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ABSTRACT: Airborne Laser Scanning (ALS) point cloud classification is gaining its popularity corresponding with the 
increasing size of available ALS data in the last decade. While the classification is based on the different representation of 
the point cloud, such as top-view pixels or voxels, raw point cloud classification offers more detailed classification results; 
thus, it gives a better understanding of the three dimensional (3D) objects in the studied area. This study evaluates the 
performance of feature selection for ALS point cloud classification using 3D neural network classifier. The framework 
consists of three parts: i) feature extraction, ii) classification with neural network iii) quantitative evaluation of the 
classification results. The first part of the study includes feature extraction from the point cloud data. The feature extraction 
consists of three groups of features, namely, Light Detection and Ranging (LiDAR), geometry, and color based features. A 
LiDAR data have, in addition to its 3D information, intensity, which shows reflected energy from the ground object and 
multi-echo information, which defines the order of transmitting pulse. Height based features, which are dependent on the 
local neighborhood of the point, are also considered in the group of LiDAR features. Eigenvalues of a point define the 
geometry of the point; therefore, those feature descriptors form geometric features group. Airborne LiDAR data do not 
have color information, thus a true-orthophoto is used to get color information of each point in the point cloud.  In the 
second part of the study, feature groups trained and tested using a conventional 3D neural network with stochastic gradient 
descent optimization algorithm. A data augmentation technique is applied before training in order to improve classification 
results and to prevent from class imbalance problem. The classification is performed on four urban classes, named as ground, 
building, tree, and car.  At the last part of the study, quality metrics are calculated for each group of features and the results 
are compared with each other. According to the results, it is observed that LiDAR with color features has better accuracy 
with respect to geometric features. 
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1. INTRODUCTION

LiDAR (Shan and Toth, 2018) is one of the popular
data source of topographic mapping due to its capability 
of collecting direct 3D data in a short time and having 
advantages that are more rigorous in homogenous areas 
and being able to represent objects that are more detailed 
in 3D with respect to photogrammetric point clouds. It is 
basically based on the calculation of the distance between 
the object and the platform using the elapsed time 
between sending and transmitting pulse. While LiDAR 
systems can be mounted on terrestrial or mobile platforms, 
in this study, LiDAR data which was collected on the 
airborne platform is used. More properties of a LiDAR 
sensor can be found in Shan and Toth (2018).  

The goal of classification in the point cloud is to 
categorize each representation unit (point, image cell, or 
voxel) to a meaningful group. Because of the unordered 
structure and having heterogeneous point density, point 
cloud classification can be considered as a challenging 
task. While many solutions exist for this task in the 
literature (i.e., Nguyen and Le, 2013; Grilli et al., 2017), 
machine learning methods using LiDAR point clouds has 
been gaining interest in the last decade. Features are 
playing a key role in those methods; therefore, the 
performance of the method is highly influenced by the 
derived features. This study presents the analysis of the 
performance of the feature selection for 3D neural 
network classifier based on the different group of features. 
The first group of features is derived from LiDAR point 
clouds, based on LiDAR’s point’s multi-echo, intensity, 
and height-based features in the local neighborhood.  The 
second group of features includes geometric properties of 
each point in the local neighborhood. The third group of 
features cannot be extracted from LiDAR, therefore a true 
orthophoto is used. The point cloud an onto the 
orthophoto and the band values for each point are 
extracted.  Lastly, all features are merged, and they form 
a group of features. Those four groups of features are 
classified in a single hidden layer neural network. More 
details for the methodology and details of implementation 
with the quantitative results are given in the next sections. 

2. RELATED STUDIES

Machine learning has been intensively used for
LiDAR point cloud classification in the literature.  
Random forest (Chehata et al., 2009; Canaz Sevgen, 
2019; Blomley and Weinmann, 2017)  Support Vector 
Machine  (Zhang et al., 2013; Lodha et al., 2006) 
algorithms are studies for LiDAR data classification.  The 
key factor in those algorithms is the feature selection. In 
other words, the classification accuracy is mainly based 
on selecting proper features. For instance, in Chehata et 
al. (2009) the height difference is found as the most 
influenced factor in the classification of an urban area. On 
the other hand, the representation of the point cloud is 
another factor in the classification. Generally, LiDAR 
point clouds are projected onto the grid surface from the 
top-view and feature images are created. Although, 
feature image-based point cloud classification mainly 
preferred in the literature, some information loss is 
unavoidable because of the representation. Other 
researchers used multi-view images (Boulch et al., 2017), 
where different angles used for feature image generation, 
or voxels (Engelche et al., 2016; Wang et al., 2018), 

where a 3D grid-based representation is created.  In 
addition to feature images, some researchers used point-
based classification (Yastikli and Cetin, 2016; Blomley 
and Weinmann, 2017). Qi et al. (2017) proposed an end-
to-end deep learning framework in the literature where 
the features are extracted through the layers of the 
framework. In this study, however, the objective is to 
compare different features’ classification performance in 
the 3D neural network classifier. 

3. METHODOLOGY

According to the flowchart given in Fig. 2. the
framework composed of three stages. At the first part, 
LiDAR, geometric and color feature are extracted. 
Secondly, a 3D neural network is trained and tested for 
the classification performance of the features. At the last 
stage, the results are evaluated quantitatively.    

Figure.1 The flowchart of the study 

Feature extraction consists of three groups of 
features.  The first features include pure LiDAR 
properties, which are 3D coordinates, multi-echo, 
intensity, and height based features. Height-based and 
two intensity features, standard deviation and mean, are 
based on the neighborhood of the points.  Table 1 
summarizes the features for LiDAR group. 

Table 1 LiDAR Features 
Feature Description 

x,y,z 3D coordinate component of each point 
I, 𝝈𝑰, µ𝑰 The intensity of a point 

r,n Number of returns and return number 
e Number of return over the number of 

total returns 
𝝈𝑯,

𝐦𝐢𝐧𝐇 
The standard deviation and minimum of 
heights in the neighborhood of a point 

𝜟𝑯,
𝒅𝑯 

The height differences in a points local 
neighborhood 

Geometric features, on the other hand, are totally 
derived from the neighborhood of the points in ALS point 
cloud. The calculation is based on a neighbor search and 
eigenvalue decomposing from the covariance matrix. 
Eigenvalues, λ1 <  λ2 < λ3  are the results of the 
principal component analysis. The summary and 
derivation of the geometric features are given in Table 2. 
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Table 2  Geometric features 
Feature Description 

Sum of Eigenvalues 𝛌𝟏 +  𝛌𝟐 + 𝛌𝟑 
Omnivariance √𝛌𝟏𝛌𝟐𝛌𝟑

𝟑

Eigenentropy -∑ 𝛌𝒊 𝐥𝐧 (𝛌𝒊)
𝟑
𝒊=𝟏

Anisotropy (𝛌𝟏 −  𝛌𝟑)/𝛌𝟏 
Linearity (𝛌𝟏 − 𝛌𝟐)/𝛌𝟏 
Planarity (𝛌𝟐 − 𝛌𝟑)/𝛌𝟏 
Sphericity 𝛌𝟑/𝛌𝟏 

PCA1 𝛌𝟏/𝛌𝟏 + 𝛌𝟐 + 𝛌𝟑 
PCA2 𝛌𝟐/𝛌𝟏 + 𝛌𝟐 + 𝛌𝟑 

Surface Variation 𝛌𝟑/𝛌𝟏 + 𝛌𝟐 + 𝛌𝟑 
Verticality 𝟏 −  |〈[𝟎 𝟎 𝟏], 𝒆𝟑〉| 
Roughness Distance to best-fitting plane 

ALS does only have the intensity that represents the 
energy of the reflected object on the ground, but do not 
have color information. Because of this reason, color 
features are extracted from a true orthophoto. The 
combination of those features, such as standard deviation 
and mean, are calculated using the neighborhood of the 
points. Pseudo NDVI (Normalized Difference Vegetation 
Index) (Rottensteiner et al., 2003), however, calculated 
using LiDAR intensity and orthophotos green band. The 
summary of color features is given in Table 3. 

Table 3  Color features. 
Feature Description 

R,G,B Red, green, blue values from 
true-orthoimages 

𝝈𝑹, 𝝈𝑮, 𝝈𝑩, 
µ𝑹, µ𝑮, µ𝑩 

The standard deviation and 
the mean of red, green and 

blue bands in a local 
neighborhood of a point 

pNDVI Pseudo NDVI 

At the classification part, the aforementioned four 
groups of features (Fig. 1) are the input of the neural 
network classifier. The neural networks have one hidden 
layer with the activation function of relu (Eq. 1), and the 
output layer has softmax (Eq. 2) activation with a cross-
entropy loss function (Eq. 3) for each group. 

𝑟𝑒𝑙𝑢(𝑥) = max(𝑥, 0)  (1)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1

 (2)

𝐿𝑜𝑠𝑠(𝑡𝑐 , 𝑦𝑐) = − ∑ 𝑡𝑐 log(𝑦𝑐)

𝑀

𝑐=1

  (3)

where n refers to the number of classes, 𝑡𝑐 is the target 
class and 𝑦𝑐 is the estimated class in the loss function, and 
𝑀 is the number of classes. 

A schematic representation of the neural networks is 
depicted in Fig. 3. Note that for each group number of 
hidden layer’s neuron is double of the number of neurons 
in the input layer. For instance, for the first group of 
features, the input layer has 11 features; therefore, the 

number of neurons in the hidden layer is 22 in this case. 
The output layer’s neuron size is 4 for all feature groups. 
The parameters for the groups are identical; thus 
performance evaluation is in the same environment. 
Gaussian noise with 0 mean and 0.001 standard 
deviations is added to each feature in order to augment 
the training data set. Testing the classifier does not 
include any data augmentation.  

Figure.2 Proposed neural network 

The quality analysis in this study is based on 
commonly used classification metrics, precision (Eq. 4), 
recall (Eq. 5) and F1-score (Eq. 6). Confusion matrix for 
each group's results is also given for better evaluation, 
specifically to interpret misclassification between classes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (6)

4. IMPLEMENTATION AND DISCUSSION

Python programming language is selected as the
programming language of this study because of its 
enormous support for machine learning libraries. Keras 
with Tensorflow backend is the main library for neural 
network implementation. In addition to that, manual 
labeling and geometric feature extraction are performed 
in CloudCompare, which is an open-source 3D data 
analyzing software.  The ALS point cloud data is obtained 
from General Directorate of Mapping of Turkey. The data 
set collected in 2014 and available to research purposes. 
The true-orthophoto is obtained from General Directorate 
of Geographic Information Systems of Turkey. Its 
acquisition date is 2016.  The study area of the presented 
study is Bergama, Izmir, Turkey (Fig. 4). The LiDAR 
data consist of approximately 1.2 million points and they 
split as training (75%) and testing (25%) sites as shown 
in Fig. 5.   
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Figure.3 The study area located in Bergama, Izmir, 
Turkey.  

(a) 

(b) 
Figure.4 The ground truth of testing (a) and training (b) 
areas in 3D view. 

After feature extraction and data augmentation, each 
group of feature is trained using stochastic gradient 
descent optimization with 0.005 learning rate, 128 batch 
size, and 0.9 momentum term. The number of epoch for 
the training is picked as 100 to let the neural network to 
reach its optimum results. Confusion matrix for each 
group and overall quality metrics are given in Figure 6 
and Table 4, respectively. 

Figure.5 Confusion matrices, from top to bottom: Only 
LiDAR, LiDAR and Color, LiDAR and Geometry, All 
features. 
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Table 4  Quality metrics for the results 
Feature Group P* R** F1***

LiDAR 0.81 0.73 0.76 
LiDAR+Color 0.86 0.83 0.84 
LiDAR+Geometry 0.84 0.77 0.80 
All features 0.87 0.85 0.86 

*Precision, **Recall, ***F1-Measure

According to the results, the neural network is 
capable of extracting most of the objects in the study area. 
However, the main factor for the classification accuracy 
is the data augmentation where it was added to training 
data before performing training. Without data 
augmentation, small classes, such as car class, was not 
able to classify properly. In addition, car class still have 
mislabeled with an almost equal portion with other 
classes. One of the reason is that the study has complex 
structures; another reason is that the complexity of the 
network and the number of features is not enough to 
extract car classes.  On the other hand, building class has 
the best accuracy almost in all feature groups. The 
difference from pixel-based approaches is that because 
we are studying point level classification, building class 
results can be used for building modeling for further 
studies.  

Four groups of features have similar results with 
respect to each other, the last group that includes all 
features has the best overall scores. The reason is that the 
more features it has, the better the results are to obtain, as 
expected. However, it should be noted that color features 
are contributing more than other features in the overall 
best accuracy, even though the temporal accuracy of true-
orthophoto and LiDAR is a bit different. Instead of using 
all feature in a large network, one can use only color 
features and have closer to the best results in terms of 
classification accuracy.  

Overall, in this study, the accuracy performance of 
features is studied. According to the results, a neural 
network, as a powerful tool, is capable of separating many 
objects on the ground in airborne LiDAR data. However, 
the features need to be carefully selected. In the future, 
features can be expanded, as well as deep learning 
methods can be tested and compared with those hand-
crafted features based neural networks. 
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ABSTRACT: Road surface and its surroundings are used to generate road inventory information such as on-road 
information (road surfaces, road signs, roadside), roadside information (traffic signs, light pole, trees) and geometric 
elements (road cross section, horizontal and vertical alignment, sight distance assessment). Road inventory information can 
be used variety of application such as intelligent transportation system (ITS), urban planning, 3D digital city modeling, 
generating high-definition roadmap, architecture and façade measurement and civil engineering. Data obtained from 
different surveying techniques can be used to generate road inventory information. These methods and systems include 
classical geodetic methods (GPS, Total Station), satellite imagery, aerial and terrestrial photogrammetric techniques and 
lidar (air, mobile and terrestrial) systems. These systems may have different advantages and disadvantages. To overcome 
this, data obtained from different systems should be used. In this study, data obtained from two different systems such as 
airborne lidar and photogrammetric system were used. In this study, it is aimed to extract and detect on-road information 
(road surfaces, road signs and roadside) and calculating geometric parameters of the road by using Airborne Lidar (ALS) 
data and orthophoto. It is aimed to determine road surface and boundaries by using ALS data and detect lanes on the 
road surface by using orthophoto. Road lane markings were extracted from orthophoto using image processing 
techniques. The road centerline points were extracted by vectorizing the lane lines. Afterward, filtering were performed 
in order to clean non-ground objects in ALS data. So, the objects around the road were filtered to facilitate the 
determination of the road surface and increase the accuracy. Thereafter, cross-sections were taken using road centerline 
points within filtered lidar data. In order to find points of road axis each cross-section is divided into grid parts. The 
curve fitting method was applied to the points in each section and the points of road axis were determined from the 
intersection of fitting lines. Using these point information geometrical elements of highway such as cross-sectional and 
longitudinal slopes were calculated. 

Keywords: Road Detection, Airborne Lidar, Road Geometry, Remote Sensing 
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1. INTRODUCTION

Establishment of an advanced transport network and
infrastructure is very important for the economic and 
social development of the country. Information about 
transportation features is required for management, 
security controls and maintenance of assets of roads. 
These features divided into three categories: on-road 
features (road surface, road edges, road lane and 
marking), roadside features (traffic sign and lamps, pole-
like objects) and geometric design parameters (horizontal 
and vertical alignments, cross and longitudinal slope) of 
the roads (Gargoum and Basyouny, 2019). The existence 
of this information is a necessity for carrying out a large 
number of analyzes and applications. To illustrate these, 
information on road surface and boundaries plays a 
crucial role in the development of intelligent 
transportation systems, urban planning studies, 3D city 
modeling and creation of high-resolution maps (Yu et al., 
2014). Road marking (zebra crossings, direction arrow) 
and lane lines provide necessary road information for all 
road users. Road markings are essential for advanced 
driver assistance system and planning navigation routes 
to prevent collision of driverless vehicles on busy roads 
and ensure safe driving (Ma, 2018). Geometric design 
parameters of the road are very important for the analysis 
of road safety, road expansion and infrastructure studies 
(Higuera de Frutos and Castro, 2017). Horizontal 
alignment are designed to allow vehicles to cross curves 
safely (Gargoum et al., 2018b). Vertical alignment are 
important for safety studies such as visibility. In this 
context, it is very important to calculate the geometric 
data of the road (Gargoum et al., 2018).  

In this study, it is aimed to detect and extract road 
surface, edges and boundaries. For this purpose, the 
process shown in Fig. 2 was carried out respectively. 
Firstly, lane lines were detected and vectorized from the 
orthophoto and points of these lanes were extracted. 
Afterwards, these points are used as road centerline points 
of the road and the points of the road boundaries are 
extracted from the airborne lidar data and the information 
about road geometry was calculated. For this purpose, 
filtering process was performed in order to filter non-
ground objects in point cloud data. Afterwards, raw 
filtered data from this data were used to determine the 
road boundaries. Cross sections were created using road 
centerline points that generated from the orthophoto. In 
order to find points of road axis each cross-section is 
divided into grid parts. The curve fitting method was 
applied to the points in each section and the points of road 
axis were determined from the intersection of fitting lines. 
Finally, using these points, lane boundary, longitudinal 
and cross slope information and cross-sectional 
parameters were obtained. 

2. MATERIAL AND METHODS

2.1 Test Areas and Data 

In this study, ALS data and orthophoto were used to 
extract and detect on-road information and calculating 
some geometric parameters. These data were obtained 
from Evrencik County of Kirklareli Province of Turkey. 
Lidar system was used to obtain this data. The examples 
of test area are shown in Fig.1. 

Figure.1 The examples of test area. 

2.2 Processsing Methodology 

Processing steps for detecting lane points from 
images (orthophoto) were shown in Fig. 2. Firstly, an 
input georeferenced image was converted into a grayscale 
image. Grayscale image is one in which that each pixel 
contain only intensity information (Johnson, 2006). In the 
next step, binary images were generated from grayscale 
images. Binary images are digital images that each pixel 
has two possible values and stored as a single bit 0 or 1. 
In general, black and white colors are used to visualize 
binary images. In this study, binary images are generated 
with the thresholding. There are different approaches for 
the generation of binary images such as segmentation, 
thresholding and dithering (Shapiro et al., 2002). In this 
study, thresholding approach was used to generate binary 
image. In its simplest form, the thresholding methods 
determines each pixels color by comparing pixel intensity 
values (Ii,j) to some fixed constant threshold. If the 
compared pixel is smaller than the threshold, that pixel is 
visualized with black, otherwise white (Shapiro et al., 
2002). After the grayscale image was converted to a 
binary image and some salt-and-pepper noise occurred on 
the image as shown in Fig. 3(c). The median filter is used 
to reduce noise in an image. In order to do that median 
filter use pixel’s neighborhood. The pixel value is 
changed by taking the middle value by sorting the 
neighboring pixels (Szeliski, 2010). Lastly, road 
centerline vectorization done by using line approximation 
algorithms that generate vector lines using pixel’s 
location (Chiang et al., 2013).     

(a)
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Figure.2 Workflow applied for lane detection from 
Images 

Figure.3 illustrated the results of the operations 
performed during the process of determining the road 
center point from the images using the methodology 
described above. 

Figure.3 (a) Orthophoto (b) Grayscale (c) Binary Image 
(d) Median Filter (e) Vectorization (f) Lane Points.

After road centerline points were determined from the 
orthophoto, longitudinal sections of roads created using 
these points. Besides, same road centerline were 
manually digitized. Reference longitudinal sections were 
created using these points.  

Reference longitudinal section profile was generated 
by using manually digitized road centerline points as 
shown in Fig. 4 (b), test longitudinal sections created 
from extracted lane points as shown in Fig. 4 (c). As can 
be seen from the figure, results were very close to each 
other. The height differences of reference longitudinal 
section was 13.65 m and slope value was % 4.25. Height 
differences of tested longitudinal section was 13.79 m and 
slope value was % 4.29. When all these results are 
examined, it is seen that the points obtained from the 
images are very successful in representing the road 
centerline. 

Figure.4 (a) Test area, (b) Reference, (c) Test 
Longitudinal Section. 
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After detecting and extracting points of road 
centerlines from the images, road boundaries, shoulders 
and ditches of the road were determined from ALS data. 
In order to do this, firstly, Lidar data was filtered to 
remove non-ground objects that would affect the 
accuracy of the method. After filtering, cross sections 
were taken along the road route using road centerline 
points. Along the cross-sections, the road was divided 
into certain parts from the mid-point to the right and left. 
A lines that best fit for every part were determined using 
linear fitting approach. Lastly, the points of road axis 
were determined from the cutting points of these lines as 
seen in Fig. 5. As shown in Fig. 5(a), cross-sections were 
taken along the road route using road center points 
obtained from the images. With the help of these cross-
sections, center, edge and ditch point of road section were 
determined as shown in Fig. 5(c). The location of these 
points in the test area is shown in Fig. 5(b). Generally, 10 
cm differences were calculated between actual and 
detected road edge and ditch points. It is expected that this 
accuracy will be further enhanced by improvements in 
methodology. 

Figure.5 Road points extraction from cross-section. 

3. CONCLUSION

As a result of the study, determination of the road
boundaries by using orthophoto and ALS data, road lane 
line information, road boundary and road geometry 
information were extracted. However, it has been 
observed that accuracy varies depending on the some 
factors. Accuracy of detecting lane lines on the road 
surface from images, depend on absence of lane markings, 
quality of image and shadow effect. This affects 
vectorization of lane lines and road centerline points 
generated by this vectorization process. In addition, the 
accuracy of road point estimation can be increased by 
testing different curve fitting approaches. As a result, it is 
thought that the proposed methodology can be improved 
with all these arrangements. 
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