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Abstract—This paper presents a trajectory tracking control
performance analysis of some common controllers in the presence
of external disturbances for Crayzflie 2.0 nano quadrotor plat-
form. For this purpose, the mathematical model of a quadrotor
and physical parameters of Crazyflie 2.0 are summarized, and
LQR, PD and SMC approaches are developed for it. After that,
the performances of them are investigated through simulations in
the presence of matched external disturbances in the horizontal
plane for a squared trajectory. Simulation results indicate that
PD and LQR controllers perform satisfactory results for a
certain degree of bounds based on the linearized quadrotor
dynamics without any disturbance, while SMC provides more
robust performance even in the presence of external disturbances
for trajectory tracking.

Index Terms—trajectory tracking, external disturbances,
quadrotor, LQR, PD, SMC

I. INTRODUCTION

Quadrotors have an important place for human life, because

over the last decade, they have been used in many areas both

civilian and military applications, such as search, surveillance,

rescue, tracing, aerial photography and postal service due to

their size and maneuverability. Therefore, there are a great

amount of the studies about the modelling and control of the

quadrotors in the literature [1], [2], [3], [4]. Despite all these

efforts, the modelling and control of the quadrotors is still

among the subjects which are frequently studied to make them

more autonomous. What makes them so important is that they

have hover, vertical take-off and landing VTOL ability and

agile mobility. With these features, even complex tasks can be

successfully accomplished.

Quadrotor that is an under-actuated and nonlinear cou-

pled system, has four rotors and six degrees of freedom (6

DOF) involving the both translational and rotational dynamical

equations. Its unstable nature has required many different

control methods [5], [6], [7], [8]. The most remarkable control

methods among them are optimal control, robust control,

adaptive control and intelligent control. The main goal of

these control strategies is to achieve the best performance in

the quadrotor control. However, there are many factors that
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affect the performance of the quadrotors such as unmodelled

dynamics, parameter uncertainties, all external force and mo-

ment disturbances, payload changes and sensor measurement

noises during the quadrotor flights. In order to deal with these

factors, many linear and non-linear controllers including above

control strategies have been developed. The most commonly

used among them is the Proportional Integral Derivative (PID)

controller because of its simplicity, practicability and low

cost. Easy parameter gain adjustment and good robustness

are the main advantages of the PID controller. [9], [10], [11]

are the some of the PID controller papers including position

control, altitude and attitude control of the quadrotors in the

literature. Although PID controller has a broad range of using,

it limits the quadrotor performance because it is a linear

control method and it is obtained by linearizing the quadrotor

dynamic model and neglecting some factors. Therefore, it has

poor performance against uncertainties and disturbances.

Another linear control method is the Linear Quadratic

Regulator (LQR) algorithm that is an optimal control method.

Its working principle is based on optimizing the controller

gains according to a suitable cost function. [10], [12], [13]

are the some of the LQR approaches on the quadrotors in the

literature. Just like PID controller, it has poor performance

against uncertainties and disturbances.

Sliding Mode Control (SMC) is considered as one of the ro-

bust non-linear control methods under uncertainty conditions.

Like PID and LQR control, there are many studies about that

in the literature [14], [15], [16], [17]. The main goal of SMC

is to push the error to sliding surface and to keep the error on

the close neighbourhood of the sliding surface. SMC consists

of two main steps. The first one is to design a sliding surface.

The second one is to design a feedback control law to keep

the system on sliding surface.

In this paper, for a Crazyflie 2.0 nano quadrotor platform,

PD, LQR and SMC approaches are presented and their perfor-

mances are demonstrated through simulations against external

disturbances in the horizontal plane.

This paper is organized as follows: In section II, the

mathematical model of quadrotor and physical parameters
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of Crazyflie 2.0 nano quadrotor are summarized. Section III

explains the control methods. Section IV presents simulation

results and discussion. Finally, the last section is devoted for

conclusion.

II. THE MATHEMATICAL MODEL OF QUADROTOR

Fig. 1. Plus-configuration at the left, cross-configuration at the right.

Quadrotors have two common types of configuration as de-

picted in Fig. 1: Cross-Configuration and Plus-Configuration.

While plus-configuration has more acrobatic structure, cross-

configuration is more stable and it is usually preferred when

a camera is used in the quadrotor system.

TABLE I
THE ROTATIONAL MOVEMENTS COMPARISON OF TWO CONFIGURATIONS

PLUS-CONFIGURATION
MOTOR ROLL PITCH YAW

1 Ωh Ωh - ΔΩ Ωh - ΔΩ
2 Ωh - ΔΩ Ωh Ωh + ΔΩ
3 Ωh Ωh + ΔΩ Ωh - ΔΩ
4 Ωh + ΔΩ Ωh Ωh + ΔΩ

CROSS-CONFIGURATION
1 Ωh - ΔΩ Ωh - ΔΩ Ωh - ΔΩ
2 Ωh - ΔΩ Ωh + ΔΩ Ωh + ΔΩ
3 Ωh + ΔΩ Ωh + ΔΩ Ωh - ΔΩ
4 Ωh + ΔΩ Ωh - ΔΩ Ωh + ΔΩ

Table I shows the comparison of rotational movements of

two configurations by considering motor propeller speeds.

Where Ωh is motor speed (RPS) required for hover.

For two configurations, vertical movement is obtained by

increasing or decreasing the speed of four motor propellers

equally.

Fig. 2. Quadrotor model.

There are a lot of studies about derivation and analysis

of the mathematical model of quadrotors in the literature.

The full nonlinear mathematical model of a quadrotor can be

summarized as follows (cos : c and sin : s)

⎡
⎣mẍmÿ
mz̈

⎤
⎦ =

⎡
⎣(cψsθcφ + sψsφ)U1 + dx
(sψsθcφ − cψsφ)U1 + dy
(cθcφ)U1 −mg + dz

⎤
⎦ (1)

⎡
⎣IxṗIy q̇
Iz ṙ

⎤
⎦ =

⎡
⎣(U2 + (Iy − Iz)qr − JqΩS) + dφ
(U3 + (Iz − Ix)pr + JpΩS) + dθ

(U4 + (Ix − Iy)pq) + dψ

⎤
⎦ (2)

where x, y, z are the relative position of the quadrotor in iner-

tial fram; φ, θ, ψ are the Euler angles related to orientation of

quadrotor; namely roll-pitch-yaw angle of a quadrotor; p, q, r
are the body anguler rates; m is the quadrotor mass; I is the

quadrotor body inertia matrix that is assumed diagonal form in

this paper; g is the acceleration of gravity; U1 is the total lift

force; U2, U3, U4 are the torques acting on quadrotor; J is the

moment inertia of the propellers; ΩS = Ω2+Ω4−Ω1−Ω3, and

finally di is the bounded and unknown external disturbance

terms which are the force disturbances for (i = x, y, z) and

the moment disturbances for (i = φ, θ, ψ).

The following equation shows the relation between the Euler

angle rates and the body angular rates [2]

⎡
⎢⎣
φ̇

θ̇

ψ̇

⎤
⎥⎦ =

⎡
⎢⎣
1 sφtθ cφtθ
0 cφ −sφ
0

sφ
cθ

cφ
cθ

⎤
⎥⎦
⎡
⎣pq
r

⎤
⎦ (3)

Fig. 2 shows the quadrotor model with cross-configuration

used in this paper. From Fig. 2 and Table I, the total lift

force U1 and the torques acting on quadrotor can be written

as differences of the thrust forces of the propellers.

⎡
⎢⎢⎣
U1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1
− l√

2
− l√

2
l√
2

l√
2

− l√
2

l√
2

l√
2
− l√

2

−κ κ −κ κ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦ (4)

fi = KFΩ
2
i

τi = κfi
(5)

where fi and τi are the thrust and torque generated by each

rotor (i = 1, 2, 3, 4). Ωi is ith motor speed, KF is a positive

thrust factor, κ is translation factor between the thrust and

torque and finally l is the arm length of the quadrotor.

A. Physical Parameters of Quadrotor

In this paper, Crazyflie 2.0 nano quadrocopter is used as a

quadrotor platform. Table II shows the physical parameters of

it. These parameters are found by using the system identifica-

tion methods in [18].

As rotor dynamic model, the following first order transfer

function is used.

Ω(s)

Ωd(s)
=

1

Trots+ 1
(6)

where Trot is the time constant of the rotor dynamics. Ωd and

Ω are desired and actual rotor speed, respectively.
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TABLE II
THE PHYSICAL PARAMETERS OF CRAZYFLIE 2.0 QUADROTOR PLATFORM

Symbol Description Value(Unit)
m Quadrotor mass 0.028(kg)
l Quadrotor arm length 0.065(m)
Ix Inertial moment along x-axis 16.571710x10−6(kg.m2)
Iy Inertial moment along y-axis 16.655602x10−6(kg.m2)
Iz Inertial moment along z-axis 29.261652x10−6(kg.m2)
KF Thrust factor 1.61x10−8(N.s2)
κ From thrust to torque factor 0.006
J Moment inertia of propellers 0
Trot Time cons. of the rotor dyn. 0.05
Ωmax Max. rotor speed 3050(rad/sec)
Ωmin Min. rotor speed 0(rad/sec)
U1max Max. force 0.71(N)
U1min Min. force 0.07(N)
τmax Max. torque 1x10−3(Nm)
τmin Min. torque −1x10−3(Nm)

φ, θdmax Max. des. angle 0.5(rad)
φ, θdmin Min. des. angle −0.5(rad)

Fig. 3. LQR control scheme.

III. CONTROL METHODS

In this section, for the Crazyflie 2.0 platform, three control

schemes are designed: LQR, PD and SMC. While fig. 3 shows

the LQR control scheme, fig. 4 shows both SMC and PD

control general block diagram.

A. LQR Control Design

LQR controller is an optimal control solution and generates

a static gain matrix K based on a suitable cost function.

Detailed information about LQR algorithm can be found in

[10]. For this paper, to find a static gain matrix K, non-

linear equations of the quadrotor are linearized and matlab lqr
command is used. LQR controller is designed as a full state

controller and applied to non-linear model of the quadrotor.

In fig. 3, the input of plant consists of the motor thrusts f1 to

f4.

u =

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦ (7)

x̂ =
[
x y z ẋ ẏ ż φ θ ψ φ̇ θ̇ ψ̇

]
(8)

For non-linear analysis, the input of plant is as below

u =

⎡
⎢⎢⎣
f1
f2
f3
f4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

mg
4

mg
4

mg
4

mg
4

⎤
⎥⎥⎦ (9)

B. PID Control Design

There are numerous studies about PID control in the lit-

erature. Well-known control method classical PID law is as

below

upid = Kpe+Ki

∫
e+Kdė (10)

where e = x̂desired − x̂.

All controller blocks in fig. 4 use the above control law ex-

cept the integral term. Altitude and attitude controllers produce

desired force and torques, respectively. While ’OMEGA TO

FORCE & TORQUES’ block includes eqn. 4 and 5, ’FORCE

& TORQUES TO OMEGA’ block has following equations

⎡
⎢⎢⎣
Ω2

1

Ω2
2

Ω2
3

Ω2
4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
4KF

−
√
2

4KF l −
√
2

4KF l − 1
4κKF

1
4KF

−
√
2

4KF l

√
2

4KF l
1

4κKF

1
4KF

√
2

4KF l

√
2

4KF l − 1
4κKF

1
4KF

√
2

4KF l −
√
2

4KF l
1

4κKF

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
U1

U2

U3

U4

⎤
⎥⎥⎦ (11)

Ωd is obtained by taking square root of eqn. 11.

Finally, to obtain φd and θd, in the position controller block,

the following translation is used after PD position control law

⎡
⎣Fx

Fy

Fz

⎤
⎦ = m. ∗R−1(

⎡
⎣ẍpÿp
ez

⎤
⎦+

⎡
⎣00
g

⎤
⎦) (12)

where ẍp and ÿp are the output of the PD position control law.

Fi is the desired forces in the body frame (i = x, y, z). R is

the rotation matrix from body to inertial frame and is given

with eqn. 13.

R =

⎡
⎣cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ
sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ
−sθ cθsφ cθcφ

⎤
⎦ (13)

[
φd
θd

]
=

[−arctan2(Fy, Fz)
arctan2(Fx, Fz)

]
(14)

C. Sliding Mode Control Design

Sliding Mode Control is considered as one of the robust

control methods under uncertainty conditions. The main goal

of SMC is to push the error to sliding surface and to keep the

error on the close neighbourhood of the sliding surface. SMC

is consists of two main steps. The first one is to design a sliding

surface. The second one is to design a feedback control law

to keep the system on sliding surface. For this paper, sliding

surface and feedback control law are selected as below

s = ė+ λe (15)

usmc = ueq + uD (16)

where uD = ksign(s), λ and k are positive constant values,

and ueq is equivalent control term based on dynamic inversion.
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Fig. 4. Quadrotor general control scheme.

As chattering phenomena is the main disadvantage of SMC in

presence of the uncertainty, uD is taken as below

uD =
ks

|s|+ ε
(17)

where ε is positive smoothing variable preventing SMC from

chattering. The force and torque smc control laws are found

under p, q, r = φ̇, θ̇, ψ̇ assumption as below from [14], [15].

U1 =
m

cφcθ
(g + z̈ref + λz ėz +

kzsz
|sz|+ εz

) (18)

U2 = Ix(φ̈des +
Jθ̇ΩS

Ix
− θ̇ψ̇(Iy − Iz)

Ix
+ λφėφ +

kφsφ∣∣sφ∣∣+ εφ
)

(19)

U3 = Iy(θ̈des − Jφ̇ΩS

Iy
− φ̇ψ̇(Iz − Ix)

Iy
+ λθ ėθ +

kθsθ
|sθ|+ εθ

)

(20)

U4 = Ix(ψ̈des − φ̇θ̇(Ix − Iy)
Iz

+ λψ ėψ +
kψsψ∣∣sψ∣∣+ εψ

) (21)

For position control, eqn. 12, 13 and 14 are used.

IV. SIMULATION RESULTS

In the previous sections, the mathematical model of quadro-

tor and control methods are explained. This section includes

the simulation results. Eqn. 22, 23, 24, table III and IV show

the control parameters for designed controllers.

K(:, 1 : 4) =

⎡
⎢⎢⎣
−0.0157 0.0158 0.0223 −0.0090
0.0157 0.0155 0.0223 0.0089
0.0156 −0.0155 0.0223 0.0088
−0.0156 −0.0158 0.0223 −0.0087

⎤
⎥⎥⎦
(22)

K(:, 5 : 8) =

⎡
⎢⎢⎣

0.0091 0.0177 −0.0259 −0.0254
0.0086 0.0177 −0.0230 0.0249
−0.0087 0.0177 0.0234 0.0242
−0.0090 0.0177 0.0254 −0.0237

⎤
⎥⎥⎦
(23)

K(:, 8 : 12) =

⎡
⎢⎢⎣
−0.0220 −0.0027 −0.0025 −0.0080
0.0224 −0.0017 0.0024 0.0077
−0.0226 0.0018 0.0021 −0.0076
0.0222 0.0026 −0.0020 0.0079

⎤
⎥⎥⎦

(24)

TABLE III
PD PARAMETERS

x y z φ θ ψ
KP 5 5 10 11 11 11
KD 5 5 5 6 6 6

TABLE IV
SMC PARAMETERS

z φ θ ψ
k 4 22 22 22
λ 4 4 4 4
ε 0.1 0.1 0.1 0.1

As mentioned in previous sections, LQR control gain matrix

has been found for the linearized model and applied to the

full nonlinear model. PD control and sliding mode control

parameters have been set completely manually. Furthermore,

it should be noted that all parameters of controllers are tuned

as settling times will be almost the same for step reference

signal and integral term of PID control law is not used for

this paper.

As simulation steps, firstly, all designed controllers are

tested for a square trajectory. After that, they are subjected to

external disturbances in the horizontal plane, and results are

investigated. As an external disturbance, moment disturbances

are handled in eqn. 1 and 2 (dphi, dtheta, dpsi). These moment
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disturbances are the band limited white noise with the power

1e−9. For all simulations, ψd is set to zero. Fig.5-17 indicates

the simulation results.

LQR trajectory tracking results can bee seen from fig. 5-

7. When compared to linear system response, LQR controller

is worse in the z direction for non-linear system. In the x

and y directions, LQR controller generates the same response

for both systems. In presence of the external disturbances,

LQR presents acceptable results except z direction. However,

as LQR controller is obtained for a linear system, it has

some limitations for trajectory tracking. As the boundary of

trajectory increases, trajectory tracking performance decreases

even under the disturbance free conditions. Therefore, for LQR

analysis, 1 m2 square trajectory is selected.

Fig.8-12 shows the PD controller trajectory tracking results.

While PD controller presents good results without any dis-

turbance for trajectory tracking, its trajectory tracking perfor-

mance decreases when the disturbance applied.

In fig. 13-17, SMC trajectory tracking results are presented.

When simulation results are investigated, it can be seen that

SMC provides better results even in presence of external

disturbance.

It can be concluded that PD and LQR provide satisfactory

performance for a certain degree of bounds based on the

linearized quadrotor dynamics without any disturbance, SMC

provides more robust performance even in the presence of

external disturbances for trajectory tracking.

Morover, it should be noted that, in eqn. 1 and 2, while

dx, dy are the unmatched external disturbances, dz, dφ, dθ, dψ
are the matched external disturbances [17]. In this paper,

the matched external disturbances in the horizontal plane are

handled. Not only LQR and PD controller, but also SMC con-

troller can not perform well in the presence of the unmatched

external disturbances for trajectory tracking [17]. To overcome

from the unmatched external disturbances, a transformation

(decoupling of dynamics) may be taken by considering the

null-space dynamics of the state equations which are affected

by the unmatched disturbances, or disturbance estimator ap-

proaches can be developed [17], [19].

Fig. 5. LQR trajectory tracking.

Fig. 6. LQR trajectory tracking errors.

Fig. 7. LQR trajectory tracking force and torques.

Fig. 8. PD trajectory tracking.
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Fig. 9. PD trajectory tracking errors.

Fig. 10. Desired angles and responses for PD trajectory tracking.

Fig. 11. Desired angles trajectory tracking errors.

Fig. 12. PD trajectory tracking force and torques.

Fig. 13. SMC trajectory tracking.

Fig. 14. SMC trajectory tracking errors.
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Fig. 15. Desired angles and responses for SMC trajectory tracking.

Fig. 16. Desired angles trajectory tracking errors.

Fig. 17. SMC trajectory tracking force and torques.

V. CONCLUSION

In this paper, for Crayzflie 2.0 nano quadrotor platform, a

trajectory tracking control performance comparison was real-

ized against matched external disturbances. For this comdpari-

son, LQR, PD and SMC methods were developed. Simulation

results illustrate that while PD and LQR controllers provide

satisfactory results in tracking accuracy for a certain degree

of bounds under the nominal conditions, SMC provides very

effective results both under nominal conditions and matched

external uncertain disturbances.
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