neuron. 
There are n different activation functions within a single type 2 neuron. 

According to the excitation scheme depicted in Figure 2, a 
single neuron fires at multiple levels determined by the value 
of bias values. To obtain the response of the type 2 neuron, yp, 
the aggregation of the computed activation levels is performed 
as given in (5). 
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where no biasing is done at this stage, instead, the scheme in 
(6) is followed to obtain multiple levels of activations (zi) out 
of a single type 2 neuron. 

 tanh( ),  1,...,i iz S i nθ= + =  (6) 
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where o denotes the output of the neuron. Total number of 
adjustable parameters of a type 2 neuron is equal to m+2n+1, 
where n is the number of different bias values. 

Now we are ready to define the type 2 neural network 
based on the type 2 neuron model introduced above. We 

consider that there are hp hidden type 2 neurons and their 
outputs are summed up to compute the network response. More 
explicitly, 
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where the adjustable parameters are wij, θk, φij, Θ, the total 
number of which add up to Cp=(m+2n)hp+1. 

The potential advantage of constructing such a model is to 
obtain a distribution corresponding to a particular excitation (S) 
and to convert it into an output by utilizing a set of adjustable 
weights, also peculiar to each specific neuron. 

III. CONSIDERED DATA SETS 
Six sets of data have been considered. These are explained 

below. 

A. XOR Data 
The XOR problem is always the first step of discussing the 

performance associated to a novel neural network approach. 
We consider this data set as a basic classification approach 
distinguishing the two different logic levels and interpolating in 
between. 

B. Iris Data from UCI Repository 
The problem here is to distinguish classes of Iris plant 

according to sepal length, sepal width, petal length and petal 
width, all in centimeters. The response of the neural classifier 
is one of the three labels Iris Setosa, Iris Versicolour or Iris 
Virginica. In the training we assign -1 for the label Iris Setosa, 
0 for the label Iris Versicolour and +1 for the label Iris 
Virginica and convert the classification problem into a tractable 
regression problem in between the three integers. Thresholding 
is possible after the training is finished, yet, the performance of 
the classifier is directly proportional to final RMSE value 
achieved. In the UCI repository, 150 instances are provided. 
The training data has been selected in such a way that every 
class contributes 40 instances, adding up to 120 instances for 
three classes, and the remaining 30 instances have been used as 
testing data set, [11-12]. 

C. Subsonic Cavity Flow 
Due to the infinite dimensional mathematical 

representation and spatially continuous nature, processes 
governed by partial differential equations display several 
difficulties. Particularly for the aerodynamic flow problems, 
the process is governed by Navier-Stokes equations, which are 
inextricably intertwined and difficult to handle in most cases. 
In [13-15], a flow modeling and control system is introduced. 
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The main goal was to describe a dynamic model predicting the 
pressures at the floor of the cavity (See Figure 3(a)-(c)). These 
locations include the signal to the host computer (x1), the 
output of the actuator (x2), the measurement at the receptivity 
point (x3), the measurement at cavity trailing edge (x5) and the 
measurements before and after the rectangular cutout (x4, x7) 
are also depicted in Figure 3(a). Conventional approach to 
model such systems utilize proper orthogonal decomposition 
with the method of snapshots, singular value decomposition 
and so on, however, these methods are very likely to yield a 
very complicated model composed of many ordinary 
differential equations having quadratic nonlinearities and 
drifts in the solutions. Since they work on the numerical data, 
neural models are good alternatives to build local models, e.g. 
at the cavity floor (x6), of the entire process. 

 

(a) 
 
 
 
 
 

Figure 3.  Schematic view and sensor locations on the setup 

The experimental setup is composed of a host computer 
having a digital signal processor, a filter to remove the 
spurious flow content at high frequencies, a Titanium 
diaphragm synthetic actuator and an air system providing the 
flow at a desired Mach number. Since the spectral view is rich 
at Mach 0.25, we consider the modeling problem based on 
data obtained under the conditions mentioned above, [12]. The 
training and testing data sets have 250 and 100 pairs, 
respectively. The data have been collected at a sampling 
frequency of 50 kHz. The data have been obtained with a 
sinusoidal excitation at x1 with frequency 3920 Hz and 
magnitude 4.06V. The neural network based modeling 
problem is to develop the function f(⋅) in (12) such that the 
response matches the real time data precisely and minimum 
amount of sensory information is exploited. 

 1 1
6 1 3 5 6 6( , , , , )k k k k k k

py x f x x x x x+ −= =  (12) 

The function f(⋅) in (12) is highly nonlinear map, which 
cannot be obtained unless the approaches exploiting the input-
output numerical data are utilized. 

D. A Biochemical Benchmarking Process for Modeling and 
Control 
In [16-19], the biochemical benchmark problem is defined 

as one of the challenging control problems displaying fast and 
highly nonlinear response with particular state and input 
constraints. The process is composed of a tank containing 
water, cells and nutrients denoted by c1 and c2, respectively. 
The constraints characterizing the motion are given by the 
following equations. 
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The regression problem for this process has been split into 
two sub problems, one for the cell dynamics, the other for the 
nutrient dynamics. The regression problem in both is to predict 
the next value of the asked state variable (ci(t+1)) given the 
current values of the current state variables (c1(t), c2(t)) and the 
current input, u(t). For randomly selected 250 initial states and 
input values, the next values are computed by utilizing the first 
order Euler discretization of the process equations with a 
sampling period of 0.01 sec. 

E. Circle Data 
This dataset is another standard set having two inputs 

denoted by (x,y)∈[−1,+1]×[−1,+1]. The output is +1 if 
x2+y2<0.25 and −1 otherwise. A grid with resolution 0.1 in both 
directions is selected and training is carried out with 441 pairs 
of data with randomly selected another 100 is considered as the 
test set. 

IV. PERFORMANCE COMPARISON STUDIES 
In order to carry out a fair comparison, the only parameter 

that changes in between the classical and proposed models 
must be the structure. In other words, in comparing the 
performance of two structures, one has to maintain the equal 
number of adjustable parameters. To ensure this, we assume 
the following procedure: Since Cc=(m+2)hc+1 and 
Cp=(m+2n)hp+1, we set the number of biases, n, freely, and 
choose the number of hidden neurons in both networks 
according to hp=m+2 and hc=m+2n, so that we obtain Cc=Cp. 

Once a dataset is chosen and the type 1 network is setup. 
All adjustable are initialized randomly from [−1,+1] and 1000 
epochs of training is carried out. The same experiment is 
repeated 1000 times, yielding a 1000×1000 matrix of epoch 
error (also called the Mean Squared Error (MSE)) evolution for 
each experiment. Upon completion of this, type 2 network is 
initialized similarly and the same set of experiments is carried 
out. Next, the dataset is changed and the same data collection is 
repeated until the all six sets of classification/ regression 
problems are covered. During the experiments, we considered 
the Levenberg-Marquardt training scheme for parameter 
adjustment. We utilized an adaptive step size algorithm 
adjusting the balance between gradient descent and Newton 
method, and all training has been implemented on a Pentium 
IV computer. Aside from the completion of 1000 epochs, as a 
stopping criterion, we adopt a checking routine stop if the 
checking error was increasing for the latest 5 epochs. The final 
value of the epoch error in each particular experiment is 
considered as the ultimate level of performance of that 
particular training trial. A 100 bin histogram of the final MSE 
levels is build and the results are shown in Figure 4, where the 
horizontal axis is the Final MSE level and the vertical axis is 
the frequency of occurrence of a result out of the set of 1000 
experiments. 

According to the figure, it is seen that the XOR problem 
ends up with a final MSE level of order 10-30. The top left 
subplot of the figure depicts the results of the XOR case and 
the mean of the distributions are also plotted with an ○ sign 
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along the horizontal axis. Due to the negligible small values of 
the means, we consider both methods as equally successful. 
For the three-class Iris recognition problem, although the 
means of the two distributions almost coincide, the proposed 
technique is very slightly better as its curve is below the curve 
of classical approach. For the flow identification problem, 
which is a regression problem, classical approach results is 
slightly preferable. Predicting the cell mass (c1) of the 
biochemical process model is depicted in the middle right 
subplot of the figure. The proposed technique performs better 
than the classical NN structure. When the nutrient amount 
behavior is taken into consideration, (bottom right subplot) 
almost the same mean values are obtained and both methods 
perform equally acceptable, yet the proposed technique 
displays smaller variance indicating better consistency. 
Regarding the circle dataset, the means of the two distributions 
are seen to be very close and the proposed technique has a 
larger variance. 
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Figure 4.  A comparison of the classical (type-1, black) and proposed 
(type-2, red) approaches. The mean of the distributions are marked on 
the horizontal axis and mp denotes the mean of the distribution of the 
curve with the proposed technique, and mc is that for the classical 
approach. 

V. CONCLUSIONS 
The classical feedforward NN structure is based on the 

computation of many net sums at the hidden layer with single 
biasing then linear (or nonlinear) aggregation of the hidden 
layer outputs, whereas, this paper describes a single neuron that 
is based on single net sum augmented with multiple biases and 
aggregation at the output. The proposed form of the neuron is 
more similar to the type 2 context of the fuzzy systems and is 
therefore named type 2 neuron. This form of neuron structure 
is simpler than the classical network structures and is able to 
yield better performance levels with better consistency, 
measured by the variance of the associated distribution. 
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