
Forecasting BIST100 Index with Neural Network Ensembles

Koray Beyaz1, and Mehmet Önder Efe2

1Department of Mechanical Engineering, Hacettepe University, Ankara 06800, Turkey

koraybeyaz@hacettepe.edu.tr
2 Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey

onderefe@hacettepe.edu.tr

Abstract

This paper aims to provide a neural network-based approach

to forecast the direction of movement of BIST 100 stock price

index and investigates the difficulties of such an

implementation. It is observed that a neural network

implementation is highly sensitive to selection of features and

optimization parameters such as learning rate. A

methodology to overcome the difficulties of neural network

implementations to financial time series is proposed in the

paper. Several feature selection methods are employed to

obtain a subset of the features that can be used in the training

of any classification algorithm. The difficulties and benefits of

using an ensemble of neural networks instead of a single

neural network are also studied. Results have shown that the

use of neural network ensembles yields promising results.

Keywords: Neural Networks, Ensemble, Bagging, Forecast.

1. Introduction

Time series analysis is the study of dependence between the

future and the past observations in a sequence of observations.

The objective of the time series analysis is to reveal this

dependence and develop a predictive model to anticipate future

behavior and trends. The model is then used for forecasting.

The fundamental tool for the time series analysis is the

autoregressive integrated moving average model (ARIMA (p, d,

q) where p, d and q stand for the number of autoregressive,

integration and moving average parameters). The ARIMA model

allows modeling nonstationary time series and can be extended

further to model the seasonality of the series and exogenous

inputs (SARIMAX). The famous Box-Jenkins approach is the

most widely used procedure for parameter selection [1]. This

methodology utilizes autocovariances to determine the

dependencies between the future and the past observations of the

time series and cross-covariances to determine the dependencies

between the future observations and the exogenous variables.

However, this method reveals only the linear relationships

between the features and the output. Several studies have been

devoted to modeling nonlinear time series such as financial time

series. Kim shows that Support Vector Machines (SVM) can be

used to predict financial time series [2]. Kaastra et. al. has used

Artificial Neural Networks (ANN) for the modeling of financial

time series and draw attention to the difficulties of neural network

implementation in the context of financial time series analysis [3].
Zhang has proposed a hybrid ARIMA and ANN model for

forecasting a time series where both linear and nonlinear

dependencies exist [4]. Akbilgic et. al. has proposed a hybrid

Radial Basis Function (RBF) neural network to forecast the

direction of movement of Istanbul Stock Exchange National 100

(ISE100) [5].

The purpose of this study is to develop an ANN based

architecture to forecast the direction of movement of a financial

time series 20-days into the future (increase or decrease). The

work of Akbilgic is chosen as a benchmark and the choice of the

time series is BIST 100 (previously known as ISE100).

An important aspect in financial time series forecasting is the

choice of features to build a predictive model. The choice of

candidate features is a design decision and various choices are

available such as stock market indices, news data, currency

exchange rates and social media data. This study aims to provide

a feature selection approach to choose the most of important

features among the feature candidates. The candidate features are

chosen to be several stock market indices.

Chen et. al. employs several feature selection methods in their

study to improve the performance of support vector machines

such as Random Forest and F-score [6]. In this study, random

forest, extremely randomized trees and Gaussian radial basis

kernels are applied for feature selection. The study also aims to

investigate the usage of ensemble of neural networks to surpass

the achievement of a predictor with a single neural network.

This paper is organized as follows. In the following section,

an overview of feature selection methods is presented where

mathematical concepts of each feature selection algorithm are

introduced. In section 3, data preparation steps are explained, and

the results of the feature selection methods are discussed. In

section 4, different sampling methods are investigated in the

training of neural networks. In the final section the results are

presented with a discussion.

2. Overview of Feature Selection Methods

2.1. Feature Selection with Random Forest (RF)

Random forest is an ensemble learning algorithm proposed by

Breiman and it is based on decision trees [7]. The algorithm is an

improvement over bootstrap aggregation (bagging) algorithm. In

bagging, for each tree in the ensemble, a subset of observations is

randomly selected with replacement. Consider a training set of 𝑛
observations and features. A subset of observations is selected

such that there are 𝑛′ < 𝑛 training vectors (𝑥1, 𝑥2, … 𝑥𝑛′
) of

length k. The specified number of trees are trained with the

corresponding subset of training samples. The decision of the

ensemble is decided upon by votes taken by the trees in the

ensemble. Thus, the variance is reduced even though the

individual trees in the ensemble might be over trained. Random

forest algorithm further decreases the variance by also randomly

selecting a subset of features such that each training vector

(𝑥1, 𝑥2, … 𝑥𝑛′
) is of size 𝑘′ < 𝑘. This algorithm also provides a

method to determine the importance of the features.

Importance of a feature is calculated by the mean decrease

impurity, where the impurity measure is taken to be Gini index as

suggested by Breiman [8]. Gini index is the probability of a

misclassification given the distribution of labels. For a binary

classification problem, it is calculated as follows.

 𝑖(𝑡) = 2𝑝(1|𝑡)𝑝(2|𝑡) (1)

The decrease in impurity for a node in a tree is then defined as

the difference between the impurity of the parent node and the

impurity of the target node. Then, according to [9], the

importance of a feature x is calculated as a weighted sum of the

impurity decrease caused by the feature, averaged over all the

trees in the ensemble such that:

 Δ𝑖 = 𝑖𝑝 − 𝑖𝑐 (1)

 𝐼𝑝(𝑥) =
1

𝑁𝑇

∑ ∑ 𝑝(𝑡)Δ𝑖(𝑡)𝑛𝑇 (2)

where 𝑁𝑇 is the number of trees in the ensemble, 𝑛 represents the

nodes that uses the feature 𝑥, 𝑝(𝑡) is the probability of reaching

the target node and Δ𝑖(𝑡) is the corresponding decrease in

impurity caused by the target node. The feature selection is then

performed such that any desired number of features are selected

according to their importance values.

2.2. Feature Selection with Extremely Randomized

Trees (ET)

Extremely randomized trees algorithm is proposed by Geurts

et. al. and it is another tree-based ensemble classification and

regression algorithm [10]. The motivation be-hind the algorithm

is to decrease the variance by further randomizing the generation

of the trees in the ensemble. There are two main differences

between Extra-Trees and Random Forest algorithms. The first

one is that the Extra-Trees algorithm does not create a subsample

of observations to train the trees in the ensemble and uses all the

data set for each tree in the ensemble. The second difference is

that Extra-Trees chooses the split (threshold) of a node randomly

whereas Random Forest selects the best split (optimal) for each

node. The importance of the features is again chosen by

employing the mean impurity decrease explained previously.

2.3 Feature Selection with Kernel Matrix

 Wang et. al. proposed kernel matrices to be employed instead

of covariance matrices since covariance matrices cannot capture

the nonlinear relationships between features [11]. Although the

study is a response to the increasing popularity of covariance

matrices in computer vision, the covariance matrices are also

widely employed in time series analysis but fail to reveal the

nonlinear relationships between the features and the output and

cannot be used when the time series at hand is highly complex

and requires non-linearities to be modelled. Financial time series

are good examples of such time series. Moreover, linear analysis

does not allow the full capacity of neural networks to be

employed. The first of the proposed kernels in their study is the

Bhattacharyya kernel which is defined as follows,

 𝜅(𝑓𝑖 , 𝑓𝑗) = √
2𝜎𝑖𝜎𝑗

𝜎𝑖
2+𝜎𝑗

2 exp [−
 (𝜇𝑖−𝜇𝑗)

2

4(𝜎𝑖
2+𝜎𝑗

2)
] (3)

where 𝑓𝑖 and 𝑓𝑗 are two vectors, and 𝜇𝑖 and 𝜎𝑖
2 are the mean and

the variance of 𝑓𝑖. In [11], it is suggested that the simple Gaussian

RBF kernel might also be used if one is not interested in the type

of the nonlinear relationship between the features. Since in this

case we are only interested in revealing the important features,

Gaussian RBF kernel is chosen to determine the important

parameters. It is defined as follows.

 𝜅(𝑓𝑖 , 𝑓𝑗) = exp (−𝛽‖𝑓𝑖 − 𝑓𝑗‖
2

) (4)

where 𝛽 = 1/2𝜎𝑖
2 and 𝜎𝑖 is the variance of 𝑓𝑖

3. Data Preparation and Feature Selection

 The stock indices data are collected from Yahoo Finance and

have been compared with the available data at the UCI repository

provided by [5]. The collected data set consists of daily values of

stock price indices of several countries worldwide such as BIST

100 (Turkey), NIKKEI (Japan), BOVESPA (Brazil), ERUS

(Russia), KOSPI (Korea), SP (U.S.), TA (Israel) and several

Morgan Stanley Capital International (MSCI) combined indices

such as EEM (Combined Emerging Markets) and URTH

(Combined Developed Markets). The number of main features

collected is 22. The first observation is at January 2012 and the

final observations is at February 2018. In order to make the data

stationary, logarithmic return difference is applied to all the 22

main features such that:

 𝑟 = log (
𝑥(𝑡𝑖+1)

𝑥(𝑡𝑖)
) (5)

where 𝑡𝑖 represents the day 𝑥 and is any feature vector. Other

features are created from the 22 main features such that there are

lagged features, exponential moving average features, rolling

mean features, rolling median features, rolling minimum features

and rolling maximum features. Lagged features are created

starting from 1-day lag values up to 10-day lag values and rolling

features are created starting from 2-day rolling values up to 10-

day rolling values. In total, 1232 features are obtained from the

original 22 features. Output is chosen to be the direction of

movement of BIST 100 Index 20-days ahead (0: decrease, 1:

increase). Then the training and the test data sets are separated

such that the test data set begins from June 2017. Thus, the

training data set contains 1402 days and the test data set contains

182 days. The training data set is then normalized between the

interval [−1, 1]. The same normalization parameters are then used

to normalize the test data set in order to prevent information

leakage from the test data set to the train data set. Feature

selection methods are then applied to select 32 features out of 264

candidates. The four most important features for each method are

shown in Table 1.

Table 1. The most important six selected features for each

method.

Method Feature 1 Feature 2 Feature 3 Feature 4

RBF

EEM

Max

10-day

TSEC

Max

10-day

EEM

Max

9-day

TSEC

Max

9-day

RF

SSEC

Max

9-day

SSEC

Max

8-day

KOSPI

Max

10-day

SSEC

Max

7-day

ET

SSEC

Max

10-day

KOSPI

Max

10-day

SSEC

Max

8-day

KOSPI

Max

9-day

It is observed that selections of the Random Forest, Extra-

Trees and Gaussian RBF kernel methods share several common

features. Table 1 shows that the most important features are 7-

day, 8-day, 9-day and 10-day rolling maximum features of EEM

(Emerging Markets Index), SSEC (Shanghai Composite Index),

TSEC (Taiwan Stock Exchange Corporation Index) and KOSPI

(The Korea Composite Stock Price Index).

Most of the selected features with any method are rolling

maximum features. Some of the rolling minimum, rolling median

and moving average features also appear in the top 32 selected

features. However, none of the original 22 features are in the top

32 features and many studies tend to only use lagged variables as

the features. The number of shared features for each feature

selection algorithm is shown in Table 2.

Table 2. Number of shared features between each method

Method ET RF RBF

ET 32 20 1

RF 20 32 3

RBF 1 3 32

4. Neural Network Implementations

4.1. Neural Network without Ensembles

In this study a multilayer perceptron (MLP) has been

employed to predict the direction of movement of the BIST 100

Index 20-days ahead. The procedure of the study is summarized

in Figure 1.

Fig. 1. Feature selection and neural network implementation

Two methods are employed in the training of the neural

networks. For both methods, test data is selected as the final 15%

of the data. In the first method, 30%-70% train/validation split

has been performed. In the second method train/validation split

(30%-70%) is again performed but stratification is also employed.

Stratification allows that the training data to have the same label

distribution as the original data.

The training of the neural network has been performed with

the features selected using all three feature selection algorithms.

Adam optimizer is used for the training with 0.001 learning rate

and 10−4 decay.

Hyperparameter tuning is performed with a grid search for

different number of hidden layers, number of neurons per layer,

batch sizes, learning rates, training sample sizes and ratio of

dropouts.

Dropout is a technique that prevents overfitting proposed by

Srivastava et. al. [12]. A percentage of the neurons and the

neurons that are connected to them are dropped out at each

training subset and the resulting smaller network is trained.

Neurons to be dropped are selected randomly. Therefore, 2𝑛

small neural networks are trained which have common

parameters. In the testing period, one scaled neural network is

used. For a neuron that is present in the training period with

probability 𝑝, the weights leaving that neuron are multiplied by

in the test period. Therefore, instead of calculating the average

prediction of 2𝑛 networks, one network is used to emulate the

output of 2𝑛 networks. This is a very useful technique that helps

prevent overfitting and more information can be obtained from

the seminal paper, [12].

The results indicate that small neural networks with 16-24

neurons and two layers are enough for the problem at hand and

increasing the layers and neurons mostly leads to overfitting and

thus, a decrease in validation accuracy.

It is observed that the training procedure is very cumbersome

for the specific problem. Convergence of the network is very

sensitive to the changes in optimizer parameters such as the

learning rate and decay. For each feature set obtained from each

feature selection method, previously tuned parameters become

less useful and fine tuning is required. Out of all four feature

selection methods, features obtained from Extra-Trees algorithm

has been the one that is the easiest to train the network and the

one that yields the highest accuracy. Unlike other methods, with

the features of the Extra-Trees algorithm, successful networks are

achieved with different number of layers and neurons. Thus, it has

become the choice of feature selection method for this study.

4.2. Neural Network Ensemble with Bagging

After obtaining the parameters that result in a successful

neural network, an ensemble approach is taken. For the same

neural network configuration (2 layers, 24 neurons, 0.2 dropout

probability), five neural networks are trained to create the voters

in an ensemble. Three methods are applied in the training of the

neural networks in the ensemble.

The first method aims to achieve variation between the neural

networks with bagging and it will be referred as “bagging without

label balancing”. This method is applied as follows.

• A sample set is generated from the training data set with

repetition. Only 50% of the original training data is selected

as the training sample for each neural network. Therefore,

variation between neural networks are achieved.

• Validation data is selected as random 30% out of the bag

observations without repetition.

• A neural network is trained with the prepared data and the

epoch with the best validation accuracy is added to the

ensemble.

• The procedure is applied to each neural network in the

ensemble.

• After the training of each neural network is completed, the

ensemble is configured as follows.

• Neural networks are sorted by their validation accuracy.

• The best neural networks are chosen such that ≤ 5. This

selection is applied by comparing the specificity and

sensitivity of the neural networks.

• A voting procedure is applied.

Two voting methods are applied in the study. The first is a

democratic voting where all predictors in the ensemble have equal

share in the decision.

The second voting method is to apply a weighted average of

the votes of the predictors in the ensemble. Predictions of each

neural network are calculated, and the weighted average of the

prediction is used as the prediction of the ensemble. In the second

voting scheme the “best vs. rest” method is implemented. The

weight of the single best neural network is taken to be (𝑛−2) so

that the best network will be overruled only if all the other neural

networks vote against the best network.

The second training method is a variation of the first one.

Again, the bootstrap aggregating procedure is applied to train the

neural networks in the ensemble. However, the validation set is

selected such that it contains the same number of observations for

each label. However, the data set is shuffled before the selection

of training and validation data in order to achieve variation

between the neural networks in the ensemble. The purpose of this

method is to prevent overfitting that might be caused by the

randomness of the selection. This method will be referred as

“bagging with label balancing”.

4.3. Neural Network Ensemble without Bagging

In this method, several neural networks with the same

configuration are trained without the bagging procedure. Instead

of sampling from the training data set with replacement, the

whole training set is used to train each of the neural networks after

the validation set is separated from the training data set. However,

the training data set is shuffled for each network in order to obtain

variation between the different neural networks. The label

balancing procedure is not applied and thus. The size of the

validation set is taken as the 30% of the total training data set.

In this method, it is often useful to split the data into training

and validation sets such that both sets are balanced in terms of the

number of observations for each label.

5 Results and Discussion

In some of the studies reported in the past, test data set is

selected as some portion of all the data from the end of the time

series. Although this approach is useful in a sense that it allows a

similar environment to the real time application of the algorithm,

using the test data set accuracy as the final decision metric has

some inherent problems. The reason is that the test data set does

not have the same number of observations for each class.

In our study, the test data set contains 152 days of observations

(after the removal of NA values) where most of the observations

are indicating an increase in the BIST 100 price index. In this

study, we propose to use sensitivity and specificity metrics in

addition to the train accuracy and validation loss in determining

the best predictor. When the specificity and sensitivity diverge

from each other, it is observed that the predictor is becoming

biased towards one label. In order to determine the true predictive

power of a neural network or any other classifier, we also propose

the preparation of another test data set.

The first test set is selected as 152 days at the end of the time

series, and it will be referred as test 1. The second test set is a

subset of test 1, which contains equal number of observations for

each label and will be referred as test 2. It is observed that many

neural networks that provide a train accuracy above 70% and a

test 1 accuracy above 65% failed to succeed in test 2 and their

accuracy dropped to around 50%. Although, many measures are

taken to prevent this decrease in accuracy such as regularization,

dropout and bootstrap aggregating, it is very difficult to

differentiate between true good predictors from the lucky ones. A

good solution might be to use a loss function that penalizes the

difference between the sensitivity in specificity. However, in this

study the decision is made by comparing the sensitivity and

specificity of each neural network without employing such a loss

function.

Three approaches are taken in the study in order to train the

neural networks and the resulting ensemble. The first method

employs bagging without label balancing, the second method

employs bagging with label balancing and the third method

makes use of all the training data set (no sampling).

Out of all four feature selection algorithms, only the Extra-

Trees and the Random Forest algorithms resulted in neural

networks displaying a test accuracy that is larger than 65%.

Although the Gaussian RBF kernel method shares many features

with the Extra-Trees and Random Forest algorithms, an

acceptable network could not be obtained. One reason behind this

result might be the ill nature of the problem. Changing features

requires the hyper parameters to be tuned again and the tuning

process is tedious. However, the shared features indicate the

possibility of training an acceptable neural network with

Gaussian RBF kernel method. Moreover, Gaussian RBF kernel

method is computationally efficient, and it can be used as a first

tool to reduce the number of features before employing the Extra-

Trees and Random Forest algorithms which require higher

computational effort. In this specific problem, the computational

effort did not cause any problems since the data size is limited.

By the nature of the financial forecasting problem, the data size

is limited because the data is often collected with one day

intervals. The dependencies between the features and the output

change with time and collecting 50 years of data might lead to

accurate predictive models.

In this study, the single best neural network yielded 75% train

accuracy and 71% percent test 1 accuracy with the features of the

Extra-Trees algorithm and an architecture with 24 neurons, two

layers and a dropout probability of 0.2. The test 1 accuracy is

higher than the accuracy of [5] which is 65%. However, when

model is evaluated with the test 2 set, the accuracy dropped

approximately to 50%. This result points out the possible

misleading nature of using the test 1 accuracy as the final decision

metric.

One of the important conclusions in the study of Akbilgic is

that the 20-days ahead value of the BIST 100 (ISE 100) index is

independent of its past and current values although many studies

try to model the relationship only based on the past and current

values of an index. Therefore, autoregressive approaches do not

allow the problem to be modelled properly. The only significant

linear relationship is found in one of the lag variables of

BOVESPA (Brazil) which is identified with cross-correlation

matrices.

This study reveals correlation between the BIST 100 index and

the TSEC (Taiwan), MSCI EEM (emerging markets), KOSPI

(Korea), MXX (Mexico) and several other stock market indices.

The performances of the single neural networks and ensemble

approaches are shown in Tables 3 and 4.

Table 3. Results of training three neural networks, each

experiment is repeated 100 times.

 NN1:

No bagging,

No balancing

NN2:

No bagging,

Balancing

NN3:

Bagging

No balancing

Val. Loss 0.56 ± 0.01 0.55 ± 0.02 0.56 ± 0.05

Val. Acc. 0.70 ± 0.02 0.71 ± 0.02 0.69 ± 0.05

Test 1

Acc.

0.71 ± 0.02 0.69 ± 0.03 0.66 ± 0.09

Test 2

Acc.

0.63 ± 0.09 0.58 ± 0.09 0.57 ± 0.18

Table 4. Results of three neural network ensembles, each

containing 10 neural networks. Each experiment is repeated 10

times.

 NN1

Ensemble

NN2

Ensemble

NN3

Ensemble

Test 1 Acc. 0.71 ± 0.02 0.70 ± 0.01 0.68 ± 0.03

Test 2 Acc. 0.62, 0.07 0.55 ± 0.05 0.54 ± 0.14

In order to sort the neural networks in a decreasing

importance, validation loss is used. However, as Table 3 clearly

indicates, this approach does not always yield the best neural

network.

If the test 2 accuracy is not considered, one may falsely believe

that highly predictive models are obtained as all neural networks

(NN1, NN2 and NN3) yield a test 1 accuracy above 65%.

It is also observed that one must be careful when trying to

eliminate some of the neural networks to achieve higher ensemble

performance.

Best performing model is chosen as NN1 (no bagging and no

label balancing). It is expected for bagging to lower the neural

network performance since it is decreasing the size of the training

set. However, label balancing also results in a decreased

performance which might be unexpected.

Table 4 shows that all the ensembles resulted in lower mean

and standard deviation in test 2 accuracy. In general, the results

are in the favor of neural networks without ensembles. Although

it is difficult to decide between NN1 and NN1 ensemble, the

ensemble requires much more training time and there is no

incentive to prefer the ensemble.

6. References

[1] Box, G.E.P., Jenkins, G.: Time series analysis, forecasting and

control. 5th edn. Wiley, New Jersey (2016).

[2] Kim, K.: Financial time series forecasting using support

vector machines. Neurocomputing 5, 307-319 (2003).

[3] Kaastra, I., Boyd, M.: Designing a neural network for

forecasting financial and economic time series. Neurocomputing

10, 215-236 (1995).

[4] Zhang, G.P.: Time series forecasting using a hybrid ARIMA

and neural network model, Neurocomputing 50, 159-175 (2003).

[5] Balaban, E., Akbilgic, O., Bozdogan, H.: A novel hybrid RBF

neural networks model as a forecaster. Statistics and Computing

24, 365-375 (2013).

[6] Chen, Y.W., Lin, C.J.: Combining SVMs with various feature

selection strategies. Studies in Fuzziness and Soft Computing

207, 307-319 (2006).

[7] Breiman, L.: Random Forests, Machine Learning 45, 5-32

(2001).

[8] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.:

Classification and regression trees, Chapman & Hall/CRC, New

York (1984).

[9] Louppe, G., Wehenkel, L., Sutera, A., Geurtz, P.:

Understanding variable importances in forests of randomized

trees. Neural Information Processing Systems 26, 431-439

(2013).

[10] Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized

trees. Machine Learning 63, 3-42 (2006).

[11] Wang, L., Zhang, J., Zhou, L., Tang, C., Li, W.: Beyond

covariance: feature representation with nonlinear kernel matrices.

In: International Conference on Computer Vision, pp. 4570-4578.

[12] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

Salakhutdinov, R.: Dropout: a sim-ple way to prevent neural

networks from overfitting. Journal of Machine Learning Research

15, 1929-1958 (2014).

