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Abstract—Movement sequence of a real air combat flight contains 
valuable information that can be used to infer artificial air combat 
learning. There are different ways to control unmanned aerial 
vehicles for a given flight path. But identifying the best move at 
the time being relative to an enemy air craft requires learning 
flight experience from real air combat fighters. This paper shows 
how to set up learning and control environment with adaptive 
neuro fuzzy inference system for maneuver decisions using real F-
16 flight information. Real flight information is also utilized to 
justify the test results. 

I. INTRODUCTION (HEADING 1) 

Air combat fighting is getting an advantageous position and 
shooting while enemy is in the effective range of weapon. 
Artificially deciding a move during combat requires both flight 
and combat experience. Machine learning methodologies are 
required to train such a system. 

In literature there are rule based systems [2] to make high 
level decisions. Also modelling a human decision model [3] is 
used as an alternative. Using artificial intelligence methods [4] 
and [5] generally assists human pilots. Also there is a prediction 
model for maneuvers in [6]. Adaptive neuro fuzzy inference 
systems (ANFIS) are used for autonomous control of UAV in 
[7] and [8] for static routes. NASA proposed the Trial Maneuver 
(TM) method [14] but does not utilize machine learning 
techniques for decision making. This paper assumes that we 
have enough information about the state of enemy aircraft. There 
are option like getting enemy status from radar info with latency 
or using visual techniques as presented in [15]. Also estimating 
enemy bank angle with visual techniques is presented in [16]. 
But during real air combat latency in obtaining enemy status is 
neglected before making high level maneuver decisions. We 
assume that having velocity with direction derived from radar 
signals is enough for maneuver prediction. 

Our work advances the subject area in terms of designing an 
ANFIS model for choosing the right move in air combat and 
generating high level control signals to move the aircraft to the 
most advantageous position. ANFIS model is trained with F-16 
flight information. Some portion of flight information is reserved 
for test purposes as well. We do not deal with aircraft 
characteristics or flight control system since it is assumed that 
aircraft already has a robust control mechanism. It may seem 
hard to handle non-linear equations of agile aircraft but since 
data is obtained from real F-16 aircraft, we assume that learning 
and test data is among acceptable agility ranges. 

This paper is organized as follows: In the next section we 
define the problem of air combat learning. The third section 

defines the structure of the learning corpus and data source. The 
forth section proposes the learning and control method. The fifth 
section includes the test results and last section includes the 
concluding remarks. 

II. PROBLEM DEFINITION 

Combat aircrafts can execute agile maneuvers. Control of a 
combat aircraft differs in terms of speed, robustness and reaction 
time. Since both aircrafts are moving in three dimensional 
airspace, there are nearly infinite movement alternatives. 
Choosing the right move requires more sophisticated learning 
and control mechanism. 

First of all, learning requires good sample data for learning 
and testing process. Second step should be to set up a control 
mechanism for both choosing the right maneuver and generating 
the control signals for UAV model. 

III. CORPUS 

A. Air Combat Data 

The sample corpus data is extracted from F-16 aircraft flights 
and decomposed into sequence of moves. F-16 stores 
information from various kinds of sensors. The flight data 
includes more than 200 columns of instant status information. 
Out of those only positional and angular information is used. The 
status of the aircraft at a time includes 12 state variables. ܺ = {݊, ݁, ℎ, ,ݒ ߮, ,ߠ ߰, ,ߙ ,ߚ ܲ, ܳ, ܴ} (1) 

These are positions in north, east and altitude, speed, roll, 
pitch and heading angles, angular difference between body and 
velocity axes (angle of attack and side slip angle) and angular 
velocity of roll, pitch and heading. More details on flight 
dynamics can be learned from [18]. 

In air combat, there are minimum 2 aircrafts involved. So 
there should be state variables of the two. The combat status of 
both depends on the relative geometry to each other. Relative 
geometry and advantage function is discussed in [9] and includes 
range and antenna train angle of two aircrafts.  

B. Maneuver Sequence 

Training and controlling 12 state variables is a real hard 
work. This paper does not focus on low level control of these 
variables. But we bear in mind that we should know the control 
logic of low level controllers and generate necessary control 
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inputs for these controllers. Decomposing flight information into 
sequence of movements eases the learning process because; 

• Control logic for every movement is designed separately. 
• There is less number of control variables for each mode. 
• Controlling the 12 state variables are left to the low level 

controller and we focus on high level angular changes. 
There is a higher and lower order MIMO controller design in 

[17]. There are 6 modes defined in [10]. These are level flight, 
climb/descend, turn, loop, pitch-yaw transition and roll 
movements. We decided to decrease number of modes by 3 and 
add 1 new mode since; 

• Level flight and climb descent modes may be important for 
low level control but they do not differ for learning process 
so combined into straight path move. 

• Roll mode have no effect on resulting path so neglected. 
• Pitch-yaw transition modes do not differ from looping or 

turning so neglected. 
• 3D mode is required which was introduced in [11] but 

neglected later in [10]. 3D mode consists of looping and 
rolling at the same time but results change in both pitch and 
heading angle. 
As a result, flight data is decomposed into 4 modes as defined 

in Table 1. 

TABLE 1 MOVEMENT MODES 

Mode Name Inputs 

SP Straight Path ∆ݐ, ,ݒ  ߠ
LO Loop ∆ݐ, ,ݒ ,ߠ ሶ߰  
TU Turn ∆ݐ, ,ݒ ሶߠ , ߰′ሶ
3D 3D loop and turn ∆ݐ, ,ݒ ሶߠ , ሶ߰  

IV. METHODS USED 

We designed a fuzzy identification of movement mode and 
neural method for learning. Combining both results an adaptive 
neuro fuzzy inference system [1] which has state input from both 
with the relative geometry and results control signals of 
movement sequence. 

A. ANFIS Architecture 

ANFIS [1] model integrates the fuzzy control logic and 
neural learning system into single architecture in 6 layers. A 
generic sugeno [12] style model is in Figure 1. 

If x1 is A1, .. xn is An then y=x0+k1x1+…+knxn (2) 
The first layer is the input layer which simply inputs xi and 

outputs to the second layer. The number of cells is equal to the 
number of inputs for first layer.  

Second layer executes the fuzzy membership functions also 
known as fuzzification layer. These functions determine degree 
of membership of an input in a fuzzy set. Total number of 
neurons in this layer is equal to the total number of fuzzy sets for 
all inputs. 

Third layer is where fuzzy rules are executed. These rules are 
first order sugeno fuzzy rule [12]. Neurons inputs from 
fuzzification neurons of related rules. Multiplication with a 
coefficient computes the truth of that rule. 

Forth layer normalizes the firing strength of rules that 
determines the contribution of the rule to the final result. 

Fifth layer is the defuzzification layer where weighted 
consequent values of rules are calculated. Neurons in this level 
also receive the input signals as well. 

 

Figure 1 Generic ANFIS Architecture 

I. Input Layer 

The input layer receives the state and movement information 
of both aircrafts and relative geometry to each other. Actual 
velocity and desired velocity in movement sequence are 
different. Also the angular values may differ in movement mode 
where some are deltas and some are desired change in the angle. 

ଵܵ = {ℎଵ, ,ଵߠ ଵሽ (3) ܵଶݒ = {ℎଶ, ,ଶߠ ଵߪ ଶሽ (4)ݒ = ,ଵݐ߂} ,ଵݍ ,ଵݒ ,ଵߠ ߰ଵሽ (5) ߪଶ = ,ଶݐ߂} ,ଶݍ ,ଶݒ ,ଶߠ ߰ଶሽ (6) ܴ = ,ݎ} ℎ, ,ݒ ,ߣ ,ଵߟ  ଶሽ (7)ߟ
Range (r) also known as line of site vector is computed from 

the square root of the sum of distance squares in 3 axis. Relative 
altitude (h) is the difference in Z axis. Closure velocity (v) is 
change in the range. Angle of tail (λ) is the angle between 
velocity vectors at the intersection point. Line of site angle or 
antenna train angle (η) is the angle between velocity vector and 
range for each aircraft. Computing these variables are explained 
deeply in [9]. Variables that don't contribute much to the learning 
process are discarded to reduce the number from 18 to 10. 

Altitudes and velocities of each aircraft are neglected since 
difference in altitude and closure velocity are more meaningful. 
Only exception is crash avoidance that is not studied here. η2 can 
be neglected since λ gives enough sense about how advantageous 
opponent is. This also eliminates need for θ for learning. Time is 
also derived from actual velocity and desired action. Excluding 
these variables from learning process does not limit us using 
these state variables at the final stage where maneuver logic is 
implemented. Final input and output variables are; {ݎ, ℎ, ,ݒ ,ߣ ,ߟ ,ݍ ܸ, ߮, ,ߠ ߰ሽ (8) 

II. Fuzzification Layer 

This layer includes fuzzy set definitions for each input and 
membership functions of the whole set members. Same input 
types of both aircrafts share the same fuzzy sets and membership 
functions and are summarized in Table 2. ݕ௜ଶ = ݂ሺݔ௜ଶሻ (9) 



TABLE 2 FUZZY SETS AND MEMBERS 

Set Member Count ܣ௛ ݀ܣ 3 ݌ݑ|݁ݏ݋݈ܿ|݊ݓ݋ఏ 0| 2ߨ |ߨ| 2ߨ3  
|ట 0ܣ 4 2ߨ |ߨ| 2ߨ3  
|ఒ 0ܣ 3 ݁ݒ݅ݏ݂݂݊݁݁݀|݈݀ܽ݁|݁ݎݑ݌ ఎܣ 3 ݎݒܾ|ݎݒݓ|݁ݏ݋݈ܿ ௥ܣ 3 ܿ݅݊݋ݏݎ݁݌ݑݏ|ܿ݅݊݋ݏܾݑݏ|݁ݏ݅ݑݎܿ జܣ 4 3ߨ | 3ߨ2  ߨ|
4 

Difference in altitude is divided into 3 whether we are up, 
down or close to the opponent less than 300 feet in altitude. ܣ௛ =  ሽ (10)݌ݑ|݁ݏ݋݈ܿ|݊ݓ݋݀}

Pitch and heading angles are classified into quarters of π/2 
values. ܣఏ = ቄ0| గଶ |ߨ| ଷగଶ ቅ (11) ܣట = ቄ0| గଶ |ߨ| ଷగଶ ቅ (12) 

The speed limits the agility of the aircraft. Minimum value is 
the stall speed where aircraft should not fall below. Cruise speed 
is the neutral speed during patrol or formation flights. The 
critical speed is where the aircraft passes through speed of sound. 
These are 0.8 to 1.2 mach. ܣజ =  ሽ (13)ܿ݅݊݋ݏݎ݁݌ݑݏ|ܿ݅݊݋ݏܾݑݏ|݁ݏ݅ݑݎܿ}

The range between two aircrafts determines the style of 
combat. Close distance is the effective weapon zone often less 
than 3500 feet. Within visual range (WVR) results one to one air 
combat while beyond visual range (BVR) allows the initial setup 
of multi-aircraft combat. WVR range is often between 3500 and 
6500 feet. ܣ௥ =  ሽ (14)ݎݒܾ|ݎݒݓ|݁ݏ݋݈ܿ}

Antenna train angle determines if the position is offensive or 
defensive and ranges from 0 to ߨ. Values less than π/2 mean 
offensive while larger is defensive. Offensive position should be 
handled in 2 different ranges as pure and lead positions. ܣఎ =  ሽ (15)݁ݒ݅ݏ݂݂݊݁݁݀|݈݀ܽ݁|݁ݎݑ݌}

Angle off tail is divided into 4 where values less than 60 
degrees shows less closure velocity with pure pursuit and 
increasing λ means high closure velocity. Values more than 120 
degrees means a kamikaze position. ܣఒ = ቄ0| గଷ | ଶగଷ  ቅ (16)ߨ|

III. Rule Layer 

The rule layer combines the membership output of the 
related inputs into rules. ݕ௜ଷ =  ଷܿ௜ (17)ݔ௖௠ߎ

There are total seven fuzzy sets which multiplication results 
3072 combination. This is the maximum number of rules that 
can be defined. Although every combination is not feasible for 
flight, defining this many rules manually is very difficult even 

using the domain information of experienced pilots. There are 
certain cases that one can say a rule cannot be defined for a 
specific condition but also combinations that none can be sure if 
can be neglected. 

In [2] it is proposed to apply a layered rule base system. This 
is a starting point to eliminate certain conditions. Rules are 
analyzed with domain information according to following 
objectives. 

Physical Surveillance: When physical conditions force a 
certain movement and there is no other choice only movement is 
to survive. If both altitude and velocity are very low, then we 
should increase the speed first and altitude after not to fall into 
stall status. If altitude is high then we should increase speed or 
trade speed against altitude. Another condition is dive recovery 
where there is no other choice except maximum g pullup. 

if h is small and θ<0 : diverecovery 

BFM in progress: If already running a BFM keep with its 
logic, else check if current geometry forces a defensive 
maneuver. 

if (120<λ<180 and 60<η<120 and |h|<1000 and r<6000) : break 

if (120<λ<180 and 60<η<120 and h1<h2 and r < 3500) : verticalbreak 

if (120<λ<180 and 60<η<120 and h1>h2 and r < 3500) : oppositeturn 

if  (120<λ<180 and η<60) : climb 

Pointing algorithm decision: When range is beyond visual 
range, it is better to cruise to an advantageous point rather than 
deciding a maneuver or when at a high probability of shooting 
position in close range, small λ and η angles. 

if  (λ<45 and η<30) : pointing 

Lead/lag algorithm decision: When there is a possible 
shooting position or risk of being shot, tune η to keep trace of 
required angle. This is the condition when we are in a very close 
range and in the turn circle of other aircraft. 

if (λ<30 and η<30) : lead pursuit 

if (λ>30 and 30<η<90-λ) : pure pursuit 

if (λ>30 and 90-λ<η<180-λ) : lag pursuit 

if (λ>30 and 180-λ<η) : pursuit 

if (λ<60 and η2<-5 and |φ|<30 and v1<v2 and φ.<φ) : negativeG 

if (λ<60 and η2<-5 and |φ|<30 and v1<v2 and φ.>φ) : intercept 

Load factor determination: Load factor is how much g will 
be applied to the aircraft. High load factor causes sharp turns but 
loose air speed where low load factor preserves air speed but 
with longer turn radius. For implementing limited number of 
maneuvers in this paper, decisions based on load factor are not 
included in the work. 

Evasive maneuver decision: During recovery or overshoot 
conditions, throttle settings on engine are set to idle if speed is 
over corner velocity or other aircraft is in lead pursuit. Otherwise 
throttle is set to maximum power. 

if (λ>120 and η>120) : evasion 

These rules are derived from domain information [13] and a 
sample rule-based air combat algorithm in [2]. Implementation 



of maneuvers dictates changes in angles and speeds until certain 
conditions satisfied and will be covered in next sub-sections. 
Final list of rules studied in this work is provided in Table 3. 

TABLE 3 FINAL RULE LIST 

Condition Resulting 
Maneuver 

h is small and θ<0 diverecovery 

120<λ<180 and η<60 climb 

120<λ<180 and 60<η<120 and |h|<1000ft and r<6000ft break 

120<λ<180 and 60<η<120 and h1<h2 and r < 3500ft verticalbreak 

120<λ<180 and 60<η<120 and h1>h2 and r < 3500ft oppositeturn 

λ<45 and η<30 pointing 

λ<30 and η<30 lead pursuit 

λ>30 and 30<η<90-λ pure pursuit 

λ>30 and 90-λ<η<180-λ lag pursuit 

λ>30 and 180-λ<η pursuit 

λ<60 and η2<-5 and |φ|<30 and v1<v2 and φ.<φ negative 

λ<60 and η2<-5 and |φ|<30 and v1<v2 and φ.>φ intercept  

λ>120 and η>120 evasion 

IV. Normalization Layer 

Normalization layer runs after firing rules in previous layer. 
When more than one rule is fired, this layer detects the effect of 
each firing rule in the resulting output. For the simplicity, one 
node is defined for each rule and weight of that rule is set to 1. 
Weight for the other rules is set to 0.001. ݕ௜ସ = ௫೏ర∑௫೏ర (18) 

V. Defuzzification Layer 

This layer finalizes the output of the system. In air combat 
case, one node is defined for implementation of each selected 
maneuver. Since movements have 6 variables for duration, 
mode, velocity, pitch change, heading change, roll change, the 
ANFIS should have 1 output for each variable. Duration is 
neglected. Coefficients not applicable to the movement are set to 
0.001. For constant states like velocity, it is set to 1. ݕ௜ହ = ௜ହሺ݇௜଴ݔ + ݇௜ଵݔଵ + ⋯+ ݇௜௡ݔ௡ሻ (19) 

Implementations of each maneuver are explained below. 

Dive recovery: If dive recovery is selected, than θ is already 
less than zero and should be recovered to zero. Pitch Yaw 
Transition is selected as the movement mode. 

σ=4, θ'=-θ, ψ'=ψ 

Climb: Climbing as a movement of a maneuver is decided as 
quarters. Another objective is not to lose energy, thus using low 
g or loop radius. Loop is selected as movement mode. 

σ=3, θ'=π/2, v=v 

Break: Break is forcing the second aircraft to saturate η 
shooting. Maneuver starts with a roll towards second aircraft. 
General application is sin(φ)=|h|/range. 

σ=5, φ=asin(|h1-h2|/r) 

Vertical break: Vertical break is a defensive maneuver to 
climb up when opponent is diving into you. It has the same logic 
as climb while range is less than 3500 feet. 

σ=3, θ'=π/2, v=v 

TABLE 4 DE-FUZZIFICATION EQUATIONS 

Maneuver De-fuzzification output 

σ φ θ' ψ' V 
Dive recovery 4  -θ ψ  

Climb 3  π/2  V1 

Break 5 asin(|h|/r)    

Vertical break 3 π/2   V1 

Opposite turn 2   π V1 

Pointing 4  asin((h)/r) η1  

Lead Pursuit 2   ψ'2 0.9*V2 

Pure Pursuit 2   η2-η1 V2 

Lag Pursuit 2   η1 V1 

Pursuit 2   η2-η1 V1 

Negative G 5 φ-π*sign(φ)    

Intercept 4  asin((h)/r) η1  

Evasion 5 φ-π*sign(φ)/2    

Opposite turn: Turn nose to opponent aircraft at a lower 
altitude until η<60. 

σ=2, ψ'=π, v=v 

Pointing: When there is a strong probability to shoot turn the 
nose directly to the opponent position 

σ=4, θ'=asin((h)/r), ψ'=η 

Lead Pursuit: Follow opponent keeping nose direction in 
front of opponent. 

σ=2, ψ'= ψ'2, V=V2 * 0.9 

Pure Pursuit: Follow opponent keeping nose direction in 
front of opponent. 

σ=2, ψ'= η2-η, V=V2 

Lag Pursuit: Decrease η to keep track of opponent. 

σ=2, ψ'= -η, V=V 

Pursuit: Pursuit has the same algorithm with the pure pursuit 
without change in velocity. 

σ=2, ψ'= η2-η, V=V 

Negative G:  Turn nose to the opponent by making 180 
degrees of roll for loosing less energy when φ > 30 degrees.  

σ=5, φ= φ-π*sign(φ) 

Intercept trajectory: Has the same logic with pointing unless 
negative G is required. 

σ=4, θ'=asin((h)/r), ψ'=η 

Evasion: Roll with 90 degrees from current position and 
break through opponent aircraft. 

σ=5, φ= φ-π*sign(φ)/2 



Total list of coefficients for equations of defuzzification 
layer is listed in Table 4 that includes the first movement of the 
related maneuver and initial angular changes. Defuzzification 
layer has 5 times more nodes for mode, velocity, pitch, yaw and 
roll. The generic view of the multiple output ANFIS is show in 
Figure 2. 

 

Figure 2 Multiple Output ANFIS 

B. Training 

I. Activation Functions 

General form of a bell-shaped function of training is below. 
Choosing s and r values depends on the number and quality of 
the samples. Initially s is chosen 1 and r is chosen 10. ݕ = ଵଵା൤ቀ௫ିೞೝቁమ൨೟ (20) 

II. Corpus Content 

A sample of the training data source is listed in Table 5. The 
table includes all data. Some columns are not used during 
training but included in final level for maneuver implementation. 
Learning corpus consists of 10 F-16 combat sorties. These 
sorties are decomposed into approximately 700 moves per hour. 
Only ~25 minutes of the flight contains combat maneuvers, rest 
is cruising to combat area. A clear combat scenario contains 
about 30 moves for two aircrafts. Of those 150 combat moves, 
120 of them are used for learning and 30 for testing. 

TABLE 5 SAMPLE CORPUS DATA 

h1 θ1 v1 h2 θ2 v2 q1 v1 θ1 ψ1 q2 v2 θ2 ψ2 r λ η1 η2

1000 -50 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 135 50 ..

5000 .. .. 5500 .. .. .. .. .. .. .. .. .. .. 5000 135 90 ..

5000 .. .. 5500 .. .. .. .. .. .. .. .. .. .. 3000 25 25 ..

5500 .. .. 5000 .. .. .. .. .. .. .. .. .. .. 3000 45 90 ..

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 40 25 ..

C. Test 

Focusing deeply into the flight data, we find out that majority 
of combat maneuvers include 3D moves. 3D move is performed 
by both pitching and rolling at the same time and results a helical 
path changing direction in all 3 axis. The limited number of rules 
in the ANFIS architecture seems compliant with the sample data. 
Visually observing the result, a sample and simple maneuver 
execution is printed in Figure 3 and change in the angles, 
reference values and control signals for pitching are presented in 
Figure 4. 

For simulation purposes, a high fidelity F-16 model is used 
as defined in [20] which implements all the constraints and 
aerodynamic coefficients based on experimental result of [19]. 

 

Figure 3 Breaking route 

 

Figure 4 Angles and signals 

As a simple maneuver, the break rule is sampled. Rule 
for break is: if λ is pursuit and η is defensive than mode is 
roll, angle is asin(h/r) following mode is loop, angle is  π/2 
for vertical break and mode is turn, angle is π for break 
resulting a helical path upwards. The F-16 model trimmed at 
6000 meters and velocity at 0.6 mach results an evasive route 

against a high speed attacker in Figure 3. The simulation run 
for 10 seconds. The aircraft completes the maneuver at 8 
seconds. After completion, aircraft recovers its roll position 
back and corrects nose direction resulting π/2 heading 
change in total. 



V. RESULTS 

This paper does not focus on low level control of aircraft. 
The control mechanism at low level effects on the success of 
the solution. There are two matured solutions in [10] and [17] 
for this purpose. Also we should bear in mind that the 
proposed action in high level control and actual action at low 
level is different. For example making a 90 degrees of turn 
at high speeds is performed by rolling slightly and 
performing a turn with some looping. The lift vector 
contributes to move in horizontal plane with sin(φ) and some 
looping is required to preserve altitude and change in 
direction as well with the turn. So low level controller acts 
different than high level decisions.  

The test results justify that climb and vertical break 
maneuvers have confusing decisions since maneuver logic is 
similar even though decision arguments vary. Same occurs 
in evasion and break maneuvers since both maneuvers 
include 180 degrees of move towards the following aircraft. 
These two maneuver sets should be unified for decision. 
Lead, pure and lag pursuit maneuvers are decided perfectly 
on close altitudes. Defensive maneuvers break or evasion is 
also found successful.  

The only offensive maneuver utilized is the pointing 
algorithm where nose is simply pointed to the opponent. But 
in the cover of this paper it is only aimed to show the 
usability of the technique, so advanced moves like barrel roll 
attack, other quarter plane or high/low yoyo maneuvers are 
not be studied. 

Other technique of using 5 outputs for the ANFIS 
structure also performed well. First 3 layers of the network 
is combined in 1 decision model. After the normalization 
layer 5 nodes are designed for each maneuver. Outputs of 
same kind of nodes are summed at the final layer resulting 5 
outputs.  

VI. CONCLUSION AND FUTURE WORK 

This paper examines rules for 13 maneuvers and starts 
the initial movement of related maneuver. There are more 
advanced fighter maneuvers that should be learned from air 
combat domain. This paper shows whether the maneuver 
logic can be defined based on the angular and relative 
geometry and learned by proposed technique. A method for 
deriving more rules from combat can be designed using 
decision tree models. 

Learning corpus of the data is also another challenge for 
this work. Only 10 sorties of sample F-16 data are utilized 
for the whole corpus. But for learning advance maneuvers, 
more data from real combat flights is required. Generating 
training data in the simulation environment is also possible 
but the rare resource is advanced combat pilots. 
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