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Abstract— Satcom on the Move (SOTM) antennas are the
primary devices for establishing satellite communication in
both military and commercial applications. The main design
parameters of the SOTM antennas are low cost, low weight,
and high data rate. SOTM antennas are basically two or
three degrees of freedom robotic manipulators with an antenna
payload. In the classical approach, a position and stabilization
controller is implemented in order to achieve a high data rate.
Most applications use a tracking algorithm to find the maximum
RF signal strength by planning a special trajectory for the
end effector. In this article, SOTM antennas are modeled and
controlled as if they are robotic manipulators. In addition,
a neural network controller is implemented to control the
robot manipulator and find the maximum RF signal. The
neural network controller includes filtered computed torque
control (CTM), robustifying signal, and 2 layers neural network
structure. The filtered CTM and robustifying signal ensure the
closed-loop characteristic, while the neural network structure
eliminates nonlinearities and generates the required torque to
find the maximum RF signal. The results obtained through a
series of simulations demonstrate the desired qualities.

I. INTRODUCTION

SATCOM on the Move (SOTM) antennas can find and
track the satellite on land, air, and sea platforms. They are
the multidisciplinary devices that establish the connection
between the platform and the satellite. To overcome military
requirements, the development of SOTM antennas began.
Thanks to the advances in satellite technologies, SOTM
antennas have been used on commercial platforms. Currently,
they are used on different platforms in order to compensate
for both military and commercial needs.

In fact, the SOTM antenna is a robotic manipulator with
an antenna payload. The payload consists of a directional
antenna and RF components that are responsible for com-
munication with the satellite [1]. The aperture is where the
RF signal is received and transmitted. In the high-speed
SOTM application, the SOTM antenna must point to the
aperture with maximum gain [2]. The aperture gain depends
on the pitch and yaw angle of the end effector. The pointing
error is the difference between the actual RF signal and the
maximum RF signal. Mobility is one of the key parameters
for designing the SOTM antenna. Mobility is directly related
to the pointing error. The SOTM antenna must be capable of
pointing under various disturbances with low pointing error
to communicate at high speed [3], [4].
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Antenna type and communication frequency determine
the pointing accuracy of the robotic manipulator. Pointing
accuracy depends on communication frequency and antenna
diameter but is limited to 0.2° by the Federal Communica-
tions Commission (FCC) [5]. In order to obtain the ALLSAT
license, which is an important license in the commercial
market, the pointing accuracy must be less than 0.2°. The
FCC prohibits transmission when the pointing error is greater
than 0.2°. However, there is no limitation in the receiving
operation. Unfortunately, higher pointing accuracy in the
receiving will result in wider bandwidth leasing from a
satellite in order to have the same data speed. This situation
will increase the operation cost of SOTM antennas [6].

Two-axis robotic manipulators are a common solution for
SOTM antennas due to their low cost. This manipulator is
called the Azimuth-Elevation and corresponds to the yaw-
pitch manipulator. However, the redundancy occurs, when the
elevation angle comes close to 90°. In this case, the azimuth
axis cannot contribute to the end effector. This problem
can be alleviated by adding an extra axis. The three-axis
manipulator is called Azimuth - Canted-level - Elevation and
corresponds to the yaw/roll/pitch manipulator [2].

The kinematic model of the SOTM antenna was evaluated
by calculating sequential rotation matrices characterized by
the separated rotation axis [7]–[9]. This method reduces the
complexity of kinematic modeling while making the system
more complex to control. SOTM antennas were first studied
as a robotic manipulator in [10]. Kinematic modeling using
the Denavit-Hartenberg method is a difficult problem, as the
SOTM antenna is a special manipulator and is compatible
with the GPS coordinate system. This modeling was accom-
plished by adding an imaginary axis between the azimuth and
the canted-level axis. The imaginary axis hinders dynamical
modeling and obtaining the Jacobian operator. This problem
was resolved by shifting the canted-level axis over the
elevation axis [11].

The dynamic model of the SOTM antenna was created
using sequential Newtonian dynamics equations in previous
studies [7], [8]. The main reason for this approach was to
calculate how much torque would be required to stabilize the
end effector due to mobile platform motion. In a different
study, the SOTM antenna has been modeled and controlled as
a single input single output (SISO) system [11]. In the study,
complex robot dynamics and the behavior of SISO systems
are examined. The difference between them was very small.
This is the result of using the mass stabilization technique
and radome. Mass stabilization is the name of the mechanical
design method that aims to coincide with the rotation axis
and the center of inertia. The radome is the mechanical
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structure that covers the SOTM antenna from rain, wind, and
other external conditions [12]. Thus, the robotic manipulator
can be simulated as if it is working in free space.

The mobile platform movement is the main disturbance for
the SOTM antenna. SOTM antenna payload should have the
correct look angles in order to maintain communication. Due
to sensors’ accuracy and platform movement, the calculation
of look angles is achieved with errors. These errors will cause
a pointing error for the SOTM antenna. RF signal should be
used to reduce the pointing error. However, the RF signal
cannot be used as feedback to the position controller. This is
because the RF signal depends on the pitch and yaw angle
of the end effector. Therefore, the RF signal feedback is
performed by using scanning algorithms. These algorithms
are special algorithms for the end effector of a robotic
manipulator. Scanning algorithms calculate the trajectories
by measuring the RF signal strength. The manipulator’s
axes references are calculated using the robotic manipulator’s
inverse kinematic. Step track and conical scan algorithms are
widely used in SOTM applications [13], [14].

The neural network based control was initially imple-
mented to the robotic manipulator in [15]. In this approach,
the neural network functions as an additional controller to the
filtered CTM. The filtered CTM ensures the stability of the
robot manipulator, while the neural network eliminates the
uncertainties of the system. This approach is a good model-
free approach to improve controller performance under un-
known uncertainties. Moreover, this neural network structure
implemented different robot control problems to solve the
nonlinearities [16], [17].

In this article, a three-axis SOTM antenna will be modeled
and controlled as a robotic manipulator. In the kinematic
modeling, the sliding axis assumption will be used for the
three-axis robotic manipulator. This model has not been
completed using the GPS coordinate system. This will be
solved by adding extra axes to the kinematic model of the
antenna. The neural network controller which is described
in [15] is implemented as a position controller. RF signal is
added into both the neural network structure and the update
algorithm to point and maximize RF signal. Therefore, both
pointing and maximizing the RF signal are accomplished by
the neural network controller.

II. ROBOT KINEMATICS AND DYNAMICS
A. Kinematics

The coordinate systems of the three-axis robotic manip-
ulator are assigned in Fig. 1. The first three axes which
are called Azimuth (x0,y0,z0), Canted-level (x1,y1,z1), and
Elevation (x2,y2,z2), are responsible for pointing and stabi-
lization. The Polarization (x3,y3,z3) is used to change RF
signal polarity and is not required for every SOTM antenna.
The polarization axis is added to obtain the full kinematic
model. The x4,y4,z4 axis represents the end effector.

In this approach, it is assumed that the canted-level axis
coincides with the elevation axis [11]. In this way, we
are able to construct a transformation matrix between each
sequential axis. To be able to work with the GPS coordinate

Fig. 1. The axis placement of the three-axis robotic manipulator

system we need to add a base frame before the azimuth
axis and an end frame after the end effector axis. The
xn,yn,zn must be assigned according to the North-East-Down
coordinate system. The xt ,yt ,zt must correspond to the roll,
pitch, and yaw axis, respectively. Since the xn,yn,zn and
xt ,yt ,zt frames are fixed, there is no need to define them in
the Denavit-Hartenberg table. The Denavit-Hartenberg table
of the three-axis robotic manipulator is given in Table I.

i αi ai di θi
1 90−β 0 −l1 θ1
2 90 0 0 θ2 +90
3 −90 0 0 −θ3 +β

4 0 0 −l2 −θ4

TABLE I
DH TABLE OF THE THERE-AXIS MANIPULATOR

The forward kinematic of the three-axis robotic manipu-
lator is calculated as follows.

Tt
n = T0

nT1
0T2

1T3
2T4

3Tt
4 (1)

where the T0
n and Tt

4 are given below.

T0
n =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 (2)

Tt
4 =


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 (3)

The Azimuth and elevation axes are sufficient for pointing
the robot working space [2]. The Canted-level axis works on
the stabilization. This situation shows the redundant structure
of the robotic manipulator. The inverse kinematic equations
of the three-axis robotic manipulator can be mitigated by
taking the canted level axis position as zero. Therefore,
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(1) can be solved by considering this assumption. The
inverse kinematics solution of the azimuth, elevation, and
polarization axes can be calculated respectively.

θ3 = (atan2(a,b)+atan2(−
√
(a2 +b2 − c2),c))+β (4)

where the a = 0.866, b = 0.5 and c =−r(3,1).

θ1 = atan2(
r(2,1)

d
,

r(1,1)
d

) (5)

where d = acos(θ3 −β )−bsin(θ3 −β ).

θ4 = atan2(
r(3,2)

d
,

r(3,3)
d

) (6)

where r(i, j) is the ith row and jth column element of the
desired rotation matrix.

B. Dynamics

In this study, Lagrange-Euler dynamical modeling has
been used to develop the dynamical model for the three-axis
robotic manipulator. Since SOTM antennas are specialized
manipulators, the mechanical design of the manipulator was
generally completed using mass stabilization. Therefore, the
center of the mass and the axis of rotation are adjacent for
each axis. The mechanical parameters (inertia, length, mass
of each axis) of the robotic manipulators are taken from [12].

The dynamic equation of the three-axis robotic manipula-
tor is shown in (7).

τ = M(q)q̈+Vm(q, q̇)q̇+G(q)+F(q̇)+τd (7)

where the q ∈ R3 is the joint variable vector, M(q) is the
inertia matrix, Vm(q, q̇) is the Coriolis and centripetal matrix,
G(q) is the gravity vector, and F(q̇) is the friction. τd
represents bounded unknown disturbance and the torque τ

is the control input.

III. ROBOT CONTROL

A. Tracking Error Dynamics

Given a desired joint trajectory qd ∈R3, the tracking error
is represented in (8).

e= qd−q (8)

The filtered tracking error in robotics is used and defined as
given below.

r = ė+λe (9)

where λ is a symmetric positive definite design parameter
matrix. the controller guarantees that e is bounded. Therefore
the r is bounded. Combining the (7) and derivative of (9),
the robot dynamics with respect to filtered tracking error can
be written as,

Mṙ =−Vmr−τ +f +τd (10)

where the f is the nonlinear robot function and is given in
(11).

f(x) = M(q)(q̈d+λ ė)+Vm(q, q̇)(q̇d+λe)+G(q)+F(q̇)
(11)

where the x = [eT , ėT ,qT
d , q̇

T
d , q̈

T
d ]. The computed torque

control is commonly used in robotics and calculates the
required torque input for given trajectory.

τ = f̂ +Kvr−v−vr f (12)

where the Kv is a controller gain matrix and is usually
selected diagonal. f̂ is the estimation of the nonlinear robot
function. Kvr = Kvė+ Kvλe is a proportional-derivative
(PD) tracking loop, and v is a robustifying signal that
provides robustness for unmodelled dynamics and unstruc-
tured disturbances. vr f is a robustifying signal for the RF
signal and provides the torque needed to point the payload
where the signal has the maximum power. Using this control
structure, the closed loop system can be represented as,

Mṙ =−(Kv +Vm)r+ f̃ +τd+v+vrf (13)

B. Neural Network Controller for Robot Arms

In this application, the 2 layer feedforward neural network
architecture is used. V and W are the weights of the 2 layer
feedforward neural network. Each output can be calculated
using (14). The sigmoid activation function is used in neural
network structure.

yi =
Nh

∑
j=1

[
wi jσ

( n

∑
k=1

v jkxk +θv j
)
+θwi

]
(14)

The expression in (14) can be written as a matrix form
by collecting all v jk and wi j gains into the VT and WT

matrices, respectively. The overall function of the neural
network equation is shown in (15).

y = WT
σ(VTx) (15)

Combining (15) and (13), the error dynamics of a neural
network control structure can be obtained as,

Mṙ =−(Kv +Vm)r−WT
σ(VTx)−Ŵσ(V̂T

x)

+(ϵ+τd)+v+vr f
(16)

where the ϵ is the neural network error approximation and
τd is the robot disturbances. Both ϵ and τd excite the error
dynamics. The control torque input, neural network weights,
robustifying signal, and robustifying RF signal are computed
using (17)-(21), respectively.

τ = ŴT
σ(V̂T

x)+Kvr−v−vrf (17)

˙̂W = Fσ(V̂Tx)rT −Fσ̂
′V̂T

xrT −κF||r||2Ŵ
−κr f ||RF ||2F||r||2Ŵ

(18)

˙̂V = Gx(σ̂ ′T Ŵr)T −κG||r||2V̂−κr f ||RF ||2G||r||2V̂ (19)

where F, G positive definite matrices, κ > 0 and κr f > 0.

v =−Kz(||Ẑ||2 +Zm)r (20)

where the Z = diag{Ŵ, V̂}, Zm upper bound on the ideal
weight. Kz is the robustifying gain of the controller.

vrf =−Kr f ||Ẑ||2||RF ||2 (21)
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where Kr f is the robustifying RF gain of the controller and
RF is the signal strength. The neural network controller
given in (17)-(21) ensures that the system follows the desired
trajectory. Details of the proof can be viewed in [18]. The
neural network controller guarantees that the tracking error
(r) and neural network gains (Ŵ and V̂). To achieve a small
tracking error, a large Kv gain is required, [15].

The structure of the neural network control of the robot
manipulator is shown in Fig. 2, where the qref is the
reference joint angles and qN is the base disturbance. Inverse
kinematics calculates desired trajectories qd for the neural
network controller. The e = [eT , ėT ]T and q = [qT , q̇T ]T .
The Kvr = Kv(ė+ λe) is the PD control and guarantees
the stability of the filtered tracking error r with robustifying
signal v. The input of the neural network can be taken as
(22).

x= [ζ1
T ,ζ2

T ,cos(q)T ,sin(q)T , q̇,sign(q̇),RF,eRF ] (22)

where the ζ1 = q̈d+λ ė, ζ2 = q̇d+λe, RF is the beacon re-
ceiver signal output, eRF is the difference between maximum
RF signal strength and output.

Fig. 2. Neural network controller for the SOTM antenna

IV. RESULTS

A beacon receiver is a device that measures the RF signal
strength. It produces 10 V for the maximum signal and 0 V
for the minimum signal. Maximum and minimum values can
be set to beacon receivers using serial communication. In this
article, a 1 m reflector antenna and Ku band communication
system are modeled and used. The antenna’s maximum sig-
nal is modeled as 10 V and the minimum signal is modeled
as 0 V. The detail of the antenna system can be found in [12].

The neural network controller finds the maximum RF
signal value by producing vrf signal. This signal must be
directional to find the maximum signal strength. However,
the neural network cannot determine the direction of each
axis. The step track algorithm determines the axis direction
for vrf signal. Before the neural network controller, the step
track algorithm finds the direction of each axis. Then the
signal vrf applies the required torque using direction.

The controller parameters are taken the Kv = diag{20,20}
and λ = diag{5,5}. The weight tuning design parameters
are taken as F = diag{10,10}, G = diag{10,10}, Nh = 15,
κ = 0.1, and κr f = 0.5. The parameters Kz and Km are taken

50 for robustifying signal. The Kr f is taken 1200 for the ro-
bustifying RF signal. The base disturbance in the simulation
is taken as qN = [6sin(0.63t),5sin(0.75t),3sin(0.63t]T .

Modeling the causes of pointing errors in simulations is
a difficult issue. Therefore, the performance of the neural
network controller can be tested starting from four different
starting points. the pointing error in each starting point is
bigger than 0.2°. The maximum signal strength is set to
q = [160.6,0,40.7]T . It is expected from the simulations, the
neural network controller will reach the maximum signal by
minimizing the pointing error with/without base disturbance.
In Fig. 3 and 5, each line represents an equivalent azimuth-
elevation angle from the different starting points, without and
with base disturbance respectively. In Fig. 4 and 6, each line
represents the pointing error of the different starting points
without and with base disturbance, respectively. The neural
network controller tries to find the maximum signal strength
in each simulation.

Fig. 3. Equivalent azimuth elevation angles without base disturbance

Fig. 4. Pointing error of the SOTM antenna without base disturbance

Fig. 5 demonstrates the equivalent azimuth-elevation an-
gle. The azimuth and elevation angles are constantly chang-
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ing due to the disturbance. In order to illustrate these
changes, forward kinematics Tt

n is solved without consider-
ing the disturbance. Thus, the equivalent azimuth elevation
angles are obtained. The neural network controller almost
reaches almost the maximum signal point in both conditions
as shown in Fig. 4 and 6. The pointing error drops below
0.2° in 4 seconds without base disturbance and below 0.2° in
about 1.5 seconds with base disturbance. In both conditions
pointing error reaches 0.05°.

Fig. 5. Equivalent azimuth elevation angles with base disturbance

Fig. 6. Pointing error of the SOTM antenna with base disturbance

V. CONCLUSIONS

In the classical approach, the scanning algorithm and
position controller establish satellite communication with
the maximum RF signal. The scanning algorithm and the
position controller are designed and implemented individ-
ually. In this study, a multilayer neural network controller
was developed for a SOTM antenna. The neural network
controller both points and maximizes RF signal. The neural
network controller ensures that it points where the RF signal
is at its maximum, under the condition of receiving the RF

signal. The robustifying RF signal requires the direction of
each axis. This axis direction is determined by the step track
algorithm. Its purpose is to find the axis direction which
increases the RF signal strength and is only applied for a
short time. It is recommended that the reference joint angle
change to the maximum signal angle after the maximum
signal is reached. The robustifying RF signal produces torque
value to find the maximum signal strength. This causes a
minor error in the filtered tracking controller. If the reference
angle changes, the filtered tracking error will be equal to the
very small.
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