
 

Abstract— This paper presents an FPGA based synthesizable 
offline UAV local path planner implementation using Evolutionary 
Algorithms for 3D unknown environments. A Genetic Algorithm 
is selected as the path planning algorithm and all units of it are 
executed on a single FPGA board. In this study, Nexys 4 Artix-7 
FPGA board is selected as the target device and Xilinx Vivado 
2015.4 software is used for synthesis and analysis of HDL design. 
Local path planner is designed in a way that it has two flight 
modes: free elevation flight mode and fixed elevation flight mode. 
Designed FPGA based local path planner which has 74 MHz 
operating frequency and 62% logic slice utilization is tested into 
two different unknown environments generated by a LIDAR 
sensor. Results show that both GAs are efficient path planning 
algorithms for UAV applications and FPGAs are very suitable 
platforms for flight planning periphery. 
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I. INTRODUCTION 

Over the last few decades, Unmanned Aerial Vehicles 
(UAVs) have been used in many different areas from military 
contexts to civilian contexts including surveillance, 
reconnaissance, targeting, weather forecasting, fire detection 
and avoidance of danger zones, etc. Their uses are still in 
progress as a strong tool for all fields, and the improving the 
autonomous structure of them is still a hot research topic 
because of their many advantages such as high mobility, low 
cost, lightweight structure and no vital risk. 

To obtain a more autonomous UAV and achieve all UAV 
missions, a common task is path planning which is an NP-hard 
problem. The main objective of path planning is to find the 
optimal path minimizing the overall path length and maximizing 
of the safety of the vehicles from the starting point to the 
destination point by taking into account of some operational 
constraints relating to the environment, the mission and the 
UAV dynamics. There are many different path planning 
algorithms which are used in both aerial and ground vehicle 
applications in the literature [1-10]. Among them, Evolutionary 
Algorithms (EAs), which are effective optimization tools, have 
been typically implemented to UAV path planning problems 
[11-17]. Even though EAs do not guarantee the best solution, 

they generate near optimal solutions for UAV path planning 
problems when compared to other path planning algorithms. 
However, the main disadvantage of EAs for path planning 
applications, when UAV mission is a constrained one, the 
computational time required to find the optimal solution 
increases. To overcome this problem, and at the same time, to 
improve the search performance, developing parallel models of 
EAs has a critical importance. 

Field Programmable Gate Array (FPGA), which is an 
integrated circuit and generally uses a Hardware Description 
Language (HDL), is often preferred to obtain a hardware 
parallelism because of its many advantages such as parallel 
processing capability, lightweight, lower cost and low power 
requirements, especially for on board applications. It is also 
used for real-time path planning applications [18, 19, 20, 21] 
and to obtain path planner using a parallelization model of EAs 
[22, 23]. 

In [18], an FPGA based parallel hardware implementation 
of dynamic trajectory planning for mobile robot navigation 
applications has been presented. Harmonic control is chosen to 
estimate trajectories. In [19], the authors have presented a path 
planning implementation for mobile robots. They have used 
Breadth First Search Algorithm (BFSA) as path planning 
algorithm, and applied it both in software and in hardware. [20] 
proposes a novel hardware directed algorithm to find a path for 
a mobile robot. The authors have used the Euclidean distance 
transform of the binary image captured from an overhead 
camera of an environment. In [21], an efficient FPGA 
implementation of a parallel path planning algorithm based on 
marching pixels has been developed. 

In [22], a real time path planner is presented. The authors 
have used Genetic Algorithms (GAs) which were modified by 
Cocaud, [24], as path planning algorithm and improved the EAs 
on FPGA board. They directly implement all modules of GAs 
on FPGA except evaluation module, which is performed on PC 
because of high computation processing requirement. In [23], 
the authors have proposed an FPGA based UAV path planner 
architecture for a 3D 512×512×512 size environment using 
Cocaud’s modified GAs. They have implemented all modules 
of GAs entirely on FPGA and used LIDAR data as terrain 
information. 
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In this paper, an FPGA based offline UAV local path planner 
implementation using Cocaud’s modified GAs for 3D unknown 
environments is presented and explained in detail. FPGA path 
planning architecture and the approach of this study is similar 
to that in [23] in that it resembles in the population, the 
chromosome and the evaluation hardware parameters, yet it 
differs from [23] in performing finite state machine 
representation of the overall system and in the implementation 
of GA processes such as the used sorting algorithm. All modules 
of EAs is directly run on a single FPGA and the terrain data is 
obtained from a LIDAR sensor. The contribution of our work is 
the designing of an efficient FPGA based 3D local path planner, 
which can be used in real time UAV applications, especially for 
replanning applications. 

The rest of paper is organized as follows: section II gives 
basic system descriptions for path planning. In section III, 
FPGA architecture of the overall system is explained in detail. 
The next section is devoted for experiments and results. In the 
last section, conclusion is presented. 

II. BASIC SYSTEM DESCRIPTIONS FOR PATH PLANNING 

Path planning is a mission critical issue in autonomous UAV 
flight. The fundamental problem of path planning is to find a 
collision free path between a given initial point and a destination 
point under some constraints in both static and dynamic 
environment. It is aimed to obtain a decision mechanism for 
UAV missions without a human operator verifying whether path 
is feasible or not. In order to achieve that, GAs, which are 
effective search methods, and a particular class of EAs are often 
used in real time UAV path planning applications. 

A. A Path Planning Algorithm: Genetic Algorithm 

Genetic algorithm which is an effective heuristic search 
method is based on the principle of natural selection and natural 
genetics. In this study, Cocaud’s modified genetic algorithm 
used as path planning algorithm. The details about GA will be 
explained in Section III. Fig. 1 shows pseudo-code of modified 
GA used for this study. 

B. Path Planning Constraints 

Environment, mission and UAV constraints are important for 
autonomous UAV path planning applications as the constraints 
determine the capability of path planner. 

In this study, terrain elevation information is obtained by 
using LIDAR, and obtained spatial coordinates are used to 

generate 512 ݉ଷ integer grid map. Grid map is composed of an 
X×Y matrix and Z is the elevation value corresponding to the 
specific coordinate indicated by X and Y. To achieve a mission, 
designed path planner has two flight modes: free flight and fixed 
elevation flight, and it has four transitional waypoints in 
addition to starting and destination point. Finally, it is supposed 
that UAVs considered this study have maneuver capability in 
1	݉ଷ. As a result, they are considered as a point. Mission and 
UAV constraints can be increased with additional constraints. 

III. FPGA ARCHITECTURE 

In this section, overall hardware architecture is explained. 
Fig.2 demonstrates FPGA path planner architecture. Proposed 
architecture is composed of a Control Unit (CU) which manages 
overall process iteratively and six subunits which are GA 
processes. In addition to the parent and offspring populations, 
environment (terrain information), mission and UAV 
constraints are stored in block random access memories 
(BRAMs) in the FPGA. Overall process begins when the 
activate signal is on (See Fig. 2). 

A. Population and Chromosome Characteristics 

GA chromosomes which constitute parent and offspring 
populations are possible solutions for an optimization process. 
In this study, a chromosome is composed of, four transitional 
waypoints and a fitness value corresponding to associated 
chromosome. Starting and destination points are constant during 
path planning process and stored in mission profile. Transitional 
waypoint number can be increased or decreased. However, four 
transitional waypoints are adequate to produce satisfactory 
results [23]. Each transitional waypoint includes three spatial 
coordinates (X, Y, and Z) each containing 9-bits integer value. 
Fitness value is a 32-bits integer value. Parent and offspring 
populations, which are stored in BRAMs, consist of 32 
chromosomes. 

B. Genetic Algorithm Processes 

Overall architecture is designed by using Very High Speed 
Integrated Circuit Hardware Description Language (VHDL). 

 
1) Control Unit: When the activate signal is on, the 

optimization process starts. CU manages overall process by 
running the Finite State Machine (FSM) shown in Fig. 3. 

 
2) Initialize Population Unit (IPU): IPU constitutes the 

first step of the proposed system. Designed IPU includes twelve 
9-bit random number generators based on Linear Feedback Shift 
Register (LFSR), which run during the entire process. It should 
be noted that, some bits of them are used in the other random 
processes of GA with required bit length. Each one of them 
generates one spatial coordinate of one chromosome, which has 
four transitional waypoints including three spatial coordinates. 
Generating one chromosome in IPU takes one cycle. IPU 
generates 32 chromosomes and it saves them to parent 
population memory. For reinitialize process, when ‘Reinit’ 

Fig. 1 Pseudo-code of modified genetic algorithm 

Initialize the random population; 
Evaluate initial population; 
LOOP  
 Selection;  
 Genetic Operation; 
 Update Population; 
 IF (Premature Convergence) 
  Reinitialize the random population; 
 END-IF 
END-LOOP 

4779



 

signal is active (see Fig. 2), it preserves the best chromosome 
and regenerates 31 new random chromosomes. 

 
3) Fitness Evaluation Unit (FEU): FEU determines the 

feasibility of a path (a chromosome) in the parent or offspring 
memory by calculating a fitness value concatenating 24-bit 
distance and 8-bit collision cost. Fig. 4 shows the structure of 
the fitness value. Distance cost is calculated by using square of 
the Euclidean distance as in (1). 
 

2
12

2
12

2
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Additional constraints can be added in this unit. These 
additional costs may be related to UAV kinematics, temporal 
needs, danger zones, energy resources or those derived from the 
mission requirements. 

4) Tournament Selection Unit (TSU): TSU determines 
chromosomes, which will undergo genetic operation by using 
tournament selection method. TSU includes 32 parallel 
comparator components, and each one of them selects two  
chromosomes from parent memory randomly and compares 
them according to their fitness values. Chromosome with lower 
fitness value (winner) is recorded as offspring memory.  
 

5)  Genetic Operation Unit (GOU): GOU applies genetic 
operation including crossover and mutation to chromosomes of 
the offspring memory. Figs. 5-9 demonstrate genetic operation 
phases. For crossover operation, firstly, two chromosomes are 
selected randomly. Secondly, randomly selected two 
chromosomes are truncated from their splitting point, and 
finally truncated segments are swapped as shown in Fig. 5.  

As mutation operation, four mutation types are used, namely, 
“global perturb”, “local perturb”, “delete” and “swap” mutation. 
Global perturb operation is as shown in Fig. 6. For this mutation 
operation, a randomly selected waypoint of a randomly selected 
chromosome is regenerated randomly within the associated 
chromosome boundaries. For local mutation operation, a 
randomly selected waypoint of a randomly selected 
chromosome is regenerated randomly within the previous and  
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Fig.2 FPGA path planner overall architecture 
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the next waypoint boundaries of selected waypoint. This is 
illustrated in Fig. 7. For “delete” type of mutation operation, a 
randomly selected waypoint of a randomly selected 
chromosome is taken as midpoint of the previous it (Fig. 8).and 
next waypoint of selected waypoint, instead of deleting it.   

Finally, for “swap” type of mutation operation, two randomly 
selected waypoints of a randomly selected chromosome are 
exchanged as shown in Fig. 9. 

GOU is composed of 24 crossover units, which corresponds 
to 75% of the offspring population size. The remaining 8 
chromosomes are 2 for global perturb, 2 for local perturb, 2 for 
delete and 2 for swap mutation units, which corresponds to 25% 
of the offspring population size. It should be emphasized that all 
crossover units considered in this work are identical. 
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6) Population Update Unit (POU): POU updates the 
offspring memory according to fitness value of 64 
chromosomes in both parent and offspring memory. In this unit, 
parallel odd-even sorting algorithm is used, and parent and 
offspring chromosomes are sorted in ascending order according 
to their fitness values. Then, as the last step in this unit, the first 
32 chromosomes are overwritten to offspring memory.  

 
7) Premature Convergence Unit (PCU): One of the 

disadvantages of GAs is premature convergence, that is, 
diversity is lost early. The loss of diversity could be understood 
by looking at offspring memory chromosomes. If offspring 
population chromosomes all are the same, the population 
diversity is lost. PCU determines whether population diversity 
is lost or not, and it is composed of 31 parallel comparators. If 
population diversity is lost, then ‘Reinit’ signal is set to high in 
order to start reinitialize process.  

IV. EXPERIMENTS AND RESULTS 

A. FPGA Synthesis 

In this study, Nexys 4 Artix-7 FPGA board is selected as the 
target device and Xilinx Vivado 2015.4 software is used for 
synthesis and analysis of the HDL design. Overall system is 
synthesized successfully on the FPGA board. Table 1 shows the 
hardware synthesis details. In the table, Slice Look-Up Tables 
(LUTs) represent slice logic utilization, FF stands for flip-flops, 
BUFG denotes the global clock buffers and IO is the 
abbreviation for Input/Output. For the designed local path 
planner, the logic slice utilization percentage on the device is 
62% and the maximum device operating frequency is 74 MHz. 

 
TABLE I. SYNTHESIS DETAILS 

Resource Utilization Available %Utilization  
Slice LUTs 39440 63400 62.21 
FF 33250 126800 26.22 
BRAM 73 135 54.07 
IO 3 210 1.43 
BUFG 1 32 3.12 

 

B. Experiments 
In this section, proposed path planning architecture is tested 

for two different unknown 512m high×512m long×512m wide 
environments generated from LIDAR data. LIDAR data is 
obtained from [25]. Generated environments are stored within 
FPGA BRAMs. 

Designed path planning architecture is executed in two 
different flight modes for each environment. For a given starting 
and destination point, free elevation flight mode, called MODE-
I, is a collision free flight, which does not have any elevation 
constraints. The other flight mode, fixed elevation flight mode, 
called MODE II, is a collision free flight, which has a predefined 
and constant flight elevation value in mission profile. 

C. Results 

Designed path planning architecture is executed during 1000 
generations, and then it is observed that found optimal solutions 
have not changed after the generation numbers in Table II. Figs. 

10-11 demonstrate the results for test environments. In Fig. 10, 
for a given start and destination point, MODE I took 147 
generations and MODE II took 86 generations. In Fig. 11, 
MODE I took 90 generations and MODE II took 85 generations. 
Table II shows computational time results for convergence. 
Results indicate that parallel GAs are efficient path planning 
algorithms for UAV applications and results also show that 
FPGAs are very suitable devices for UAVs. Convergence times 
support this claim clearly. 

 
TABLE II. AVERAGE COMPUTATIONAL TIME RESULTS AT 

CONVERGENCE 
Flight Tests Generation Number  Convergence Time 
MODE I-ENV I 147 43.9 ms 
MODE II-ENV I 86 25.8 ms 
MODE I-ENV II 90 26.2 ms 
MODE II-ENV II 85 25.5 ms 

 

V. CONCLUSION 

In this paper, an FPGA based synthesizable offline UAV 
local path planner implementation using Cocaud’s modified 
GAs for 3D unknown environments is presented and explained 
in detail. All processes are executed on a single FPGA module. 
Firstly, an environment elevation grid map is generated from 
LIDAR data and stored into FPGA BRAMs together with other 
constraints. Secondly, Cocaud’s modified GA is implemented 
on FPGA as shown in Fig. 2. Proposed local path planner is 
designed in a way that it would have two flight modes, namely, 
free elevation flight mode and fixed elevation flight mode. 
Finally, for given start and destination points, proposed 
architecture is tested into two different unknown environments. 
Furthermore, FPGA synthesis details are presented. 

Results show that both parallel GAs are efficient path 
planning algorithms for UAV applications and FPGAs are very 
suitable devices for UAVs. Furthermore, convergence time 
results indicate that designed local path planner can be used in 
real time UAV replanning applications. 
 

 
Fig. 10 MODE I and MODE II test results for environment I (Fixed elevation 
value is 40 meters for MODE II) 

 

MODE I 

MODE II 
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Fig. 11 MODE I and MODE II test results for environment II (Fixed elevation 
value is 20 meters for MODE II) 
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