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ABSTRACT 
Teaching nonlinear control is an art depending on 

the instructor and the availability of experimental 
facilities in the laboratory. Nonlinearity of the closed 
loop system sometimes stems from the plant dynamics 
and sometimes the controller is nonlinear as well. In 
all such cases the students are taught the analysis of 
closed loop stability in the lectures yet the 
implementation in real time is generally omitted. This 
paper aims at filling this gap to some extent through 
describing several experiments for those mastering on 
the broad field of nonlinear control systems. A twin 
rotor helicopter system, a rotary inverted pendulum, a 
flexible link system, and finally a gear and belt 
equipped DC motor control setup are utilized to 
describe the experiments. 
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1 INTRODUCTION 

Use of computers in closed loop control systems 
has greatly influenced the control engineering 
education due to the amazing progress in computer and 
instrumentation technology. The advances in software 
and hardware have made it possible to develop 
interesting computer based learning and prototyping 
platforms so that they have thoroughly changed the 
approaches and strategies adopted in engineering 
education so far. The usage of computer aided design 
allows the students to do more complicated 
experiments which are encountered frequently in the 
real life such as in robotics, aerospace, chemistry, 
fluids and networks. Therefore, from a pedagogical 
point of view, activities in the laboratory help the 
students grasp the theory well via the real time 
examples. Although it is possible to describe 
alternative methods to teach control engineering such 
as telelab, virtual lab, or web based interactive lab in 
Duan et al (2005); Casini et al (2003); Ugur and Savas 
(2010), the diversity of the possibilities offered by the 
computer centric technologies motivate the professors 

to propose novel teaching sets with novel experimental 
compositions. 

This study focuses on the teaching of essential 
nonlinear control strategies such as sliding mode 
control (Young et al (1999); Hung et al (1993); Slotine 
(1991); Khallil (2002)), feedback linearization, 
passivity based control (Slotine (1991); Khallil 
(2002)), singular perturbation theory (Khallil (2002) 
and Kokotovic et al (1986)) and model reference 
adaptive control (Ioannou and Sun (1996)). The 
described experiments need the Matlab/Simulink® 
based real time client software and Wincon® real time 
server is used as a software realization platform to 
generate the machine code. Such an experimental 
infrastructure gives the students considerable degrees 
of freedom to prototype alternative methods on a 
selected test setup easily. Some of the studied systems 
are underactuated systems making them further 
appealing. Until recently, designing global controllers 
for underactuated systems was a challenge, yet, to 
overcome this problem, the control engineering 
framework now offers several tools based on nonlinear 
techniques such as hard boundary switching laws 
considered under the subtitle sliding mode control 
here, or energy based control considered under the 
subtitle passivity based control in the sequel. The 
problems chosen for prototyping the nonlinear control 
strategies are also widely used benchmark problems 
and this aspect of the paper makes it a beneficial guide 
to a large number of readers. The contribution of the 
current paper is to describe a set of nonlinear control 
experiments to teach the fundamental concepts of 
nonlinear control systems. 

This paper is organized as follows. The second 
section gives the description of the nonlinear control 
experiments together with the model of the plant under 
investigation. The experiments are arranged as SMC of 
rotary inverted pendulum (RIP), passivity based 
control of a helicopter plant, sliding mode control 
based on singular perturbation theory to flexible link 
(Kokotovic, (1986); Extebarria et al (2005); Solis et al 
(2009)) and finally model reference adaptive control 
for a gear-belt equipped DC motor setup. All the 
experiments are discussed with real time results. The 
concluding remarks are given at the end of the paper. 
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2 SLIDING MODE CONTROL OF RIP 

Rotary inverted pendulum (RIP) is one of the popular 
benchmark problems of control engineering. The 
system can be used to teach a number of control 
techniques. A photo of the apparatus is illustrated in 
Fig. 1 and the dynamics is described by (1). 
 

 
Figure 1: Rotary inverted pendulum system 
 
The method adopted is sliding mode control that is 
known for its robustness against disturbances and 
uncertainties. As mentioned earlier RIP is a 
nonminimum phase underactuated system thus to 
control such a system is not a straightforward task for 
students. The objective is to make the students 
understand effects of sliding line parameter, chattering 
phenomena, robustness concept and boundary layer 
thickness. Parameters to study in this experience are 
c1, c2, c3, k1, ε and their roles in sliding mode control. 
The mathematical model of the system is obtained by 
using Lagrange formulation as in (1).  
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This control experiment aims at stabilizing the rotary 
inverted pendulum around the upright position, which 
is unstable. The sliding mode controller has coupled 
surfaces as in (2) to achieve this goal. 

1 20, 0s c s cθα α α θ θ+ = += = =  (2) 
The students are asked to investigate the effects of 
slope parameters denoted by c1 and c2. The two 
surfaces above are merged into one as given in (3). 

3S s c sα θ= +  (3) 
Now consider a Lyapunov function as given in (4). 
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Taking the time derivative of S and forcing its time 
derivative to  –k1S  yields the control law in (5). 
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Students in this experiment study the effects of 
changing the design parameters (ci) and the reaching 
law parameter k1. Figs.2-3 with the data in Table 1 
illustrates an exemplar set of results. 
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Figure 2: Stabilization results with SMC 
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Figure 3: Control signal produced by SMC 
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Table 1: Parameters for SMC 
Parameter Value Parameter Value Parameter Value 

K1 1.7 c1 13 c3 1.9 

Ε 0.05 c2 4   

3 PASSIVITY BASED CONTROL OF 
A TWIN ROTOR HELICOPTER 

Passivity based control is a direct application of 
passivity theorems. In order to realize an experimental 
study about PBC in the lab, the two degree of freedom 
(2-dof) twin rotor helicopter setup shown in Fig. 4 is 
utilized. 
 

 
Figure 4: 2-dof twin rotor helicopter 
 

A Lagrangian model of the 2-dof helicopter is used 
for the PBC experiment and the equations of the 
motions are given in the following standard form 
containing inertia, damping, friction, gravitational and 
applied torque matrices, respectively. 
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Due to its significant nonlinearity, Kpp parameter is 
approximated by the following function. 

6 2 4
( ) 9.535 10 7.281 10 0.1624

pp
K θ θ θ

− −

= − ⋅ − ⋅ +  (14) 
The vector of tracking error qe is defined as 

e d= −q q q  (15) 

where [ ], ,:d d dθ ψ=q q q  designates the desired position 
of the helicopter. With this error term, the dynamic 
equation of the system given in (7) is reorganized as 
follows with an appropriate choice for τ given in (17). 

( ) ( ),q q qe e e p e+ + + =D q C q Bq K qξ    (16) 

( ) ( ) ( ): ,
d d d p eq q q q= + + + − +τ G D q C q Bq K q ξ    (17) 

where Kp is a 2×2 positive definite constant matrix and 
ξ is a control component that is defined in (18) to 
ensure the passivity and stability of the system with 
the positive definite storage function given in (19). 
The variables used in the above equations are listed 
and explained in Table 2. 

 
Table 2: Definitions of the variables 
θ Pitch angle [-0.7, 0.6] rad 
ψ Yaw angle (-∞,∞) rad 
Kpp Relation between pitch motor 

voltage and the torque acting 
on pitch axis 

See text Nm/V 

Vp Input voltage of pitch angle 
motor (main motor) 

[0, 24] V 

Vy Input voltage of yaw angle 
motor (tail motor) 

[-15, 0] V 

 

1
:

2
e e e= + − +ξ Cq Bq Dq v    (18) 

T T1 1
:

2 2
pe e e eV = +q Dq q K q   (19) 

The variable v is defined as the fictitious control input 
of the system and the derivative of the storage function 
V is obtained as T

e
V = q v  . Consequently, the system 

given in (16) is passive and can be globally 
asymptotically stabilized with the storage function V 
for the system output ey = q and the control input 

( )v yφ= − such that (0) 0φ = . Under these 
circumstances, the choice for v is made as 

( ), ,; diag , , 0d e d d d dK Kθ ψ= − = >v K q K K  (20) 

The designed controller works as a PD controller in 
conjunction with necessary nonlinearity canceling 
terms. The controller is realized in Matlab/Simulink® 
environment and several tracking tasks are performed 
for different values of Kp and Kd. In the experiment, 
the effects of Kp and Kd are studied and different 
choices of students for the control input v are tested. 
Real time results of a tracking action for the values of 
Kp = diag(5,10), Kd = diag(5,3) are given in Fig. 5 and 
Fig. 6 showing the pitch and yaw angles of the 
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helicopter, respectively. As seen in the results, the 
tracking precision is achieved appropriately and the 2-
dof helicopter follows the given path with an 
admissible level of error. The aim of this experiment 
was to apply the passivity theorems and the students 
acquire how a robust control law is implemented 
through a storage function. 
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Figure 5: Yaw angle tracking (top), tracking error (middle) 
and control signal generated by the PBC (bottom). 

4 CONTROL OF A FLEXIBLE LINK 

Flexible link system is another setup available in 
many control engineering labs. The control problem is 
to force the link follow a predefined trajectory without 
displaying oscillations. 

The method adopted in this experiment is sliding 
mode control based on singular perturbation theory. 
The control objective is to teach the students how to 
design a nonlinear controller for the flexible link that 
overcomes the oscillations while maintaining a rapid 
response, effects of the sliding line parameter, concept 
of robustness, singular perturbation theory and optimal 
control issues. Parameters to study are  μ, β, λ. The 
generalized representation of flexible link system is 
shown in (21). 
 

( , ) ( )(q) (q,q) q q q q+ + + =D q C K F B u    (21) 
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 (22) 

D represents the total inertia matrix, C is the Coriolis 
vector, K is the stiffness matrix, F is the friction vector 
and B is the input matrix as given in (23). 
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The rigid modes are symbolized by θ and flexible 
modes are symbolized by α. The dynamic analysis and 
control of flexible link systems is more complicated 
than the rigid systems as nonlinear rigid body motions 
are strongly coupled with the distributed effects of 
flexibility, and to overcome this drawback, singular 
perturbation theory can be applied. A composite 
control law as in (24) is postulated in this design 
approach. 
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Figure 6: Yaw angle tracking (top), tracking error (middle) 
and control signal generated by the PBC (bottom). 
 

 
 
Figure 7: Flexible link system 
The mathematical model of the flexible link system is 
obtained using Lagrange formulation as in (22) 

1 2,ˆ( ) ( , )u u uθ θ φ φ= +    (24) 
The control law for slow (rigid) subsystem is û  and 
the control law for fast subsystem is u . To apply this 
strategy the elastic forces are introduced as new state 
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variables. The discontinuity of the solutions caused by 
singular perturbations can be analyzed in separate time 
scales. The slow subsystem has the same properties of 
the rigid arm in (25) and slow manifold can be 
rewritten as in (26). Let γ denote the smallest stiffness 
constant and µ denote the small scale factor used for 
obtaining the singular perturbed model the system. The 
singular perturbation model of a dynamical system is a 
state model where the derivatives of some of the states 
multiplied by a small positive parameter (μ2). 

11 1 11 1
1 ˆ[ ]D B u C Fθ θ−= − −   (25) 

1 1 1
22 22 2 21 21 1

ˆ ˆ( )K H B u V H Fψ θ− −= − −  (26) 
The fast subsystem can be derived with a time-scale 
change /T t µ= and we obtain the representation in 
(27). 
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

 (27) 

The sliding surface is chosen as in (28), in which qd 
stands for the desired trajectory. 

ˆ ,f d r de q e e q q s e eλ λ= − = − = +    (28) 
The sliding mode control law for the slow subsystem 
is given in (29).  

1
1 11 11 1ˆ [ ]  ( / )f fu B D e C e F K sat s β−= + + −   (29) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Tracking performance of flexible link via a 
composite controller 

For the fast subsystem, in order to stabilize the 
deflections and damp out the vibrations, a LQR 
controller is designed. The control objective is to 
minimize the cost function given by (30). 

( )dTJ Q uRu tφ φ= +∫    (30) 

where, Q and R stand for the weighting matrices. The 
weighting matrices and gain matrix for LQR are 
chosen as in (31). 

diag(100, 500,1, 0) , 2, [2.35 0.5]Q R K= = =  (31) 
 
Table 3: The parameters of singular perturbed system 
sliding mode controller 

λ= 6                 β= 1/3 
µ=0.048                 K=1 

 
As shown in Figure 8 the composite controller with 
LQR, the tracking performance is satisfactory.  

5 MODEL REFERENCE ADAPTIVE 
CONTROL OF A DC MOTOR 

Model reference control is based on minimizing 
the error between the responses of a system under 
control and a desired reference model following the 
reference signal, Ioannou and Sun (1996). In the cases 
where the system parameters are not known, the task is 
achieved by defining an adaptive control law updating 
the parameters seen in the control law online. In this 
experiment, the DC motor control setup shown in 
Figure 9 is utilized. This control setup is composed of 
two modules called mechanical unit and digital unit. 

 
Figure 9: DC motor control setup. 
 
Mechanical unit is equipped with a DC motor, a 
tachogenerator and angle measuring wheels connected 
to motor with straps which introduce backlash type 
nonlinearity. Digital control unit enables implementing 
the control algorithms designed on Matlab/Simulink 
platform. State space model of this single input single 
output linear time invariant system is as given below. 

( ) ( ) ( )t t u t= +x Ax B  (32) 
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where the parameters of the system are not known, but 
it is assumed that the pair (A, B) is controllable. In 
above, x is the state vector containing the angular 
position and speed of motor and u is the control input. 
The reference model is defined as 

( ) ( ) ( )m m m mt t r t= +x A x B  (33) 

The tracking error is defined as : m= −e x x  and the 
control signal has the following form, 

( ) ( )u t L t r= − +K x  (34) 
where the control gains K and L are updated with the 
rules given as below. 

T T T Tsgn( ), sgn( )
m m

L L r L= = −K B Pex B Pe   (35) 

The matrix P is obtained by solving the Lyapunov 
equation T

m m+ = −PA A P Q  with the choice of a 
positive definite symmetric Q. Thus, as stated by 
Casini et al (2003), the stability of the system is 
ensured in the sense of Lyapunov and the variables 
K(t), L(t), e(t) evolve bounded, furthermore ( ) 0t →e  
as t → ∞ . The control signal proposed in (34) is 
realized in Matlab/Simulink environment for a number 
of different reference models. 

1 0

0 1

0 1 0
,

4 4 4
,m m == =

− −

     
         

QA B  (36) 

The results of real time implementation are illustrated 
in Figure 10. A step signal is used as the reference 
input and a reference model displaying overdamped 
response is chosen. Results show that the system 
settles at the desired position in a finite time and the 
control parameters K(t) and L(t) converge to steady 
values when the command signal is constant. 

4 CONCLUSIONS 

This paper describes four experiments to students 
mastering on nonlinear control. Despite undergraduate 
laboratories in control engineering have some degree 
of maturity; courses like nonlinear control still 
necessitate particular attention when designing for the 
graduate level students. The paper presents SMC and a 
variant of it, PBC and MRAC. Standard experimental 
setups have been used and repeatability of the 
experiments has been ensured. 
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Figure 10: Closed loop control results 
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