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Abstract—Finding the most appropriate path in robot 

navigation has been an interesting challenge in recent years. A 

number of different techniques have been proposed to address 

this problem. Heuristic methods are one of them that have been 

efficiently used in many complex and multi-dimensional 

optimization problems. In this paper, we present a new algorithm 

for robot path planning in a static environment. The main aim is 

to use a multi objective method to minimize several metrics such 

as cost, distance, energy or time. Distance, path smoothness and 

robot path planning time is optimized in the current work. The 

contribution of this work is to calculate an appropriate fitness 

function at each iteration to achieve the best solution. The 

obtained result is compared with the Particle Swarm 

Optimization (PSO) algorithm. The proposed algorithm displays 

better performance characteristics in terms of time and path 

smoothness than PSO algorithm and the obtained path lengths 

are shorter than those obtained with PSO. 

Keywords—Path Planning, Mobile Multi-Robot, Grasshopper 

Optimization Algorithm, Obstacle Avoidance, Static  Environment. 

I.  INTRODUCTION 

Mobile robots are used in many different fields such as 
industry, military, medicine, space exploration, architecture 
and agriculture. Due to the limits in human capabilities and 
high precision in robot movements and ability to work in an 
environment that is harmful to human health or to prevent 
human error in repetitive and tasks, the use of robots is 
inevitable. The most important stage in mobile robot 
applications is the path planning. In recent years, this problem 
has attracted remarkable attention of many researchers. 

 In [1], a real time navigation system using electronic chart 
display is used to improve ant colony algorithm for path 
planning. To obtain a suitable navigation system, chart display, 
display, navigation operations, route calculation and navigation 
marks are all integrated. The aim in [1] is to design safe, 
collision-free and shortest path navigation. This has been done 
with improved basic ant colony to get a good selection strategy 
of ants and pheromone update strategy by using adaptive 
pseudo random selection rules. In [2], a global path planning 
method using ant colony algorithm in an unknown 
environment is introduced. The global information of 
environment as target attraction function is used to improve the 
selection probability of the optimal path from start position to 
target. Also, to overcome local optimum problem a new 

updating rule such as the rule of wolf colony is used. In [3], a 
heuristic dynamic method for online path planning is 
suggested. In this method, model learning is used in a Markov 
decision process. Furthermore, the authors in [3] claim that the 
proposed method has a significant advantage to enhance 
efficiency of environment model for multi robot cooperation. 
In [4], for surveillance missions, a path planning algorithm 
based on Kalman filter is proposed. The main aim is to find a 
set of commands for network for minimizing a cost function in 
three phases. First one is using Kalman filter and Bayesian 
network for target tracking. Then, the object function is defined 
according to the relative position between aircraft and target. 
Finally, a heuristic method to find the set of commands for 
network is used. In [5], two new methods of PSO algorithm 
with nonlinear inertia weight and simulated annealing PSO for 
path planning are used. The nonlinear inertia weight 
coefficients are used for global and local search accuracy. The 
local optimum problem is remedied by combining PSO with 
simulated annealing.  In [6], max-min ant system algorithm is 
used for finding a desired path in an unknown environment. 
This system is similar to ant colony algorithm that finds the 
best solution set.  The performance of the proposed algorithm 
is compared with genetic algorithms. 

The aim of path planning for mobile robot is the ability of 
finding an optimal path from a starting point to a target point 
among obstacles with collision-free. To find an appropriate 
path, some of the parameters such as cost, distance, energy and 
time that play an important role in navigation of mobile robot 
must be optimized [5-6]. To solve the path planning problem, 
several methods have been proposed including classical 
methods and meta-heuristic algorithms. Since the path planning 
problem is a NP-Hard problem, the classical methods have to 
pay high computational costs and handle large computational 
complexities. Specially, it is complicated in largo scale and 
high degree of freedom problems [7-8]. Therefore, meta-
heuristic methods have been proposed to overcome the 
problems arising with the classical methods. These methods are 
successfully used in many fields such as robotics and they are 
inspired from the natural phenomena, the evolutionary 
processes or swarm intelligence. These methods often used 
creatures, [9]. The fundamental goal of every creature is to 
survive. To achieve this goal, creatures have been adapting and 
evolving in different ways. These methods are classified into 
two main groups, namely, single-solution based and multi-
solution based. In the former, a single random solution is 
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generated and improved for a special problem. In the latter, for 
a given problem, multi-solution set is generated and enhanced. 
Besides, due to the improvement of multiple solutions during 
optimization, the multi solution based algorithms have higher 
capability of avoidance from getting trapped to local optima. 
Therefore, to escape from a local optimum, a modified solution 
around the local optimum can be used by other solutions. 
These solutions explore a larger subspace of the search space, 
so the probability of finding the global optimum is high [10]. 
Due to the exchange of the knowledge of search space between 
multi solution options, moving toward the global optimum is 
fast and the result is obtained quickly. Therefore, these 
optimization methods are used to solve difficult problems of 
path planning of robot. However, the obtained paths from these 
methods are not smooth and this is a problem to be remedied. 
In this paper, we consider a two dimensional (2D) map, which 
contains a set of obstacles. The initial position of the robot is 
known as well as the target position. The problem is to 
synthesize a path in between the two points according to given 
criteria. 

This paper is organized as follows: The second section 
introduces the grasshopper optimization algorithm. The third 
section describes the PSO based solution of the problem in 
hand. The fourth section gives the simulation results and the 
conclusions constitute the last part of the paper. 

II. BACKGROUND OF THE PROBLEM 

A. The Grasshopper Optimization Algorithm 

The grasshopper optimization algorithm (GOA) was 
inspired from the life cycle of grasshoppers, [9]. These 
creatures are seen individually in nature but they are considered 
as one of the largest swarms. The unique aspect of such a 
swarm is the swarming behavior that can be seen in both 
nymph and adulthood. The main characteristics of the swarm in 
the larval phase are slow movements and small steps for the 
young grasshoppers. The search space in the algorithm inspired 
from nature is divided into two parts, namely, exploration and 
exploitation. In the exploration, the agents that search are 
suddenly encouraged to move, but in exploitation they tend to 
move locally. These two functions and the target searching are 
fulfilled by the grasshoppers simultaneously. To simulate the 
swarming behavior of grasshopper, the following mathematical 
model is given, 

                                 iiii AGSX 1                           (1) 

where Xi is the position of ith grasshopper, Si is the social 
interaction quantity of the ith grasshopper, Gi is the force of 
gravity on the ith grasshopper and Ai is the wind advection. 
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where f is the attraction intensity and l is the scale of 
attraction length. There are social interactions between 
grasshoppers that can be defined as attraction and repulsion. As 
mentioned in [9], the distance is considered between 0 and 15 
and repulsion occurs in the interval [0, 2.079]. If the distance of 
a grasshopper from one another is 2.079, that is, there is neither 
attraction nor repulsion between them. This is named as the 
comfort zone. However, the function s is able to partition the 
space into two parts between grasshoppers, that is, repulsion or 
attraction region and comfort zone. The value of s function is 
close to zero and distance is greater than 10. Therefore, we 
cannot use this function for strong forces between grasshoppers 
with large distances of them. The value of G in (1) is calculated 
as follows: 

gi egG ˆ                                      (4) 

where g is the constant of gravitational and gê is a unity 

vector that is towards the center of earth. Besides, the A 
component in (1) is obtained as follows: 

wi euA ˆ                                         (5) 

where u is a drift constant and wê is a unity vector in the 

wind direction. 

This mathematical model cannot be applied directly to 
solve the optimization problem because the reaching of 
grasshoppers to the comfort zone is very quick and the swarm 
system is not able to converge the target position. The modified 
version of grasshopper position that is used for update of 
grasshopper position is as follows: 
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where ubd is upper boundary in the dth dimension, lbd is 

lower boundary in the dth dimension, and dT̂ is the best solution 

found so far and c is a reduction coefficient to reduce size of 

comfort zone, repulsion zone and attraction zone. )( d
i

d
j xxs   

is a function of social forces strength and 
ij

ij

d

xx 
 is a unit 

vector from the ith grasshopper to the jth grasshopper.  

The first term of (6), which is within parentheses, is 
considered as the position of other grasshoppers and 
implements the interaction of grasshoppers in nature. The 

second term ( dT̂ ) simulates the tendency of movement towards 

food source. Also, c parameter demonstrates the speed 
approaching of grasshoppers to the food source and consuming 
it. To introduce random behavior, it is possible to multiply both 
terms in (6) with random variables. As mentioned in [9], this is 
different from PSO that is briefly explained in the sequel and 
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we compare our results with the results obtained from PSO 
algorithm.  

In order to balance exploration and exploitation, the c 
parameter is needed to reduce proportionally the iteration 
count. With increasing number of iterations, the exploitation is 
promoted. Also, c parameter reduces comfort zone proportional 
to the count of iteration and obtained as follows: 

L

cc
lcc minmax

max


                             (7) 

where cmax is the maximum value and cmin is the minimum 
value and l shows the current iteration and L is the maximum 
number of iterations. This factor causes the swarm to converge 
the target, properly track the mobile target and reduce the 
comfort zone. These features lead to observe the convergence 
quickly without getting trapped to local optimum. 

B. The Particle Swarm Optimization 

The particle swarm optimization is a population-based 
optimization technique that was introduced by Kennedy and 
Eberhart in 1995, [11-12]. This method is inspired from the 
social behavior of birds searching for food. Due to its 
prominent features, such as the simplicity of the search 
mechanism, computational efficiency and easy 
implementation, the algorithm is widely used in many areas of 
optimization. Each particle has a little mass, and each particle 
in the swarm is represented as a solution in a high dimensional 
search space. This solution is a vector that consists of the 
position and its velocity. During the search process, the 
position of each particle in the search space is determined by its 
personal best denoted by Pbest and global best denoted by Gbest. 
At each iteration, each particle updates its position and velocity 
as follows: 

iii vxx  1                                  (8) 
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where  is inertia weight, ix  is the position of the particle in 

ith iteration and iv is velocity of the particle in ith iteration. r1, r2 

are random numbers from the interval [0, 1] and c1, c2 represent 
the individual and group learning rates respectively. These are 
the important factors affecting the efficiency and performance 
of the PSO, which determine the global and local search ability 
and accuracy. 

III. SIMULATION RESULTS 

The main aim is to obtain a proper path between an initial 
position and a target position in 2D environment containing 
static obstacles. We use multi objective function. These 
functions represent the effects of shortest distance, minimum 
energy consumption and minimum time, which are the 
variables of optimization. The used objective functions result in 
a collision free path in the configuration space by connecting 
the initial and target positions. In order to simulate the 
proposed algorithm, the environment map is designed as a grid 
of 1000×1000 pixels. The coordinates of the initial and target 
positions and the number of obstacles can be set or reset by 

using a MATLAB GUI. The positions of the obstacles are 
generated randomly in the workspace and the obstacles have 
rectangular shapes. 

First, in the workspace, we randomly generate points that 
are considered as configuration in free space Vi(x,y), i=1,2,..,N. 
Then we try to find an index sequence of the collision free 
vertices that connect the starting position SP(x,y) to the target 
position TP(x,y). In the workspace, the positions of the selected 
points demonstrate an index to the next vertex Vn(x,y), 

]1,1[  Nn where the final index represents the target position 

in the environment Vn+1(x,y)=TP(x,y). In addition to 
approximate the length of path between the initial and target 
positions, it is supposed that the initial and target positions are 
SP0 and TPn+1. The function used for the length of path is as 
follows. 

  
n

i ii TPSPdpl
0 1),()(                        (10) 

where l(p) is the length of the path and d(SPi,TPi+1) is 
distance between SPi and TPi+1. The distance between the 
initial and the target positions is divided into n+ 1 equal 
segment. Therefore, we can calculate the value of d(SPi,TPi+1)  
as given below. 
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To perform the path planning for the mobile robot, two 
objective functions are utilized. The first function (F1(p)) is 
Euclidean distance that is used for finding the shortest path 
between start and target positions. 
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If there is an obstacle on the resulting path, the nearest 
point to the obstacle’s border is selected. The other objective 
function is smoothness path. This function (F2(p)) is expressed 
as the angle between the two lines that are connected the target 
point to the robot’s two successive positions in each iteration. 
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where i  is the angle between two lines (  0 ),  is 

a positive constant and l is the number of line segments in the 
result path. 

In problem of multi objective optimization, an obtained 
solution cannot be compared with other ones by relational 
operators because there is more than one criterion for 
comparison. Therefore, to obtain the optimal solution of multi 
objective optimization, we use the Pareto optimal solution that 
is able to measure and find how much a solution result is better 
than others. The operator of Pareto dominance is defined as 
follows: 

)()(:},...,2,1{)()(:},...,2,1{ yfxfniyfxfni iiii
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. This 

equation shows that all components of x are smaller than the 
corresponding component of y, or at least one component is 
smaller. A point x* is called a non-dominated solution if no 
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solution can be found to dominate on it. The Pareto multi 
objective can be mathematically defined as follows: 

)}()(|{:},...,2,1{ xfyfXyni ii
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where X is the solution set. This solution is a Pareto optimal 
solution because it cannot be dominated by the solution x. To 
minimize a problem with d-dimensional decision vector and h 
objectives, the multi objective optimization is given by 

Minimize ))(),...,(),(()( 21 xfxfxfxF h  

Subject to  ],[ UL xxx                                                   (16) 

where x is a decision vector as a set of 
d

n RXxxx ),..,,( 21 and F(x) is the objective function with 

the objective vector as a set of h
n RYfff ),..,,( 21 . Lx and 

Ux are constraints of lower and upper bounds of agent range, 

respectively. The feasible set of decision space for all the 
search agents that meeting the constraints forms 

is ]},[|{ UL
d xxxRx  . As already mentioned, the aim 

of optimization is to find the Pareto optimal solution. It is 
randomly started with a generated population of search agents 
that should uniformly distribute among the search space. We 
consider F(p) as an objective function for path planning 
problem with the two objective functions defined by Eq. (12) 
and (13). Therefore, from Eqs. (12), (13) and (16) can be 
formulated as in the optimum mathematical form for MGOA. 

Minimize   ))ˆ,ˆ(),ˆ,ˆ(()( 21 llll yxfyxfpF   

Subject to  )ˆ,ˆ(),ˆ,ˆ()ˆ,ˆ( UULLll yxyxyx                           (17)    

                   nmi ,...,1        

where )ˆ,ˆ( ll yxp   is decision vectors that consist of the 

estimated coordinates corresponding to solutions for GOA. f1 is 
the objective function of length path constraint, f2 is the 
objective function of smoothness path constraint and 

)ˆ,ˆ(),ˆ,ˆ( UULL yxyx are the  lower and upper bound constraints, 

respectively. The main goal of a multi objective optimal model 
for path planning with both the shortest and smoothest path 
constraints is to obtain multi objective Pareto optimal solution. 
Therefore, according to the decision space feasible set  and 
the Pareto optimal solution F(p*), the main nature of MGOA 
can be described as determining the dominant relationship that 
saves Pareto optimal solution set X in an archive by Eq.  (16) 
and updates the best solution for problem.  

The flowchart of proposed algorithm is shown in Figure1. 
The proposed algorithm is implemented on a system with Intel 
i7 processor (2.8 GHz) and 16 GB RAM. The Parameters used 
in the simulation have been described in Table 1. 

TABLE I.  PARAMETER SETTINGS FOR SIMULATION 

Parameters Values 

Swarm Size (N) 500 

Number of Iteration (Max_iter) 100 

Maximum Value (cMax) 1 

Minimum Value (cMin) 0.00001 

    

Fig. 1. The flowchart of proposed algorithm for path planning 

Performance and efficiency of the proposed algorithm is 
tested in several environments with different number of 
obstacles at different places. Also, we use two criterions to 
evaluate performance of multi objective optimization 
algorithms that measure the probability whether the result 
solution is the actual Pareto optimal solution or not. The first 
criterion is related to error rate which can be calculated as 
follows: 

n

x
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n
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where n is the number of the obtained optimum solution in 
Pareto. When xi is equal to 0, that is, the obtained solution is an 
actual Pareto element. Otherwise xi is equal to 1.  

The second is the set coverage metric and for two sets of 
non-dominated solution A and B is given by:  
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where   illustrates the weak dominance relation. 

In environment #1 the initial position and the target 
position are taken to be SP(70.6, 847.2) that is shown by circle 
node and TP(855.57, 152.80) that is represented by square 
node, respectively. In Figure 2, the black shaded circles 
represent obstacles in environment that the number of obstacles 
is 80 with random position and size determined by our 
algorithm and the dashed line represents the optimized and 
smooth path obtained by the proposed algorithm. 

 

Fig. 2. The simulation of proposed algorithm for path planning with 80 

obstacles. 

Environment #2 consists of 50 obstacles in different places 
and the start position and target position are taken to be 
SP(88.73, 845.39) and TP(681.9948,179.92), respectively. The 
found path is represented by the dotted line as shown in Figure 
3. 

 

Fig. 3. The simulation of proposed algorithm for path planning with 50 

obstacles. 

To evaluate performance and efficiency, the proposed 
algorithm is compared with the PSO algorithm results. In the 
proposed algorithm, the next position of grasshopper is 
computed based on its current position, the position of target 
and the position of all grasshoppers. Therefore, the status of all 
grasshoppers is considered to define the location of search 
agents around target. The result is different from what we get 
with PSO. In the PSO algorithm, there are two vectors for each 
particle, namely position and velocity vectors as opposed to 
MGOA, where there is only one vector for each search agent. 
The other main difference between two algorithms is that PSO 
updates the position of a particle based on its current position, 
personal best and the global best values. While the MGOA 
updates the position of an agent based on its current position, 
global best and the position of all agents. This means that in 
PSO none of the other particles contribute to update particle 
position but in MGOA need the position all grasshoppers to 

obtain next position of each grasshopper. Also, the model of 
environment #1 with SP(66.71, 758.59) and TP(797.28,  
304.70) and the model of environment #2 with SP(219.56, 
789.33) and TP(801.16, 64.2) are used for the PSO algorithm 
and the obtained results are shown in Figures 4 and 5, 
respectively. In these figures, it can be seen that the PSO 
algorithm cannot find the shortest and optimal path in the both 
environments. The computational complexity of proposed 
algorithm is of O(MN2) where M is the number of objectives 
function and N is the number of obtained solutions. 

 

Fig. 4. The simulation of PSO algorithm for path planning with 80 obstacles. 

 

Fig. 5. The simulation of PSO algorithm with 50 obstacles. 

To evaluate and demonstrate the superiority of the proposed 
algorithm to the PSO, it is compared obtained path length and 
execution time versus different swarm size in environments #1 
and #2. The results for the environment #1 are shown in Figure 
6 and Figure 7. Also, the obtained path length and execution 
time for the environment #2 are illustrated in Figure 8 and 
Figure 9. The results of MGOA and MPSO with two metrics 
are presented in Table 2. Table 2 includes average, standard 
deviation, median, best, and worst value for ER and SCM 
obtained by algorithms after 10 independent runs. From Table 
2, it is clear that MGGOA outperforms MPSO because ER is a 
good indicator of the accuracy of algorithms to approximate 
Pareto optimal solutions. Therefore, the obtained results show 
that MGOA closely converge towards the Pareto optimal 
solution as well. 

TABLE II.  THE COMPARISON RESULTS FOR TWO ALGORITHMS MGOA 

AND MPSO. 

Algorithm Ave. Std. Median Best Worst 

MGOA (ER) 0. 022 0.0008 0.025 0.0023 0.022 

MPSO (ER) 0.0101 0.005 0.017 0.0143 0.028 

SCM(MGOA,MPSO) 0.692 0.105 0.58 0.712 0.447 

SCM(MPSO,MGOA) 0.221 0.122 0.257 0.339 0.162 
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Fig. 6. The obtained path length versus number of nodes in environment #1 

 

Fig. 7. The execution time of proposed algorithm versus number of nodes in 

environment #1. 

 

Fig. 8. The obtained path length versus number of nodes in environment #2. 

 

Fig. 9. The execution time of proposed algorithm versus number of nodes in 

environment #2. 

It is clear that the proposed algorithm achieves shorter and 
optimal solution in shorter time than the PSO. The reason is 
that as mentioned above, the grasshopper optimization 
algorithm uses one position vector for each agent while the 
PSO algorithm have two vectors of position and velocity for 
each particle. The results obtained show that the performance 
of the proposed algorithm to find the shortest and smoother 

path is better than the PSO algorithm. Therefore, in the real 
world applications the proposed algorithm may be a good 
alternative. 

IV. CONCLUSION 

This paper presents a new algorithm, which is based on 
grasshopper optimization, for mobile robot path planning. The 
robot workspace includes obstacles at random coordinates, an 
initial position and a target position. During the optimization 
stage, multiple objectives are used to obtain an appropriate 
navigation route. The proposed algorithm optimizes distance, 
time and synthesizes a smooth path. The result of the 
grasshopper optimization scheme is compared with those of the 
PSO and it is observed that the proposed approach displays 
prominent features in terms of time and smoothness. Besides, 
the resulting path is shorter in the proposed approach than that 
of PSO. 
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