
Multi-objective Grasshopper Optimization Algorithm for Robot Path Planning in Static

Environments

Zahra Elmi

Autonomous Systems Laboratory

Department of Computer Engineering

 Hacettepe University

 Ankara, Turkey

E-mail: Zahra.elmi@gmail.com

Mehmet Önder EFE

Autonomous Systems Laboratory

Department of Computer Engineering

Hacettepe University

 Ankara, Turkey

E-mail: onderefe@hacettepe.edu.tr

Abstract—Finding the most appropriate path in robot

navigation has been an interesting challenge in recent years. A

number of different techniques have been proposed to address

this problem. Heuristic methods are one of them that have been

efficiently used in many complex and multi-dimensional

optimization problems. In this paper, we present a new algorithm

for robot path planning in a static environment. The main aim is

to use a multi objective method to minimize several metrics such

as cost, distance, energy or time. Distance, path smoothness and

robot path planning time is optimized in the current work. The

contribution of this work is to calculate an appropriate fitness

function at each iteration to achieve the best solution. The

obtained result is compared with the Particle Swarm

Optimization (PSO) algorithm. The proposed algorithm displays

better performance characteristics in terms of time and path

smoothness than PSO algorithm and the obtained path lengths

are shorter than those obtained with PSO.

Keywords—Path Planning, Mobile Multi-Robot, Grasshopper

Optimization Algorithm, Obstacle Avoidance, Static Environment.

I. INTRODUCTION

Mobile robots are used in many different fields such as
industry, military, medicine, space exploration, architecture
and agriculture. Due to the limits in human capabilities and
high precision in robot movements and ability to work in an
environment that is harmful to human health or to prevent
human error in repetitive and tasks, the use of robots is
inevitable. The most important stage in mobile robot
applications is the path planning. In recent years, this problem
has attracted remarkable attention of many researchers.

 In [1], a real time navigation system using electronic chart
display is used to improve ant colony algorithm for path
planning. To obtain a suitable navigation system, chart display,
display, navigation operations, route calculation and navigation
marks are all integrated. The aim in [1] is to design safe,
collision-free and shortest path navigation. This has been done
with improved basic ant colony to get a good selection strategy
of ants and pheromone update strategy by using adaptive
pseudo random selection rules. In [2], a global path planning
method using ant colony algorithm in an unknown
environment is introduced. The global information of
environment as target attraction function is used to improve the
selection probability of the optimal path from start position to
target. Also, to overcome local optimum problem a new

updating rule such as the rule of wolf colony is used. In [3], a
heuristic dynamic method for online path planning is
suggested. In this method, model learning is used in a Markov
decision process. Furthermore, the authors in [3] claim that the
proposed method has a significant advantage to enhance
efficiency of environment model for multi robot cooperation.
In [4], for surveillance missions, a path planning algorithm
based on Kalman filter is proposed. The main aim is to find a
set of commands for network for minimizing a cost function in
three phases. First one is using Kalman filter and Bayesian
network for target tracking. Then, the object function is defined
according to the relative position between aircraft and target.
Finally, a heuristic method to find the set of commands for
network is used. In [5], two new methods of PSO algorithm
with nonlinear inertia weight and simulated annealing PSO for
path planning are used. The nonlinear inertia weight
coefficients are used for global and local search accuracy. The
local optimum problem is remedied by combining PSO with
simulated annealing. In [6], max-min ant system algorithm is
used for finding a desired path in an unknown environment.
This system is similar to ant colony algorithm that finds the
best solution set. The performance of the proposed algorithm
is compared with genetic algorithms.

The aim of path planning for mobile robot is the ability of
finding an optimal path from a starting point to a target point
among obstacles with collision-free. To find an appropriate
path, some of the parameters such as cost, distance, energy and
time that play an important role in navigation of mobile robot
must be optimized [5-6]. To solve the path planning problem,
several methods have been proposed including classical
methods and meta-heuristic algorithms. Since the path planning
problem is a NP-Hard problem, the classical methods have to
pay high computational costs and handle large computational
complexities. Specially, it is complicated in largo scale and
high degree of freedom problems [7-8]. Therefore, meta-
heuristic methods have been proposed to overcome the
problems arising with the classical methods. These methods are
successfully used in many fields such as robotics and they are
inspired from the natural phenomena, the evolutionary
processes or swarm intelligence. These methods often used
creatures, [9]. The fundamental goal of every creature is to
survive. To achieve this goal, creatures have been adapting and
evolving in different ways. These methods are classified into
two main groups, namely, single-solution based and multi-
solution based. In the former, a single random solution is

978-1-5386-4053-1/18/$31.00 ©2018 IEEE 244

generated and improved for a special problem. In the latter, for
a given problem, multi-solution set is generated and enhanced.
Besides, due to the improvement of multiple solutions during
optimization, the multi solution based algorithms have higher
capability of avoidance from getting trapped to local optima.
Therefore, to escape from a local optimum, a modified solution
around the local optimum can be used by other solutions.
These solutions explore a larger subspace of the search space,
so the probability of finding the global optimum is high [10].
Due to the exchange of the knowledge of search space between
multi solution options, moving toward the global optimum is
fast and the result is obtained quickly. Therefore, these
optimization methods are used to solve difficult problems of
path planning of robot. However, the obtained paths from these
methods are not smooth and this is a problem to be remedied.
In this paper, we consider a two dimensional (2D) map, which
contains a set of obstacles. The initial position of the robot is
known as well as the target position. The problem is to
synthesize a path in between the two points according to given
criteria.

This paper is organized as follows: The second section
introduces the grasshopper optimization algorithm. The third
section describes the PSO based solution of the problem in
hand. The fourth section gives the simulation results and the
conclusions constitute the last part of the paper.

II. BACKGROUND OF THE PROBLEM

A. The Grasshopper Optimization Algorithm

The grasshopper optimization algorithm (GOA) was
inspired from the life cycle of grasshoppers, [9]. These
creatures are seen individually in nature but they are considered
as one of the largest swarms. The unique aspect of such a
swarm is the swarming behavior that can be seen in both
nymph and adulthood. The main characteristics of the swarm in
the larval phase are slow movements and small steps for the
young grasshoppers. The search space in the algorithm inspired
from nature is divided into two parts, namely, exploration and
exploitation. In the exploration, the agents that search are
suddenly encouraged to move, but in exploitation they tend to
move locally. These two functions and the target searching are
fulfilled by the grasshoppers simultaneously. To simulate the
swarming behavior of grasshopper, the following mathematical
model is given,

 iiii AGSX 1 (1)

where Xi is the position of ith grasshopper, Si is the social
interaction quantity of the ith grasshopper, Gi is the force of
gravity on the ith grasshopper and Ai is the wind advection.

N

ij
j

ijiji ddsS

1

)(

 (2)

where
ij

ij
ij

d

xx
d

:ˆ is a unit vector between the ith

grasshopper and jth grasshopper, dij is the distance between the

ith grasshopper and jth grasshopper, s is a function that presents
the strength of social forces designed as below.

rl

r

efers

)((3)

where f is the attraction intensity and l is the scale of
attraction length. There are social interactions between
grasshoppers that can be defined as attraction and repulsion. As
mentioned in [9], the distance is considered between 0 and 15
and repulsion occurs in the interval [0, 2.079]. If the distance of
a grasshopper from one another is 2.079, that is, there is neither
attraction nor repulsion between them. This is named as the
comfort zone. However, the function s is able to partition the
space into two parts between grasshoppers, that is, repulsion or
attraction region and comfort zone. The value of s function is
close to zero and distance is greater than 10. Therefore, we
cannot use this function for strong forces between grasshoppers
with large distances of them. The value of G in (1) is calculated
as follows:

gi egG ˆ (4)

where g is the constant of gravitational and gê is a unity

vector that is towards the center of earth. Besides, the A
component in (1) is obtained as follows:

wi euA ˆ (5)

where u is a drift constant and wê is a unity vector in the

wind direction.

This mathematical model cannot be applied directly to
solve the optimization problem because the reaching of
grasshoppers to the comfort zone is very quick and the swarm
system is not able to converge the target position. The modified
version of grasshopper position that is used for update of
grasshopper position is as follows:

d
ij

ijd
i

d
j

N

ij
j

ddd
i T

d

xx
xxs

lbub
ccx ˆ))(

2
(

11

 (6)

where ubd is upper boundary in the dth dimension, lbd is

lower boundary in the dth dimension, and dT̂ is the best solution

found so far and c is a reduction coefficient to reduce size of

comfort zone, repulsion zone and attraction zone.)(d
i

d
j xxs

is a function of social forces strength and
ij

ij

d

xx
 is a unit

vector from the ith grasshopper to the jth grasshopper.

The first term of (6), which is within parentheses, is
considered as the position of other grasshoppers and
implements the interaction of grasshoppers in nature. The

second term (dT̂) simulates the tendency of movement towards

food source. Also, c parameter demonstrates the speed
approaching of grasshoppers to the food source and consuming
it. To introduce random behavior, it is possible to multiply both
terms in (6) with random variables. As mentioned in [9], this is
different from PSO that is briefly explained in the sequel and

245

we compare our results with the results obtained from PSO
algorithm.

In order to balance exploration and exploitation, the c
parameter is needed to reduce proportionally the iteration
count. With increasing number of iterations, the exploitation is
promoted. Also, c parameter reduces comfort zone proportional
to the count of iteration and obtained as follows:

L

cc
lcc minmax

max

 (7)

where cmax is the maximum value and cmin is the minimum
value and l shows the current iteration and L is the maximum
number of iterations. This factor causes the swarm to converge
the target, properly track the mobile target and reduce the
comfort zone. These features lead to observe the convergence
quickly without getting trapped to local optimum.

B. The Particle Swarm Optimization

The particle swarm optimization is a population-based
optimization technique that was introduced by Kennedy and
Eberhart in 1995, [11-12]. This method is inspired from the
social behavior of birds searching for food. Due to its
prominent features, such as the simplicity of the search
mechanism, computational efficiency and easy
implementation, the algorithm is widely used in many areas of
optimization. Each particle has a little mass, and each particle
in the swarm is represented as a solution in a high dimensional
search space. This solution is a vector that consists of the
position and its velocity. During the search process, the
position of each particle in the search space is determined by its
personal best denoted by Pbest and global best denoted by Gbest.
At each iteration, each particle updates its position and velocity
as follows:

iii vxx 1 (8)

)()(1221111 ibestibestii xGrcxPrcvv (9)

where is inertia weight, ix is the position of the particle in

ith iteration and iv is velocity of the particle in ith iteration. r1, r2

are random numbers from the interval [0, 1] and c1, c2 represent
the individual and group learning rates respectively. These are
the important factors affecting the efficiency and performance
of the PSO, which determine the global and local search ability
and accuracy.

III. SIMULATION RESULTS

The main aim is to obtain a proper path between an initial
position and a target position in 2D environment containing
static obstacles. We use multi objective function. These
functions represent the effects of shortest distance, minimum
energy consumption and minimum time, which are the
variables of optimization. The used objective functions result in
a collision free path in the configuration space by connecting
the initial and target positions. In order to simulate the
proposed algorithm, the environment map is designed as a grid
of 1000×1000 pixels. The coordinates of the initial and target
positions and the number of obstacles can be set or reset by

using a MATLAB GUI. The positions of the obstacles are
generated randomly in the workspace and the obstacles have
rectangular shapes.

First, in the workspace, we randomly generate points that
are considered as configuration in free space Vi(x,y), i=1,2,..,N.
Then we try to find an index sequence of the collision free
vertices that connect the starting position SP(x,y) to the target
position TP(x,y). In the workspace, the positions of the selected
points demonstrate an index to the next vertex Vn(x,y),

]1,1[Nn where the final index represents the target position

in the environment Vn+1(x,y)=TP(x,y). In addition to
approximate the length of path between the initial and target
positions, it is supposed that the initial and target positions are
SP0 and TPn+1. The function used for the length of path is as
follows.

n

i ii TPSPdpl
0 1),()((10)

where l(p) is the length of the path and d(SPi,TPi+1) is
distance between SPi and TPi+1. The distance between the
initial and the target positions is divided into n+ 1 equal
segment. Therefore, we can calculate the value of d(SPi,TPi+1)
as given below.

22
1)()(),(

11
 iiii TPSPTPSPii yyxxTPSPd (11)

To perform the path planning for the mobile robot, two
objective functions are utilized. The first function (F1(p)) is
Euclidean distance that is used for finding the shortest path
between start and target positions.

1

01)(
n

i idpF (12)

If there is an obstacle on the resulting path, the nearest
point to the obstacle’s border is selected. The other objective
function is smoothness path. This function (F2(p)) is expressed
as the angle between the two lines that are connected the target
point to the robot’s two successive positions in each iteration.

1

02)(
n

i i lpF (13)

where i is the angle between two lines (0), is

a positive constant and l is the number of line segments in the
result path.

In problem of multi objective optimization, an obtained
solution cannot be compared with other ones by relational
operators because there is more than one criterion for
comparison. Therefore, to obtain the optimal solution of multi
objective optimization, we use the Pareto optimal solution that
is able to measure and find how much a solution result is better
than others. The operator of Pareto dominance is defined as
follows:

)()(:},...,2,1{)()(:},...,2,1{ yfxfniyfxfni iiii

 (14)

where),..,,(21 nxxxx

 and),..,,(21 nyyyy

. This

equation shows that all components of x are smaller than the
corresponding component of y, or at least one component is
smaller. A point x* is called a non-dominated solution if no

246

solution can be found to dominate on it. The Pareto multi
objective can be mathematically defined as follows:

)}()(|{:},...,2,1{ xfyfXyni ii

 (15)

where X is the solution set. This solution is a Pareto optimal
solution because it cannot be dominated by the solution x. To
minimize a problem with d-dimensional decision vector and h
objectives, the multi objective optimization is given by

Minimize))(),...,(),(()(21 xfxfxfxF h

Subject to],[UL xxx (16)

where x is a decision vector as a set of
d

n RXxxx),..,,(21 and F(x) is the objective function with

the objective vector as a set of h
n RYfff),..,,(21 . Lx and

Ux are constraints of lower and upper bounds of agent range,

respectively. The feasible set of decision space for all the
search agents that meeting the constraints forms

is]},[|{ UL
d xxxRx . As already mentioned, the aim

of optimization is to find the Pareto optimal solution. It is
randomly started with a generated population of search agents
that should uniformly distribute among the search space. We
consider F(p) as an objective function for path planning
problem with the two objective functions defined by Eq. (12)
and (13). Therefore, from Eqs. (12), (13) and (16) can be
formulated as in the optimum mathematical form for MGOA.

Minimize))ˆ,ˆ(),ˆ,ˆ(()(21 llll yxfyxfpF

Subject to)ˆ,ˆ(),ˆ,ˆ()ˆ,ˆ(UULLll yxyxyx (17)

 nmi ,...,1

where)ˆ,ˆ(ll yxp is decision vectors that consist of the

estimated coordinates corresponding to solutions for GOA. f1 is
the objective function of length path constraint, f2 is the
objective function of smoothness path constraint and

)ˆ,ˆ(),ˆ,ˆ(UULL yxyx are the lower and upper bound constraints,

respectively. The main goal of a multi objective optimal model
for path planning with both the shortest and smoothest path
constraints is to obtain multi objective Pareto optimal solution.
Therefore, according to the decision space feasible set and
the Pareto optimal solution F(p*), the main nature of MGOA
can be described as determining the dominant relationship that
saves Pareto optimal solution set X in an archive by Eq. (16)
and updates the best solution for problem.

The flowchart of proposed algorithm is shown in Figure1.
The proposed algorithm is implemented on a system with Intel
i7 processor (2.8 GHz) and 16 GB RAM. The Parameters used
in the simulation have been described in Table 1.

TABLE I. PARAMETER SETTINGS FOR SIMULATION

Parameters Values

Swarm Size (N) 500

Number of Iteration (Max_iter) 100

Maximum Value (cMax) 1

Minimum Value (cMin) 0.00001

Fig. 1. The flowchart of proposed algorithm for path planning

Performance and efficiency of the proposed algorithm is
tested in several environments with different number of
obstacles at different places. Also, we use two criterions to
evaluate performance of multi objective optimization
algorithms that measure the probability whether the result
solution is the actual Pareto optimal solution or not. The first
criterion is related to error rate which can be calculated as
follows:

n

x
ER

n

i i 1 (18)

where n is the number of the obtained optimum solution in
Pareto. When xi is equal to 0, that is, the obtained solution is an
actual Pareto element. Otherwise xi is equal to 1.

The second is the set coverage metric and for two sets of
non-dominated solution A and B is given by:

B

baAaBb
BASCM

}:|{
),(

 (19)

Start End

Initialize Start and target

position, velocity of robot

Reach to

target?

Initialize the population of

grasshoppers

Initialize cmax, cmin and
maximum number of

iteration

Evaluate fitness function of

each search agent

T= the best search agent

Update c using Eq.(7)

L<Max of

iteration

Normalized the distances

between [1,4]

Update position of current

agent by Eq. (6) Calculate the best position for

each grasshopper and take it

Is there any

obstacle on the

selected

optimum path?

Calculate the objective values and

constraint of each agent by Eq. (17)

Update T if there is a better

solution and select it

Find and move to the safe
point that has minimum

distance and angle from target

Move to the nearest safe point

assumed around the obstacle

Store all non-dominated
feasible particles into the

feasible archive; Update it

Is the selected

distance and angle

appropriate?

NO

NO

NO

NO

Yes

Yes

Yes

Yes

247

where illustrates the weak dominance relation.

In environment #1 the initial position and the target
position are taken to be SP(70.6, 847.2) that is shown by circle
node and TP(855.57, 152.80) that is represented by square
node, respectively. In Figure 2, the black shaded circles
represent obstacles in environment that the number of obstacles
is 80 with random position and size determined by our
algorithm and the dashed line represents the optimized and
smooth path obtained by the proposed algorithm.

Fig. 2. The simulation of proposed algorithm for path planning with 80

obstacles.

Environment #2 consists of 50 obstacles in different places
and the start position and target position are taken to be
SP(88.73, 845.39) and TP(681.9948,179.92), respectively. The
found path is represented by the dotted line as shown in Figure
3.

Fig. 3. The simulation of proposed algorithm for path planning with 50

obstacles.

To evaluate performance and efficiency, the proposed
algorithm is compared with the PSO algorithm results. In the
proposed algorithm, the next position of grasshopper is
computed based on its current position, the position of target
and the position of all grasshoppers. Therefore, the status of all
grasshoppers is considered to define the location of search
agents around target. The result is different from what we get
with PSO. In the PSO algorithm, there are two vectors for each
particle, namely position and velocity vectors as opposed to
MGOA, where there is only one vector for each search agent.
The other main difference between two algorithms is that PSO
updates the position of a particle based on its current position,
personal best and the global best values. While the MGOA
updates the position of an agent based on its current position,
global best and the position of all agents. This means that in
PSO none of the other particles contribute to update particle
position but in MGOA need the position all grasshoppers to

obtain next position of each grasshopper. Also, the model of
environment #1 with SP(66.71, 758.59) and TP(797.28,
304.70) and the model of environment #2 with SP(219.56,
789.33) and TP(801.16, 64.2) are used for the PSO algorithm
and the obtained results are shown in Figures 4 and 5,
respectively. In these figures, it can be seen that the PSO
algorithm cannot find the shortest and optimal path in the both
environments. The computational complexity of proposed
algorithm is of O(MN2) where M is the number of objectives
function and N is the number of obtained solutions.

Fig. 4. The simulation of PSO algorithm for path planning with 80 obstacles.

Fig. 5. The simulation of PSO algorithm with 50 obstacles.

To evaluate and demonstrate the superiority of the proposed
algorithm to the PSO, it is compared obtained path length and
execution time versus different swarm size in environments #1
and #2. The results for the environment #1 are shown in Figure
6 and Figure 7. Also, the obtained path length and execution
time for the environment #2 are illustrated in Figure 8 and
Figure 9. The results of MGOA and MPSO with two metrics
are presented in Table 2. Table 2 includes average, standard
deviation, median, best, and worst value for ER and SCM
obtained by algorithms after 10 independent runs. From Table
2, it is clear that MGGOA outperforms MPSO because ER is a
good indicator of the accuracy of algorithms to approximate
Pareto optimal solutions. Therefore, the obtained results show
that MGOA closely converge towards the Pareto optimal
solution as well.

TABLE II. THE COMPARISON RESULTS FOR TWO ALGORITHMS MGOA

AND MPSO.

Algorithm Ave. Std. Median Best Worst

MGOA (ER) 0. 022 0.0008 0.025 0.0023 0.022

MPSO (ER) 0.0101 0.005 0.017 0.0143 0.028

SCM(MGOA,MPSO) 0.692 0.105 0.58 0.712 0.447

SCM(MPSO,MGOA) 0.221 0.122 0.257 0.339 0.162

248

Fig. 6. The obtained path length versus number of nodes in environment #1

Fig. 7. The execution time of proposed algorithm versus number of nodes in

environment #1.

Fig. 8. The obtained path length versus number of nodes in environment #2.

Fig. 9. The execution time of proposed algorithm versus number of nodes in

environment #2.

It is clear that the proposed algorithm achieves shorter and
optimal solution in shorter time than the PSO. The reason is
that as mentioned above, the grasshopper optimization
algorithm uses one position vector for each agent while the
PSO algorithm have two vectors of position and velocity for
each particle. The results obtained show that the performance
of the proposed algorithm to find the shortest and smoother

path is better than the PSO algorithm. Therefore, in the real
world applications the proposed algorithm may be a good
alternative.

IV. CONCLUSION

This paper presents a new algorithm, which is based on
grasshopper optimization, for mobile robot path planning. The
robot workspace includes obstacles at random coordinates, an
initial position and a target position. During the optimization
stage, multiple objectives are used to obtain an appropriate
navigation route. The proposed algorithm optimizes distance,
time and synthesizes a smooth path. The result of the
grasshopper optimization scheme is compared with those of the
PSO and it is observed that the proposed approach displays
prominent features in terms of time and smoothness. Besides,
the resulting path is shorter in the proposed approach than that
of PSO.

REFERENCES

[1] H. Meng, X. He, J. Song and Z. Liu,” Path planning research based on
the improved ant colony algorithm in ECDIS”. 35th IEEE
Chinese Control Conference(CCC), Chengdu, China, pp. 5504-5508,
July 2016.

[2] H. Che, Z. Wu, R. Kang and C.Yun, “ Global path planning for
explosion-proof robot based on improved ant colony optimization”. In
Conference on Intelligent Robot Systems (ACIRS), Asia-Pacific, pp. 36-
40, 2016.

[3] S. Al Dabooni and D. Wunsch, “Heuristic dynamic programming for
mobile robot path planning based on Dyna approach”. In International
Joint Conference on Neural Networks (IJCNN), pp. 3723-3730, 2016.

[4] D. Gentilini, N. Farina, E. Franco, A. E. Tirri, D. Accardo, R. S. L.
Moriello and L. Angrisani, ”Multi agent path planning strategies based
on Kalman Filter for surveillance missions”. In IEEE 2nd International
Forum on Research and Technologies for Society and Industry
Leveraging a better tomorrow (RTSI), pp. 1-6, 2016.

[5] Z. Nie, X. Yang, S. Gao, Y. Zheng, J. Wang and Z. Wang, “Research on
autonomous moving robot path planning based on improved particle
swarm optimization”. In IEEE Congress on Evolutionary Computation
(CEC), pp. 2532-2536, 2016.

[6] V. D. C. Santos, F. S. Osório, C. F. Toledo, F. E. Otero and C. G.
Johnson, “Exploratory path planning using the Max-min ant system
algorithm”. In IEEE Congress on Evolutionary Computation (CEC), pp.
4229-4235, 2016 .

[7] J. Yu and S. M. LaValle,”Optimal Multirobot Path Planning on Graphs:
Complete Algorithms and Effective Heuristics”. IEEE Transactions on
Robotics, October 2016, vol. 32, pp.1163-1177.

[8] X. Du, X. Li, D. Liu and B. Dai, “Path planning for autonomous
vehicles in complicated environments”. In IEEE International
Conference on Vehicular Electronics and Safety (ICVES), pp. 1-7, July
2016.

[9] S. Saremi, S. Mirjalili and A. Lewis, “Grasshopper optimisation
algorithm: Theory and application”. Advances in Engineering Software,
March 2017, vol. 105, pp. 30-47.

[10] C. Copot, A. Hernandez, T. T. Mac, and R. De Keyse, “Collision-free
path planning in indoor environment using a quadrotor”. In 21st
International Conference on Methods and Models in Automation and
Robotics (MMAR), pp. 351-356, August 2016.

[11] M. S. Alam, M. U. Rafique and M. U. Khan, “Mobile Robot Path
Planning in Static Environments using Particle Swarm Optimization”. In
international Journal of Computer Science and Electronics Engineering
(IJCSEE), 2015, vol. 3. pp. 2320–4028.

[12] L. Liao, X. Cai, H. Huang, and Y. Liu, “Improved dynamic double
mutation particle swarm optimization for mobile robot path planning”.
In Control and Decision Conference (CCDC), Chinese, pp. 3235-3239,
May 2016.

249

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

