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Abstract  In this study, a controller is designed by 
using neural networks. Performance of this controller 
is compared with an another controller which is 
designed by using classical control methods. They are 
both tested with the same flight scenario to analyse 
their capabilities. This comparison provides 
comprehension about the dynamical capabilities of the 
neural networks as a controller, so that in further 
studies, robustness against model uncertainties and 
sudden unplanned airframe changes may be achieved 
with a neurocontroller that is subjected to online 
training. 
 

1. INTRODUCTION 

    Using neural networks in control systems is a 
worthy area to study. However, in aeronautics, 
usually it is not prefered. The reason of this 
situation is that, the output of the neural networks 
may not be explicit for every possible condition due 
to its complex structure. The neural networks are 
universal approximators and there is always a risk 
of overfitting. That means the system can produce 
undesired outputs even in the predefined boundaries 
that involves the training data. On the other hand, 
reliability standards are very high in aviation 
industry, so it is more difficult to certify such 
systems. In this study, artificial neural networks is 
used to control an aircraft to investigate its 
capabilities. Other than this neurocontroller, a 
second controller is designed with classical control 
methods to compare their performances. 
    To do this comparison, a simulation environment 
is prepared. The simulation runs the equations of 
motion with 6 degrees of freedom. These equations 
can be found in reference [4]. It models numerous 
kinematic and dynamic parameters along with the 
engagement area properties like speed of sound, air 
density, etc. Those parameteres are needed to carry 
out the specified flight scenario. 
 

2. SIMULATION 

    The simulation is made in Matlab/Simulink 
environment. In the simulation, motion of the 
aircraft is modeled using the flight mechanics 
equations. These equations involve all the major 

dynamics of the aircraft in three dimensional space 
corresponding to pitch plane, yaw plane and roll 
plane. The simulation solves the corresponding 
differential equations of motion and so that, 
position, velocity and acceleration of the aircraft is 
obtained at every time step. 
    To solve the differential equations of motion, 
aircraft s dynamical, inertial and geometrical 
properties must be known. In this study, an anti-

Table 1 shows some of the major geometrical and 
inertial properties of the Javelin which are used in 
the simulation. Figure 1 shows a drawing of the 
Javelin. 
 
Mass CG I_xx I_yy I_zz Length Diameter 
10.15 

kg 
0.446 

m 
0.0231 
kg/m2 

0.914 
kg/m2 

0.914 
kg/m2 

1.1 m 0.127 m 

Table 1  Some inertial and geometrical properties 

 
Figure 1  Javelin missile 

    For expressing the dynamical characteristics of 
the missile, an aerodynamic database is needed to 
use in the simulation so that the dynamical 
differential equations can be solved. To create an 
aerodynamic database, MISSILE DATCOM is 
used. The process is explained in detail in reference 
[2]. Once the geometrical and inertial properties are 
known, for all three axes, force and moment 
derivatives with respect to concerned dynamic and 
kinematic properties can be extracted by using this 
software. In the flight scenario, the altitude change 
is very small and inertial properties of the missile 
are constant. Thus, the aerodynamic database is 
extracted by concerning only the Mach number 
change. 
    In simulation, the booster of the missile is not 
modeled. Thus, the boost phase of the flight is not 
simulated. The flight of the missile is started in the 
air at 120 m altitude and at 0.6 Mach. 
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2.1. Flight Scenario 

    Flight scenario consists of two parts: altitude 
hold and the guidance. In the first part of the flight, 
it is expected that the autopilot keeps the missile s 
altitude constant. After that, the guidance phase 
starts and missile heads to some target on the 
ground. The time of switching to the guidance 
mode and the location of the target is pre-specified. 

2.2. Guidance and Autopilot 

    To control the missile and follow a trajectory 
according to the flight scenario, guidance and 
autopilot algorithms are added to the simulation. 
    In this study, the missile is controlled by using 
three distinct autopilots, each of them controls the 
pitch plane, yaw plane and roll plane dynamics, 
seperately. Pitch and yaw autopilots control the 
corresponding component of acceleration 
commands. On the other hand, the roll autopilot 
controls the roll angle of the missile and always 
tries to keep this angle at zero because the missile is 
using skid-to-turn principle to maneuver. Also, all 
three autopilots are responsible for stabilizing the 
aircraft. In this part of this study, classical control 
methods are used. Autopilots have full-state 
feedback structure and designed by using pole 
placement techniques. 
    Guidance algorithm produces the acceleration 
commands which are the inputs of the autopilots. It 
needs velocity and position information of the 
missile and the target, to use them with some 
guidance law. By doing that, it calculates the 
acceleration that missile must have, to be able to hit 
the target. The calculation is done vectorially, so 
that, the components of the acceleration command 
vector can be send to the seperate autopilots. 
    In the design stage of the autopilot and guidance 
algorithms, miss distance and flight time are tried to 
be minimized as the performance requirements. 
 

3. NEURAL NETWORKS 

    Once the simulation is ready, the neurocontroller 
can be designed because to design a neural network, 
a training data is required. Here, the training data is 
extracted from the simulation. 
    The neurocontroller is trained offline by using 
the training data. However, in simulation, it is 
planned that the neurocontroller will continue to 
train with online learning. That means, an emulator, 
that will be used as a model of the system, is 

needed in the simulation. The emulator will provide 
the required information for online learning of the 
neurocontroller. To obtain such an emulator, a 
second network is designed and it will also continue 
to train with online learning after the same offline 
learning procedure. In the simulation, autopilot 
structure will be replaced with this neurocontroller 
and emulator couple. The structure of the new 
control logic is shown in Figure 2. 
 

 
Figure 2  Control logic of the new control system designed by 

using neural networks 

     
    Both of the networks are using Levenberg-
Marquardt algorithm to update their parameters. 
The update rule of the Levenberg-Marquardt 
algorithm as follows: 
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    where, is the stepsize, I is an identity matrix. 
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    In the above equations, K is the output number of 
the network and P is the pair number of the training 
data. 
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3.1. Neurocontroller 

    The neurocontroller is a neural network structure 
that tries to estimate the control system behaviour 
of the missile. In this neural network 4-10-1 
configuration is used. There are 4 neurons in the 
input layer, 10 neurons in the hidden layer and 1 
neuron in the output layer. The inputs are, the 
acceleration command, current values of the 
acceleration of the missile and the Mach number 
and lastly the previous step value of the actuation 
command. The ouput parameter of the neural 
network is the current value of the actuation 
command. 
    The reason why the previous step value of the 
actuation command is chosen as one of the inputs 
of the neural network is that, with a that kind of 
input, the nonlinearity of the input-output 
relationship is reflected better to the network. 
Without this modification, the performance of the 
network is inadequate to estimate the controller  
output. 
    In the offline training, these input and output 
parameters are used as the training data in pairs. To 
train the controller online, derivative of the error 
between the acceleration command and the current 
value of the acceleration of missile, , with respect 
to the actuation command is used. This derivative, 

, and the error value, , is used for updating 

the weight parameters of the neurocontroller. In the 
offline training, this procedure was done with the 
error between the desired value and the output of 
the network, as usual.  
    As a result,  appears as a multiplier with the 

Jacobian expression in the update rule. Besides,  
is used as the error expression, in the same update 
rule. 
    The training data is obtained from the simulation 
while the autopilot, the one that is designed with 
classical control techniques, is driving the missile. 
To get a wide range of information about the 
controller dynamics, acceleration command is given 
to the system manually. The acceleration command 
is shown in Figure 3. 

 
Figure 3  Acceleration command (gravity compansated) 

    The training data was normalized before training 
the network. With a stepsize of 1, and 50 step 
iteration, the neural network is trained. After the 
training, the corresponding actuation command of 
the system and the response of the neural network 
for that is shown in Figure 4. 
 

 
Figure 4  Desired output vs. neurocontroller output 

     
    As seen in the Figure 4, curves are not exactly 
overlapping each other and there are small 
differences on the edges. However, it can be said 
that the designed neural network is capable enough 
to represent the controller dynamics. 
    The same procedure that carried out for the pitch 
autopilot, is applied for the yaw and roll autopilots 
to control the corresponding dynamics with neural 
networks, either. 

3.2. Emulator 

    Emulator is a neural network structure that is 
modeling the system dynamics. It gets the 
necessary inputs and tries to estimate the system 
output. In this neural network, 3-10-1 configuration 
is used. There are 3 neurons in the input layer, 10 
neurons in the hidden layer and 1 neuron in the 
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output layer. The inputs are, actuation command, 
acceleration of the missile and the Mach number. In 
this part, all the inputs belong to the previous step 
of the simulation so that the emulator can estimate 
the current value of the system output. The system 
output is the current value of the acceleartion of the 
missile.  
    In the offline training, these input and output 
parameters are used as the training data in pairs. In 
the online training, the procedure goes the same 
way, as opposed to the neurocontroller design 
stage. Because this time, the desired output value, 
the current acceleration value of the missile, is 
available and can be obtained from the simulation. 
Thus, the method used for calculating the error 
value and updating the weight parameters will not 
differ from the offline training. 
    The training data for the emulator is obtained by 
the same way as the neurocontroller. The only 
difference is that, the alignments and the sortings of 
the training data arranged according to the neural 
structure of the emulator. Other than that, the rest of 
the procedure is the same. The same acceleration 
command is used for training the emulator. After 
training, the actual acceleration of the system and 
the response of the network for that is shown in 
Figure 5. 
 

 
Figure 5 - Desired output vs. emulator output 

     
    As seen in Figure 5, curves are almost on top of 
each other so it can be said that this network is 
ready to use in the simulation to represent the 
system dynamics. 
    The same procedure that carried out for the pitch 
plane dynamics, is applied for the yaw and roll 
planes to model the corresponding dynamics with 
neural networks, either. 
 

4. FLIGHT PERFORMANCE 

    After designing the neurocontroller and the 
emulator, those neural networks are tested in the 
simulation environment. Same flight scenario is 
used for both the classical controller case and the 
neurocontroller case. In this scenario, simulation 
starts with 0.6 Mach initial speed in the direction of 
x-axis of the body frame at 120 m altitude. Initially, 
all the orientation angles, angle rates and the other 
components of velocity vector are zero. Also, the 
missile initial position is [0,0,120] with respect to 
an initial frame of reference that is chosen for this 
problem to work with. 
    In those conditions, missile is expected to hold 
its altitude for the first 5 seconds. After that, 
guidance algorithm becomes active and leads the 
missile to a target at the ground. The position of the 
target with respect to the same frame of reference is 
[2000,0,0] in meters. 
    Following graphics show the performances of 
controllers according to the simulation results: 

 
Figure 6  Altitude vs. time for the classical controller (miss 

distance is 0.005 m) 

 

 
Figure 7  Acceleration command & response for the classical 

controller 
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Figure 8 - Altitude vs. time for the neurocontroller (miss distance 

is 0.125 m) 

 
Figure 9 - Acceleration command & response for the 

neurocontroller 

 

5. CONCLUSIONS AND DISCUSSONS 

    When the performances are investigated, it can 
be said that the neurocontroller is successful in the 
sense of mission completion. As expected, it holds 
the altitude for the first 5 seconds and then it leads 
the missile to the target with a miss distance of 
0.125 meters. As a result it can be said that, a 
neurocontroller is capable of tracking acceleration 
commands and providing the dynamical stability of 
the missile during the flight. 
    However, there is a deficiency of the 
performance of the neurocontroller that causes to 
miss distance of the neurocontroller to be worse 
than the miss distance of the classical controller. It 
can be seen that, when there is a sharp change in the 
acceleration command, the acceleration response of 
the missile is oscillating. Although it converges to 
the desired value after a short time, this oscillatory 
behaviour is not desired for transient performance 
concerns. It is a disadvantage when it is compared 
to the classical controller. To solve this problem, 

the angular velocity in the pitch plane, q, is also 
added to the inputs of the neurocontroller. In that 
configuration, performance is improved but not 
enough to be considered as a solution. 
    Other than that, the sharp changes of the 
acceleration command can be filtered to prevent 
those oscillations but this is not an optimum 
solution to the problem. 
 

6. FURTHER STUDIES 

    In the previous part of the study, it was shown 
that the network has the capability to replace the 
controller and handle the nonlinear flight dynamics 
of the missile. By observing this performance that 
meets the requirements, it can be said that, a 
neurocontroller which is adaptive to the airframe 
changes with online learning is a topic worth to 
study further. 
    In this study, two separate aerodynamic 
databases are created to model a situation that 
includes rupture of two wings. In this part, the 
simulation starts with the regular airframe 
properties. Then, in the middle of the flight, two 
wings of the missile break and the corresponding 
aerodynamic database is started to use. The aim of 
this part of the study is that, the neurocontroller is 
expected to learn the new airframe model and 
started to create actuator commands according to 
this new situation but it is not possible with the 
current structure of the network. It needs some 
modification to overcome the sudden nonlinear 
changes of the plant and update its parameters 
according to this new condition. 
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