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Abstract 

 
This paper aims to provide a neural network-based approach 

to forecast the direction of movement of BIST 100 stock price 

index and investigates the difficulties of such an 

implementation. It is observed that a neural network 

implementation is highly sensitive to selection of features and 

optimization parameters such as learning rate. A 

methodology to overcome the difficulties of neural network 

implementations to financial time series is proposed in the 

paper. Several feature selection methods are employed to 

obtain a subset of the features that can be used in the training 

of any classification algorithm. The difficulties and benefits of 

using an ensemble of neural networks instead of a single 

neural network are also studied. Results have shown that the 

use of neural network ensembles yields promising results.  
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1. Introduction 
 

Time series analysis is the study of dependence between the 

future and the past observations in a sequence of observations. 

The objective of the time series analysis is to reveal this 

dependence and develop a predictive model to anticipate future 

behavior and trends. The model is then used for forecasting. 

The fundamental tool for the time series analysis is the 

autoregressive integrated moving average model (ARIMA (p, d, 

q) where p, d and q stand for the number of autoregressive, 

integration and moving average parameters). The ARIMA model 

allows modeling nonstationary time series and can be extended 

further to model the seasonality of the series and exogenous 

inputs (SARIMAX). The famous Box-Jenkins approach is the 

most widely used procedure for parameter selection [1]. This 

methodology utilizes autocovariances to determine the 

dependencies between the future and the past observations of the 

time series and cross-covariances to determine the dependencies 

between the future observations and the exogenous variables. 

However, this method reveals only the linear relationships 

between the features and the output. Several studies have been 

devoted to modeling nonlinear time series such as financial time 

series. Kim shows that Support Vector Machines (SVM) can be 

used to predict financial time series [2]. Kaastra et. al. has used 

Artificial Neural Networks (ANN) for the modeling of financial 

time series and draw attention to the difficulties of neural network 

implementation in the context of financial time series analysis [3].  
Zhang has proposed a hybrid ARIMA and ANN model for 

forecasting a time series where both linear and nonlinear 

dependencies exist [4]. Akbilgic et. al. has proposed a hybrid 

Radial Basis Function (RBF) neural network to forecast the 

direction of movement of Istanbul Stock Exchange National 100 

(ISE100) [5]. 

The purpose of this study is to develop an ANN based 

architecture to forecast the direction of movement of a financial 

time series 20-days into the future (increase or decrease). The 

work of Akbilgic is chosen as a benchmark and the choice of the 

time series is BIST 100 (previously known as ISE100). 

An important aspect in financial time series forecasting is the 

choice of features to build a predictive model. The choice of 

candidate features is a design decision and various choices are 

available such as stock market indices, news data, currency 

exchange rates and social media data. This study aims to provide 

a feature selection approach to choose the most of important 

features among the feature candidates. The candidate features are 

chosen to be several stock market indices. 

Chen et. al. employs several feature selection methods in their 

study to improve the performance of support vector machines 

such as Random Forest and F-score [6]. In this study, random 

forest, extremely randomized trees and Gaussian radial basis 

kernels are applied for feature selection. The study also aims to 

investigate the usage of ensemble of neural networks to surpass 

the achievement of a predictor with a single neural network. 

This paper is organized as follows. In the following section, 

an overview of feature selection methods is presented where 

mathematical concepts of each feature selection algorithm are 

introduced. In section 3, data preparation steps are explained, and 

the results of the feature selection methods are discussed. In 

section 4, different sampling methods are investigated in the 

training of neural networks. In the final section the results are 

presented with a discussion. 

 

2. Overview of Feature Selection Methods 
 

2.1. Feature Selection with Random Forest (RF) 
 

Random forest is an ensemble learning algorithm proposed by 

Breiman and it is based on decision trees [7]. The algorithm is an 

improvement over bootstrap aggregation (bagging) algorithm. In 

bagging, for each tree in the ensemble, a subset of observations is 

randomly selected with replacement. Consider a training set of 𝑛 
observations and features. A subset of observations is selected 

such that there are 𝑛′ < 𝑛 training vectors (𝑥1, 𝑥2, … 𝑥𝑛′
)   of 

length k. The specified number of trees are trained with the 

corresponding subset of training samples. The decision of the 

ensemble is decided upon by votes taken by the trees in the 

ensemble. Thus, the variance is reduced even though the 

individual trees in the ensemble might be over trained. Random 

forest algorithm further decreases the variance by also randomly 

selecting a subset of features such that each training vector 



(𝑥1, 𝑥2, … 𝑥𝑛′
) is of size 𝑘′ < 𝑘. This algorithm also provides a 

method to determine the importance of the features. 

Importance of a feature is calculated by the mean decrease 

impurity, where the impurity measure is taken to be Gini index as 

suggested by Breiman [8]. Gini index is the probability of a 

misclassification given the distribution of labels. For a binary 

classification problem, it is calculated as follows. 

 
                       𝑖(𝑡) = 2𝑝(1|𝑡)𝑝(2|𝑡)                            (1) 

 

The decrease in impurity for a node in a tree is then defined as 

the difference between the impurity of the parent node and the 

impurity of the target node. Then, according to [9], the 

importance of a feature x is calculated as a weighted sum of the 

impurity decrease caused by the feature, averaged over all the 

trees in the ensemble such that:  

                                    Δ𝑖 = 𝑖𝑝 − 𝑖𝑐                                  (1) 

                         𝐼𝑝(𝑥) =
1

𝑁𝑇

∑ ∑ 𝑝(𝑡)Δ𝑖(𝑡)𝑛𝑇                        (2) 

where 𝑁𝑇 is the number of trees in the ensemble, 𝑛 represents the 

nodes that uses the feature 𝑥, 𝑝(𝑡) is the probability of reaching 

the target node and Δ𝑖(𝑡)  is the corresponding decrease in 

impurity caused by the target node. The feature selection is then 

performed such that any desired number of features are selected 

according to their importance values. 

 

2.2. Feature Selection with Extremely Randomized 

Trees (ET) 
 

Extremely randomized trees algorithm is proposed by Geurts 

et. al. and it is another tree-based ensemble classification and 

regression algorithm [10]. The motivation be-hind the algorithm 

is to decrease the variance by further randomizing the generation 

of the trees in the ensemble. There are two main differences 

between Extra-Trees and Random Forest algorithms. The first 

one is that the Extra-Trees algorithm does not create a subsample 

of observations to train the trees in the ensemble and uses all the 

data set for each tree in the ensemble. The second difference is 

that Extra-Trees chooses the split (threshold) of a node randomly 

whereas Random Forest selects the best split (optimal) for each 

node. The importance of the features is again chosen by 

employing the mean impurity decrease explained previously. 

 

2.3 Feature Selection with Kernel Matrix 
 

    Wang et. al. proposed kernel matrices to be employed instead 

of covariance matrices since covariance matrices cannot capture 

the nonlinear relationships between features [11]. Although the 

study is a response to the increasing popularity of covariance 

matrices in computer vision, the covariance matrices are also 

widely employed in time series analysis but fail to reveal the 

nonlinear relationships between the features and the output and 

cannot be used when the time series at hand is highly complex 

and requires non-linearities to be modelled. Financial time series 

are good examples of such time series. Moreover, linear analysis 

does not allow the full capacity of neural networks to be 

employed. The first of the proposed kernels in their study is the 

Bhattacharyya kernel which is defined as follows, 

               𝜅(𝑓𝑖 , 𝑓𝑗) = √
2𝜎𝑖𝜎𝑗

𝜎𝑖
2+𝜎𝑗

2 exp [−
 (𝜇𝑖−𝜇𝑗)

2

4(𝜎𝑖
2+𝜎𝑗

2)
 ]            (3) 

where 𝑓𝑖 and 𝑓𝑗  are two vectors, and 𝜇𝑖 and 𝜎𝑖
2 are the mean and 

the variance of 𝑓𝑖. In [11], it is suggested that the simple Gaussian 

RBF kernel might also be used if one is not interested in the type 

of the nonlinear relationship between the features. Since in this 

case we are only interested in revealing the important features, 

Gaussian RBF kernel is chosen to determine the important 

parameters. It is defined as follows. 

                      𝜅(𝑓𝑖 , 𝑓𝑗) = exp (−𝛽‖𝑓𝑖 − 𝑓𝑗‖
2

)                        (4) 

where 𝛽 = 1/2𝜎𝑖
2 and 𝜎𝑖 is the variance of 𝑓𝑖 

3. Data Preparation and Feature Selection 

 

    The stock indices data are collected from Yahoo Finance and 

have been compared with the available data at the UCI repository 

provided by [5]. The collected data set consists of daily values of 

stock price indices of several countries worldwide such as BIST 

100 (Turkey), NIKKEI (Japan), BOVESPA (Brazil), ERUS 

(Russia), KOSPI (Korea), SP (U.S.), TA (Israel) and several 

Morgan Stanley Capital International (MSCI) combined indices 

such as EEM (Combined Emerging Markets) and URTH 

(Combined Developed Markets). The number of main features 

collected is 22. The first observation is at January 2012 and the 

final observations is at February 2018. In order to make the data 

stationary, logarithmic return difference is applied to all the 22 

main features such that: 

                                    𝑟 = log (
𝑥(𝑡𝑖+1)

𝑥(𝑡𝑖)
)                               (5) 

where 𝑡𝑖 represents the day 𝑥 and is any feature vector. Other 

features are created from the 22 main features such that there are 

lagged features, exponential moving average features, rolling 

mean features, rolling median features, rolling minimum features 

and rolling maximum features. Lagged features are created 

starting from 1-day lag values up to 10-day lag values and rolling 

features are created starting from 2-day rolling values up to 10-

day rolling values. In total, 1232 features are obtained from the 

original 22 features. Output is chosen to be the direction of 

movement of BIST 100 Index 20-days ahead (0: decrease, 1: 

increase). Then the training and the test data sets are separated 

such that the test data set begins from June 2017. Thus, the 

training data set contains 1402 days and the test data set contains 

182 days. The training data set is then normalized between the 

interval [−1, 1]. The same normalization parameters are then used 

to normalize the test data set in order to prevent information 

leakage from the test data set to the train data set. Feature 

selection methods are then applied to select 32 features out of 264 

candidates. The four most important features for each method are 

shown in Table 1.  
 
 

 



Table 1. The most important six selected features for each 

method. 

Method Feature 1 Feature 2 Feature 3 Feature 4 

RBF 

EEM 

Max 

10-day 

TSEC 

Max 

10-day 

EEM 

Max 

9-day 

TSEC 

Max 

9-day 

RF 

SSEC 

Max 

9-day 

SSEC 

Max 

8-day 

KOSPI 

Max 

10-day 

SSEC 

Max 

7-day 

ET 

SSEC 

Max 

10-day 

KOSPI 

Max 

10-day 

SSEC 

Max 

8-day 

KOSPI 

Max 

9-day 

 

It is observed that selections of the Random Forest, Extra-

Trees and Gaussian RBF kernel methods share several common 

features. Table 1 shows that the most important features are 7-

day, 8-day, 9-day and 10-day rolling maximum features of EEM 

(Emerging Markets Index), SSEC (Shanghai Composite Index), 

TSEC (Taiwan Stock Exchange Corporation Index) and KOSPI 

(The Korea Composite Stock Price Index). 

Most of the selected features with any method are rolling 

maximum features. Some of the rolling minimum, rolling median 

and moving average features also appear in the top 32 selected 

features. However, none of the original 22 features are in the top 

32 features and many studies tend to only use lagged variables as 

the features. The number of shared features for each feature 

selection algorithm is shown in Table 2. 

Table 2. Number of shared features between each method 

Method ET RF RBF 

ET 32 20 1 

RF 20 32 3 

RBF 1 3 32 

 

4. Neural Network Implementations 
 

4.1. Neural Network without Ensembles  
 

In this study a multilayer perceptron (MLP) has been 

employed to predict the direction of movement of the BIST 100 

Index 20-days ahead. The procedure of the study is summarized 

in Figure 1.  

 

Fig. 1. Feature selection and neural network implementation 

Two methods are employed in the training of the neural 

networks. For both methods, test data is selected as the final 15% 

of the data. In the first method, 30%-70% train/validation split 

has been performed. In the second method train/validation split 

(30%-70%) is again performed but stratification is also employed. 

Stratification allows that the training data to have the same label 

distribution as the original data. 

The training of the neural network has been performed with 

the features selected using all three feature selection algorithms. 

Adam optimizer is used for the training with 0.001 learning rate 

and 10−4 decay.  

Hyperparameter tuning is performed with a grid search for 

different number of hidden layers, number of neurons per layer, 

batch sizes, learning rates, training sample sizes and ratio of 

dropouts. 

Dropout is a technique that prevents overfitting proposed by 

Srivastava et. al. [12]. A percentage of the neurons and the 

neurons that are connected to them are dropped out at each 

training subset and the resulting smaller network is trained. 

Neurons to be dropped are selected randomly. Therefore, 2𝑛 

small neural networks are trained which have common 

parameters. In the testing period, one scaled neural network is 

used. For a neuron that is present in the training period with 

probability 𝑝, the weights leaving that neuron are multiplied by 

in the test period. Therefore, instead of calculating the average 

prediction of 2𝑛  networks, one network is used to emulate the 

output of 2𝑛 networks. This is a very useful technique that helps 

prevent overfitting and more information can be obtained from 

the seminal paper, [12]. 

The results indicate that small neural networks with 16-24 

neurons and two layers are enough for the problem at hand and 

increasing the layers and neurons mostly leads to overfitting and 

thus, a decrease in validation accuracy. 

It is observed that the training procedure is very cumbersome 

for the specific problem. Convergence of the network is very 

sensitive to the changes in optimizer parameters such as the 

learning rate and decay. For each feature set obtained from each 

feature selection method, previously tuned parameters become 

less useful and fine tuning is required. Out of all four feature 

selection methods, features obtained from Extra-Trees algorithm 

has been the one that is the easiest to train the network and the 

one that yields the highest accuracy. Unlike other methods, with 

the features of the Extra-Trees algorithm, successful networks are 

achieved with different number of layers and neurons. Thus, it has 

become the choice of feature selection method for this study. 

 

4.2. Neural Network Ensemble with Bagging 
 

After obtaining the parameters that result in a successful 

neural network, an ensemble approach is taken. For the same 

neural network configuration (2 layers, 24 neurons, 0.2 dropout 

probability), five neural networks are trained to create the voters 

in an ensemble. Three methods are applied in the training of the 

neural networks in the ensemble. 

The first method aims to achieve variation between the neural 

networks with bagging and it will be referred as “bagging without 

label balancing”. This method is applied as follows. 

 

• A sample set is generated from the training data set with 

repetition. Only 50% of the original training data is selected 

as the training sample for each neural network. Therefore, 

variation between neural networks are achieved. 

• Validation data is selected as random 30% out of the bag 

observations without repetition. 



• A neural network is trained with the prepared data and the 

epoch with the best validation accuracy is added to the 

ensemble. 

• The procedure is applied to each neural network in the 

ensemble. 

• After the training of each neural network is completed, the 

ensemble is configured as follows. 

• Neural networks are sorted by their validation accuracy. 

• The best neural networks are chosen such that ≤ 5. This 

selection is applied by comparing the specificity and 

sensitivity of the neural networks. 

• A voting procedure is applied. 

 

Two voting methods are applied in the study. The first is a 

democratic voting where all predictors in the ensemble have equal 

share in the decision. 

The second voting method is to apply a weighted average of 

the votes of the predictors in the ensemble. Predictions of each 

neural network are calculated, and the weighted average of the 

prediction is used as the prediction of the ensemble. In the second 

voting scheme the “best vs. rest” method is implemented. The 

weight of the single best neural network is taken to be (𝑛−2) so 

that the best network will be overruled only if all the other neural 

networks vote against the best network. 

The second training method is a variation of the first one. 

Again, the bootstrap aggregating procedure is applied to train the 

neural networks in the ensemble. However, the validation set is 

selected such that it contains the same number of observations for 

each label. However, the data set is shuffled before the selection 

of training and validation data in order to achieve variation 

between the neural networks in the ensemble. The purpose of this 

method is to prevent overfitting that might be caused by the 

randomness of the selection. This method will be referred as 

“bagging with label balancing”. 

 

4.3. Neural Network Ensemble without Bagging 
 

In this method, several neural networks with the same 

configuration are trained without the bagging procedure. Instead 

of sampling from the training data set with replacement, the 

whole training set is used to train each of the neural networks after 

the validation set is separated from the training data set. However, 

the training data set is shuffled for each network in order to obtain 

variation between the different neural networks. The label 

balancing procedure is not applied and thus. The size of the 

validation set is taken as the 30% of the total training data set. 

In this method, it is often useful to split the data into training 

and validation sets such that both sets are balanced in terms of the 

number of observations for each label. 

 

5 Results and Discussion 
 

In some of the studies reported in the past, test data set is 

selected as some portion of all the data from the end of the time 

series. Although this approach is useful in a sense that it allows a 

similar environment to the real time application of the algorithm, 

using the test data set accuracy as the final decision metric has 

some inherent problems. The reason is that the test data set does 

not have the same number of observations for each class. 

In our study, the test data set contains 152 days of observations 

(after the removal of NA values) where most of the observations 

are indicating an increase in the BIST 100 price index. In this 

study, we propose to use sensitivity and specificity metrics in 

addition to the train accuracy and validation loss in determining 

the best predictor. When the specificity and sensitivity diverge 

from each other, it is observed that the predictor is becoming 

biased towards one label. In order to determine the true predictive 

power of a neural network or any other classifier, we also propose 

the preparation of another test data set. 

The first test set is selected as 152 days at the end of the time 

series, and it will be referred as test 1. The second test set is a 

subset of test 1, which contains equal number of observations for 

each label and will be referred as test 2. It is observed that many 

neural networks that provide a train accuracy above 70% and a 

test 1 accuracy above 65% failed to succeed in test 2 and their 

accuracy dropped to around 50%. Although, many measures are 

taken to prevent this decrease in accuracy such as regularization, 

dropout and bootstrap aggregating, it is very difficult to 

differentiate between true good predictors from the lucky ones. A 

good solution might be to use a loss function that penalizes the 

difference between the sensitivity in specificity. However, in this 

study the decision is made by comparing the sensitivity and 

specificity of each neural network without employing such a loss 

function. 

Three approaches are taken in the study in order to train the 

neural networks and the resulting ensemble. The first method 

employs bagging without label balancing, the second method 

employs bagging with label balancing and the third method 

makes use of all the training data set (no sampling). 

Out of all four feature selection algorithms, only the Extra-

Trees and the Random Forest algorithms resulted in neural 

networks displaying a test accuracy that is larger than 65%. 

Although the Gaussian RBF kernel method shares many features 

with the Extra-Trees and Random Forest algorithms, an 

acceptable network could not be obtained. One reason behind this 

result might be the ill nature of the problem. Changing features 

requires the hyper parameters to be tuned again and the tuning 

process is tedious. However, the shared features indicate the 

possibility of training an acceptable neural network with 

Gaussian RBF kernel method. Moreover, Gaussian RBF kernel 

method is computationally efficient, and it can be used as a first 

tool to reduce the number of features before employing the Extra-

Trees and Random Forest algorithms which require higher 

computational effort. In this specific problem, the computational 

effort did not cause any problems since the data size is limited. 

By the nature of the financial forecasting problem, the data size 

is limited because the data is often collected with one day 

intervals. The dependencies between the features and the output 

change with time and collecting 50 years of data might lead to 

accurate predictive models. 

In this study, the single best neural network yielded 75% train 

accuracy and 71% percent test 1 accuracy with the features of the 

Extra-Trees algorithm and an architecture with 24 neurons, two 

layers and a dropout probability of 0.2. The test 1 accuracy is 

higher than the accuracy of [5] which is 65%. However, when 

model is evaluated with the test 2 set, the accuracy dropped 

approximately to 50%. This result points out the possible 

misleading nature of using the test 1 accuracy as the final decision 

metric. 

One of the important conclusions in the study of Akbilgic is 

that the 20-days ahead value of the BIST 100 (ISE 100) index is 

independent of its past and current values although many studies 

try to model the relationship only based on the past and current 

values of an index. Therefore, autoregressive approaches do not 

allow the problem to be modelled properly. The only significant 

linear relationship is found in one of the lag variables of 



BOVESPA (Brazil) which is identified with cross-correlation 

matrices. 

This study reveals correlation between the BIST 100 index and 

the TSEC (Taiwan), MSCI EEM (emerging markets), KOSPI 

(Korea), MXX (Mexico) and several other stock market indices. 

The performances of the single neural networks and ensemble 

approaches are shown in Tables 3 and 4. 

Table 3. Results of training three neural networks, each 

experiment is repeated 100 times. 

 NN1:  

No bagging, 

No balancing 

NN2: 

No bagging, 

Balancing 

NN3: 

Bagging 

No balancing 

Val. Loss 0.56 ± 0.01 0.55 ± 0.02 0.56 ± 0.05 

Val. Acc. 0.70 ± 0.02 0.71 ± 0.02 0.69 ± 0.05 

Test 1 

Acc. 

0.71 ± 0.02 0.69 ± 0.03 0.66 ± 0.09 

Test 2 

Acc. 

0.63 ± 0.09 0.58 ± 0.09 0.57 ± 0.18 

 

Table 4. Results of three neural network ensembles, each 

containing 10 neural networks. Each experiment is repeated 10 

times. 

 NN1 

Ensemble 

NN2 

Ensemble 

NN3 

Ensemble 

Test 1 Acc. 0.71 ± 0.02 0.70 ± 0.01 0.68 ± 0.03 

Test 2 Acc. 0.62, 0.07 0.55 ± 0.05 0.54 ± 0.14 

In order to sort the neural networks in a decreasing 

importance, validation loss is used. However, as Table 3 clearly 

indicates, this approach does not always yield the best neural 

network. 

If the test 2 accuracy is not considered, one may falsely believe 

that highly predictive models are obtained as all neural networks 

(NN1, NN2 and NN3) yield a test 1 accuracy above 65%.  

It is also observed that one must be careful when trying to 

eliminate some of the neural networks to achieve higher ensemble 

performance.  

Best performing model is chosen as NN1 (no bagging and no 

label balancing). It is expected for bagging to lower the neural 

network performance since it is decreasing the size of the training 

set. However, label balancing also results in a decreased 

performance which might be unexpected.  

Table 4 shows that all the ensembles resulted in lower mean 

and standard deviation in test 2 accuracy. In general, the results 

are in the favor of neural networks without ensembles. Although 

it is difficult to decide between NN1 and NN1 ensemble, the 

ensemble requires much more training time and there is no 

incentive to prefer the ensemble.  

 

 

 

 

6. References 
 

[1] Box, G.E.P., Jenkins, G.: Time series analysis, forecasting and 

control. 5th edn. Wiley, New Jersey (2016). 

[2] Kim, K.: Financial time series forecasting using support 

vector machines. Neurocomputing 5, 307-319 (2003). 

[3] Kaastra, I., Boyd, M.: Designing a neural network for 

forecasting financial and economic time series. Neurocomputing 

10, 215-236 (1995). 

[4] Zhang, G.P.: Time series forecasting using a hybrid ARIMA 

and neural network model, Neurocomputing 50, 159-175 (2003). 

[5] Balaban, E., Akbilgic, O., Bozdogan, H.: A novel hybrid RBF 

neural networks model as a forecaster. Statistics and Computing 

24, 365-375 (2013). 

[6] Chen, Y.W., Lin, C.J.: Combining SVMs with various feature 

selection strategies. Studies in Fuzziness and Soft Computing 

207, 307-319 (2006). 

[7] Breiman, L.: Random Forests, Machine Learning 45, 5-32 

(2001). 

[8] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: 

Classification and regression trees, Chapman & Hall/CRC, New 

York (1984). 

[9] Louppe, G., Wehenkel, L., Sutera, A., Geurtz, P.: 

Understanding variable importances in forests of randomized 

trees. Neural Information Processing Systems 26, 431-439 

(2013). 

[10] Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized 

trees. Machine Learning 63, 3-42 (2006). 

[11] Wang, L., Zhang, J., Zhou, L., Tang, C., Li, W.: Beyond 

covariance: feature representation with nonlinear kernel matrices. 

In: International Conference on Computer Vision, pp. 4570-4578. 

[12] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., 

Salakhutdinov, R.: Dropout: a sim-ple way to prevent neural 

networks from overfitting. Journal of Machine Learning Research 

15, 1929-1958 (2014). 


