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Abstract— This paper presents a comparison of Adaptive
Neuro Fuzzy Inference Systems (ANFIS), Multilayer Perceptron
(MLP) and Support Vector Machines (SVMs) in identification of
a chemical process displaying a rich set of dynamical responses
under different operating conditions. The methods considered
are selected carefully as they are the foremost approaches
exploiting the linguistic representations in ANFIS, connection-
ist representations in MLP and machine learning based on
structural risk minimization in SVM. The comparison metrics
are the computational complexity measured by the propagation
delay, realization performance and design simplicity. It is seen
that SVM algorithm performs better in terms of providing
an accurate fit to the desired dynamics but a very close
performance result can also be obtained with ANFIS with
significantly lower computational cost. Performance with MLP
is comparably lower that the other two algorithms yet MLP
structure has the lowest computational complexity.

I. INTRODUCTION

Choosing the best approximator for a given experimen-

tal data is an active research field in engineering, with

the name identification. Although the linear theory offers

many tools and approaches (See [1]), problems involving

the investigation of nonlinear systems have motivated the

scientists to develop alternative forms of representing the

knowledge compactly, (See [2], [3]). One major goal in

all cases was to maintain the generality and one of the

well known strategies is Adaptive Neuro Fuzzy Inference

Systems exploiting the power of verbal descriptions through

membership functions and inference engines equipped with

a rulebase. Another is Multilayer Perceptron structure of

artificial neural networks (NNs), which store the desired

form of knowledge within a massively interconnected layered

structure. The third is a Support Vector Machine exploiting

the structural risk minimization principle instead of empirical

risk minimization as in the cases of ANFIS and MLP.

This new approach enables the minimization of the upper

bound of a risk function thereby enabling the achievement

of optimum regression functions.

This paper is organized as follows. The second section

introduces the bioreactor benchmark problem and analyzes

its behavior. The following three sections present the SVM,

MLP and ANFIS approaches in turn. Operating conditions,

results and a discussion are presented in the sixth section.

The concluding remarks are given at the end of this paper.
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II. BIOREACTOR BENCHMARK PROBLEM

The bioreactor is a tank in which the biological cells are

mixed with nutrients and water. The cells and nutrients are

in a dynamical interaction modeled by (1) and (2), where

c1(t) denotes the cell mass while c2(t) stands for the nutrient

amount. The process is continuously fed by pure water and

the variable characterizing the inflow rate is denoted by

w(t). In order to maintain the reaction volume constant, the

chemical content of the tank is removed at a rate equal to

the inflow rate.

ċ1(t) = −c1(t)w(t) + c1(t) (1 − c2(t)) e
c2(t)

γ (1)

ċ2(t) = −c2(t)w(t) + c1(t) (1 − c2(t)) e
c2(t)

γ
1 + β

1 + β − c2(t)
(2)

where the state variables are constrained by Ω := 0 ≤
c1(t), c2(t) ≤ 1. In the plant model given above, the growth

rate is characterized by the parameter β = 0.02 and the

nutrient inhibition parameter is given by γ = 0.48.

In Fig. 1, several trajectories are shown for a set of initial

conditions denoted by a circle. Each subplot depicts the

evolution of the system at a constant inflow rate indicated

on the top. Depending on the value of the inflow rate, the

attractors change their locations while new attractors emerge,

e.g. for w = 0 no attractors are observed, for w = 1 a limit

cycle which is common to all starting points occurs, and for

w = 2 a single attractor is created. When w = 0.8290, the

eigenvalues of the linearized model are approximately equal

to 0 ± j1.7543, i.e. the system undergoes Hopf bifurcation

and displays spontaneous oscillations due to the limit cycle.

In this regime, cell mass varies in between 0.1219 and 0.1466

while the nutrient amount fluctuates in between 0.8243 and

0.8996.
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Fig. 1. The evolution of the process state for different initial conditions
and at different inflow rates. The trajectories are for 6 seconds time.

In [4], Ungar points out that although this system is not

a completely realistic model of any bioreactor, as seen from
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the presented discussion, the system considered in this paper

displays several challenges highlighted also in [5], [6], [7]

with a similar motivation. Due to the presented properties of

the system, the model constitutes a good candidate for scru-

tinizing the merits and effectiveness of networked modeling

techniques revealing a set of flexible nonlinearities in various

forms.

III. A SUMMARY OF SVMS FOR APPROXIMATION

Due to powerful regression and classification capabilities

based on numerical observations, the use of SVMs is a

remedy among other alternatives such as fuzzy logic, NNs or

genetic algorithms, which generally suffer from the presence

of multiple local minima, structure selection (hidden layer

number or node/rule number, population size) problem and

overfitting, [8]. A common property of MLP, ANFIS and

SVMs is to map the input vector to a feature space, where the

regression can be performed much efficiently. Yet the major

difference in SVM based learning is the minimization of an

upper bound of a cost function instead of minimizing the cost

itself. The goal of the former is to achieve an optimum value

of the structural risk function whereas the latter terminates at

the minimum of the empirical risk function. This practically

makes it possible to generalize the information contained

implicitly in the training set in some sense of optimality,

[9]. Consider the regression problem over the pairs T =
{(u1, d1), . . . , (uNT

, dNT
)}, ui ∈ R

m, di ∈ R with a

function

f(u) = 〈w,u〉 + b (3)

where w and b denote the weight vector and the bias value,

respectively. In above, 〈·, ·〉 stands for an appropriately de-

fined operator, which is an inner product for linear regression

and a kernel for nonlinear regression. Defining a quadratic

loss function as in (4) quantifies the performance for the ith

pair,

L(di, f(ui)) = (di − f(ui))
2
. (4)

and minimizing the structural risk given by (5) lets us obtain

the best values of wis causing least complexity represented

by ||w||2;

R =
1

2
||w||2 + C

NT
∑

i=1

L(di, f(ui))
2, (5)

where C is a parameter determining the relative importance

of the terms contributing to R, [9]. The primal form of the

optimization problem can be expressed compactly as

min
w,b

1

2
||w||2+C

NT
∑

i=1

(ξ2
i +ξ̂2

i ) such that







f(uj) − dj ≤ ξj

dj − f(uj) ≤ ξ̂j

ξj , ξ̂j ≥ 0
(6)

where j = 1, 2, . . . , NT , ξj and ξ̂j are slack variables

penalizing the deviations from the target output. The problem

described above can be converted into a convex quadratic

um
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Fig. 2. Structure of a MLP

optimization problem by writing the dual representation (See

[3] for details). The solution can be obtained by introducing

the Lagrange multipliers (λ) and performing the following

minimization for λ ∈ R
NT ;

min
λ

1

2

NT
∑

i=1

NT
∑

j=1

λiλj〈ui,uj〉 −
NT
∑

i=1

λidi +
1

2C

NT
∑

i=1

λ2
i , (7)

with constraint
∑NT

i=1
λi = 0. It should be noted that the

support vectors are the uis for which the corresponding λi

is nonzero. The result of the minimization lets us obtain

w
∗ =

NT
∑

i=1

λiui (8a)

b∗ =
1

NT

NT
∑

i=1



yi −
NT
∑

j=1

〈ui,uj〉λj



 (8b)

which are to be used in (3). The nonlinear regression

problem is to replace the operator 〈·, ·〉 in (3) with a kernel

function satisfying the Mercer conditions, [3]. In this paper,

we utilize the spline kernel defined as 〈u,v〉 :=
∏m

i=1
ki,

where u = (u1, u2, . . . , um)T, v = (v1, v2, . . . , vm)T, k =
(k1, k2, . . . , km)T and ki is computed as ki = 1 + uivi +
1

2
uivi min(ui, vi) −

1

6
min(ui, vi)

3.

IV. A SUMMARY OF MULTILAYER PERCEPTRON

The history of MLP goes back to the works devoted to

the understanding of brain activity based on neurons (nodes).

An ordered structure of a set of neurons form a layer, and

building layers in an organized fashion constitutes a MLP as

shown in Fig. 2. The figure depicts an input layer containing

m nodes, an output layer composed of n nodes and two

hidden layers, in which the number of nodes are to be

determined by the designer.

As seen from the figure, the structure of the MLP has many

internal connections, called synaptic connections, which pos-

sess synaptic strengths. In other words, the biologically re-

sistive nature of such connections with a saturating response

of a neuron is simply modeled as h = Φ(s), where s denotes

the weighted sum of incoming signals and Φ(·) stands for

the neuronal activation function that is responsible for the

saturated response for the large values of the absolute value

of its argument. Clearly, the number of terms involved in
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computing the value of s for each neuron indicates the

possible architectural redundancy within which the desired

form of knowledge (mapping) is stored. Compactly, denote

the number of layers excluding the input layer by K and the

output vector of the ith layer by hi, where hi = Φ(si) and

si is the vector of net sums computed as

si = Wihi−1 + Bi, i = 1, 2, . . . , K (9)

where Wi and Bi correspond to the weight and bias terms of

the ith layer. It is clear that for a NN structure with single

hidden layer containing hyperbolic tangent type activation

functions, and a linear output layer, the successive computa-

tions through the network (one forward pass to compute the

output) would be

h0 = u (10a)

s1 = W1h0 + B1 (10b)

h1 = tanh(s1) (10c)

s2 = W2h1 + B2 (10d)

f = s2 (10e)

where the weight and bias terms seen above have appropriate

dimensions and the input-output relation would simply be

f = W2 tanh(W1u + B1) + B2. Once the structure is

fixed, the next issue is to adopt a suitable learning strategy.

Although there are numerous alternatives for tuning the MLP

weights and biases, Levenberg-Marquardt (LM) optimization

technique is the one that is frequently used for its rapid

convergence and accurate results. The LM algorithm is

an approximation to the Newton’s method, and both of

these methods have been designed to solve the nonlinear

least squares problem, (See [10], [11]). Since the problem

considered here requires offline training of a MLP structure,

LM algorithm best fits in our problem settings.

Briefly, vectorize the set of all adjustable parameters and

denote this vector by σ, which is a P × 1 vector. At

discrete time k, the cost function, which is an empirical risk

function, qualifying the performance of the interpolation can

be computed as in (11) and the LM update is formulated in

(12).

E(σk) =
1

2

NT
∑

i=1

n
∑

j=1

(dij − fj(ui, σk))
2

(11)

σk+1 = σk −
(

αI + ∇2
σk

E(σk)
)−1

∇σk
E(σk) (12)

where α > 0 is a user-defined scalar design parameter and I

is the identity matrix. It is important to note that, for large α,

(12) becomes Gauss-Newton method, and for small α, the

tuning law becomes the standard Gradient Descent (GD).

Therefore, LM method establishes a good balance between

GD and Gauss-Newton methods.

The pioneering work of [12] considers the MLP structure

with the GD algorithm for identification and control purposes

through some abstract yet descriptive examples with an

emphasis on slow convergence of the GD technique which

has later been resolved by the use of LM technique.

V. A SUMMARY OF LEARNING AND

GENERALIZATION WITH ANFIS

Fuzzy logic offers one natural way for representing knowl-

edge that is similar to human reasoning. Partitioning the

input space by the use of fuzzy membership functions

denoted by µ, determining the local conclusions through

rules and utilizing a flexible method of combining the

localized information result in a highly interpretable and

useful model that acts globally. ANFIS, in this respect, is one

of the widely known architectures exploiting the power of

connectionist structures while maintaining the verbal nature

through membership functions and inference mechanisms.

In a fuzzy system structure, the crisp inputs are fuzzified

through the computation of membership functions. This prac-

tically maps the input space to a feature space characterized

by fuzzy sets. In the inference engine, computed membership

values for each rule are converted into a firing strength that

indicates the activation level of the rule. The parameters of

the membership functions and auxiliary parameters (if any)

are stored in the knowledge base, and a defuzzifier maps the

input vector u to a scalar output value, which is crisp.

Specifically, defining wi, w̃i as the firing strength and the

normalized firing strength of ith rule, respectively, the input

output relation of the ANFIS structure with the rulebase

structure containing R rules as given below, can be expressed

as in (13a), where product inference and first order Sugeno

type defuzzifier are the standard settings of ANFIS architec-

ture (See [2], [13]). Note that Ui, Vi and Wi stand for the

fuzzy sets characterized by the membership functions, yi in

the ith rule is the local conclusion suggested by the rule and

nu, nv and nw correspond to the number of linguistic labels

for the first, second and mth input variables respectively.

IF u1 is Ui & u2 is Vi & . . . & um is Wi THEN yi = zi

wi =
m
∏

j=1

µij(uj) (13a)

w̃i =
wi

∑R
k=1

wk

(13b)

zi = bi +

m
∑

j=1

φijuj (13c)

f =
R

∑

i=1

w̃izi (13d)

In (13a), uj corresponds to the jth entry of the input vector u.

The training is achieved by adopting a hybrid tuning mech-

anism. Specifically, bi and φij are adjusted by Least Mean

Squares (LMS) algorithm, while the other parameters are

tuned by GD method. It is emphasized in [2], [14] that such

a tuning scheme reduces the dimensionality of the search

space of GD algorithm and speeds up the convergence.
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VI. OPERATING CONDITIONS, RESULTS AND

DISCUSSION

Let the output of the model and the plant be x(t) =
(x1(t) x2(t))

T
and c(t) = (c1(t) c2(t))

T
, respectively. In

the series-parallel connectivity, the emulator receives the

plant state, c(t), as well as the external input w(t). The

response of the model is the response after a sampling period,

say ∆t, i.e.

x(t) = f(c(t), w(t)) = c(t + ∆t) + ε(t) (14)

where ε(t) is the approximation error and the input vector

of the emulator is u(t) := (w(t) c(t)T)
T

. The emulator

is forced to learn the map x(t) = c(t + ∆t) yet the

approximation error denoted by ε(t) determines the accuracy

of realization.

In the training stage, randomly generated samples are

utilized. As suggested by [4], the derivative term in the

continuous time plant dynamics is discretized with first

order Euler approximation with a discretization interval of

0.01 sec. Three sets of data are generated from the interval

(wk, c1 k, c2 k) ∈ [0, 2] × [0, 1] × [0, 1] and the target values

(c1 k+1, c2 k+1) are computed using (1)-(2).

• Training Data (T ): The numerical information available

in the training data set is used when the parameters of

the considered emulator are modified. The number of

pairs contained is NT = 1002.

• Checking Data (C): This data set is used whenever the

training algorithm enables terminating the training pro-

cedure at the best level of generalization. The number

of pairs contained is NC = 200.

• Validation Data (V): The information used to visualize

after the training stops. The number of pairs contained

is NV . The samples in the set V are those constructing

the trajectories shown in Figure 1. Although the samples

in C are enough to consider, we elaborate trajectories

that contain continuous evolution to see to what extent

the emulator performs.

One important point in the comparison work we carry out

here is the assumption that the model in (1)-(2) is nominal

and the data are noiseless. Since the generalization ability of

each approach is assessed by utilizing a checking data set,

working with noise free data sets do not constitute a difficulty

for drawing performance conclusions. This is a deliberate

choice to unfold the performance of the widely used approx-

imators under ideal conditions. Due to the space limit, we do

not consider the issues of noise in the data, which would of

course entail a thorough analysis of responses under different

signal to noise ratios.

The results of the performed experiments are summarized

in Tables I-III, where TT denotes the total training time in

seconds, T∆ stands for the propagation delay in milliseconds,

TMSE corresponds to training MSE level, CMSE corresponds

to checking MSE level, and VMSE stands for the performance

index given by

VMSE :=
1

N

N
∑

p=1

2
∑

i=1

1

Tf

∫ Tf

0

(cp
i (t) − x

p
i (t))

2
dt (15)

In above, a superscript p stands for indexing the individual

trials and Tf denotes the final time of the simulation for a

single trial.
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Fig. 3. MSE plots for MLP and ANFIS structures.

The training of SVM structures is continued until the

optimal solution is found. The training of the MLP struc-

ture is terminated when the error with the checking data

increases for 5 successive epochs. For the ANFIS structure,

we have observed that the checking error is decreasing with

the training error and decided to stop the training after a

predetermined period of time, which is kept close to that

recorded in the training of the SVM structure. By this means,

we aim to compare the algorithms whose training last almost

equal periods of time. The time evolution of MSE values

computed for training data (solid) and checking data (dashed)

are shown in Fig. 3. The final values of training times are

tabulated in the first rows of Table I-III.

TABLE I

RESULTS OBTAINED WITH ANFIS

ANFIS1 and ANFIS2

TT 2369.7 and 2370.5

T∆ 3.6796

TMSE 4.6602e−11 and 8.3445e−8

CMSE 1.3432e−10 and 2.5312e−11

VMSE 1.1402e−7

TABLE II

RESULTS OBTAINED WITH SVM

SVM1 and SVM2

TT 2400.1 and 2341.4

T∆ 244.6677

TMSE 1.0078e−19 and 3.9455e−16

CMSE 3.0235e−11 and 4.5366e−11

VMSE 1.1376e−7

According to the tables, one sees that MLP realizes the

dynamics in (1)-(2) within a single structure yet ANFIS and

SVM approaches individually realize the state predictions as

they have single output.
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TABLE III

RESULTS OBTAINED WITH MLP

MLP

TT 3843.8

T∆ 0.0309

TMSE 5.7276e−12

CMSE 2.0507e−10

VMSE 6.8370e−6

Triangular membership functions are utilized with ANFIS

architectures, two linguistic labels are utilized for w(t) and

c1(t) while 5 labels are reserved for c2(t) in both ANFIS

structures as in (13a). First order Sugeno type defuzzification

is exploited and a hybrid learning strategy is utilized. The

membership functions are tuned with GD algorithm while

the coefficients of the defuzzifier polynomials are tuned with

Least Mean Squares (LMS) algorithm (See [2] and [13] for

details).

Regarding the SVM structures, with a quadratic loss

function and spline kernel as discussed in Section 3, we have

obtained the structural complexity values ||w1||2 = 1.015475
and ||w2||2 = 34.380741. Besides, it is observed that the

entire set of training pairs in T are contained in the set of

support vectors. Quadratic programming tools of Matlabr is

utilized to solve the optimization problem and for both SVM

structures, the condition
∑NT

i=1
λi = 0 is individually met

precisely. The parameter C is taken as infinity for both SVM

structures to increase the importance of regression precision

in the optimization problem.

A comparison in terms of training times stipulate that a

designer can quickly obtain a prototype with MLP structure.

The MLP emulator considered here has two hidden layers

having 24 neurons in the first hidden layer, and 12 neurons

in the second hidden layer. The neuronal activation functions

in the hidden layers are hyperbolic tangent, and those in the

output layer are linear. These settings highlight a standard

MLP structure and the smallest propagation delay measured

as T∆ = 0.0309 msec. is with MLP structure and this fact

emphasizes the operational simplicity of this approach.

Considering the training and checking MSE levels for

all three approaches, it is seen that SVM reaches the

smallest values in terms of TMSE. For a fair comparison

of all three approaches, summing TMSE and CMSE values

for ANFIS1 and ANFIS2 structures yield a total value of

TMSE = 8.3492e−8 and CMSE = 1.5963e−10. Performing

the same computations for SVM structures result in TMSE =
3.9465e−16 and CMSE = 7.5601e−11. With these values,

noting that the total CMSE values are almost at the same or-

der, it is understood that in terms of realization performance

measured over the training pairs, the best approximation

results are obtained with SVM emulators, then with MLP

emulator. In spite of the availability of other kernels for

SVMs, e.g. radial basis functions as one of the popular

ones, we tried all such alternatives yet the best results have

been obtained with the spline kernel. Though we make

no generalization, the application we consider here is best

handled by the use of spline kernel.

A good measure of performance is VMSE, which is given

in (15). We compute this quantity for the trajectories shown

in Fig. 1, and obtain a single quantity by summing up the

values computed for every subplot. Basically, this suggests

N = 60 trials in total and the trajectories contain the full

diversity of the regimes. These settings imply the consider-

ation of NV = 360, 000 pairs during the validation phase.

According to the results seen in the three tables, SVM

approach is seen to be more accurate than ANFIS and MLP

but the SVM approach is computationally more demanding

than the others. In addition to this, the result with ANFIS

structures is slightly higher than that with SVM yet the values

are very close to each other. This result shows that one should

choose ANFIS structure as its precision is as high as SVM

with affordable propagation delay indicating low operational

complexity.

A last point that should be stressed here is the way these

emulators are obtained. For each approach, we have carried

out many experiments and chosen the ones displaying best

characteristics, and performed the comparison among the

most successful candidates of every approach. Clearly, one

can develop simpler emulators for prototyping but a com-

parison of almost equally time consuming emulator design

efforts stipulate dramatically different results in terms of

practical applicability and realization accuracy as discussed

above.

VII. CONCLUSIONS

Due to a rich set of responses emerging under different

operating conditions, the bioreactor benchmark problem is

a prime example for studying the merit and effectiveness

of identification tools based on numerical data. This paper

considers three approaches and their widely used tuning

schemes to develop a one-step ahead predictor for the

benchmark process. Series-parallel identification scheme is

used and no noise is considered in assessing the performance

of the approaches.

In brief, MLP approach is found to be simple and practical

for data based modeling applications yet the SVM approach,

despite its computational burden, approximates the presented

data very accurately and the same precision can also be

obtained in the trajectories seen in Fig. 1. According to the

results obtained, a good balance in the computational cost

versus precision scale is realized by the ANFIS architecture.

The contribution of this paper is to present a fair compar-

ison among three foremost approximation strategies utilized

for the identification of a plant displaying several challenges.

The paper unfolds the design tradeoffs and aims at guid-

ing the practitioners by highlighting key aspects of each

approach. Future research in this subject has the goal of

unfolding the facts arise when the considered data and the

operating environment contain uncertainties.
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[6] Efe, M.Ö., E. Abadoglu, and O. Kaynak (1999), “A Novel Analysis
and Design of a Neural Network Assisted Nonlinear Controller for
a Bioreactor,” International Journal of Robust and Nonlinear Control,
v.9, no.11, pp.799-815.

[7] Puskorius, G.V., L.A. Feldkamp (1990), “Neurocontrol of Nonlinear
Dynamical Systems with Kalman Filter Trained Recurrent Networks,”
IEEE Transactions on Neural Networks, v.5, n.2, pp.279-297.

[8] Wang, X.-D. and M.-Y. Ye, (2004), “Nonlinear Dynamic System Iden-
tification Using Least Squares Support Vector Machine Regression,”
Proceedings of the 3rd International Conference on Machine Learning
and Cybernetics, August 26-29, Shanghai, China, pp.941-945.

[9] Gunn, S.R. (1998), “Support Vector Machines for Classification and
Regression,” ISIS Technical Report, Univ. of Southampton, United
Kingdom.

[10] Hagan, M.T. and M.B. Menhaj (1994), “Training Feedforward Net-
works with the Marquardt Algorithm,” IEEE Transactions on Neural
Networks, v.5, no.6, pp.989-993.

[11] Battiti R. (1992), “First-second-order methods for learning: between
steepest descent and Newtons method,” Neural Computation, v.4,
pp.141166.

[12] Narendra, K.S. and K. Parthasarathy (1990) “Identification and Control
of Dynamical Systems Using Neural Networks,” IEEE Transactions on
Neural Networks, v.1, No. 1, pp. 4-27.

[13] Takagi, T., and M. Sugeno (1985), “Fuzzy Identification of Systems
and Its Applications to Modeling and Control,” IEEE Transactions on
Systems, Man and Cybernetics, v.15, n.1, pp.116-132.

[14] Jang, J.-S.R. (1993) “ANFIS: Adaptive-Network-Based Fuzzy Infer-
ence System,” IEEE Transactions on Systems, Man and Cybernetics,
v.23, no.3, pp.665-685.

694


