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Abstract   Realization of PIλDµ controllers by feedforward neural network struc-
tures is studied in this paper. The motivation of the study is the difficulty of realiz-
ing the fractional order operators in real-time. A good approximation entails tens 
of poles and zeros scheduled appropriately in the frequency spectrum and the solu-
tion of such a high order system is needed afterwards. This paper remedies this 
computational problem by introducing a neural network model that imitates a giv-
en order fractional differintegration operator. Several simulations have been pre-
sented to assess the performance that can be obtained by the use of neural alterna-
tives of PIλDµ controllers. 

1 Introduction 

The need to handle the computational intensity of fractional order differintegration 
operators was an obstacle in between useful applications and theory. Rapid growth 
in the technology of fast computation platforms has made it possible to offer versa-
tile design and simulation tools, from which the field of control engineering has 
benefited remarkably. 

In Oldham & Spanier (1974), Podlubny (1998), Das (2008), fundamental issues re-
garding the fractional calculus, fractional differential equations and a viewpoint 
from the systems & control engineering are elaborated and several exemplar cases 
are taken into consideration. One such application area focuses on PID control with 
derivative and integral actions having fractional orders, i.e. PIλDµ control is imple-
mented. In the literature, several applications of PIλDµ controllers have been re-
ported. The early notion of the scheme is reported by Podlubny (1998). In Zhao et 
al (2005) and Coponetto et al (2002), tuning of the controller parameters is consi-
dered when the plant under control is a fractional order one. Ziegler-Nichols type 
tuning rules are derived in Valerio and Sa da Costa (2006) and rules for industrial 
applications are designed in Monje et al (2006). The application of fractional order 
PID controllers in chemical reaction systems is reported in Leu et al (2002), the is-
sues regarding the frequency domain are considered in Vinagre et al (2000). Tuning 
based on genetic algorithms is considered in Cao at al (2005), where the best para-
meter configuration is coded appropriately and a search algorithm is executed to 
find a parameter set that meets the performance specifications. A similar approach 
exploiting the particle swarm optimization for finding a good set of gains and diffe-
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rintegration orders is in Maiti et al (2008). Clearly, the cited volume of works de-
monstrates that the interest to PID control is growing also in the direction of frac-
tional order versions. Unsurprisingly the reason for this is the widespread use of the 
variants of PID controller and the confidence of the engineers in industry. 

The idea of approximating the fractional order operators has been considered in 
Abisso et al (2001), where a fractional order integrator is generalized by a neural 
network observing some history of the input and the output. The fundamental ad-
vancement introduced here is to generalize a PID controller utilizing a neural struc-
ture with a similar network structure. 

This paper is organized as follows: The second section briefly gives the definitions 
of widely used fractional differintegration formulas and basics of fractional calcu-
lus, the third section describes the Levenberg-Marquardt training scheme and 
neural network structure, the fourth section presents a set of simulation studies, 
and the concluding remarks are given at the end of the paper. 

2 Fundamental Issues in Fractional Order  Systems and 
Control 

Let Dβ denote the differintegration operator of order β, where β∈ℜ. For positive 
values of β, the operator is a differentiator whereas the negative values of β corres-
pond to integrators. This representation lets Dβ to be a differintegration operator 
whose functionality depends upon the numerical value of β . With n being an integ-
er and n−1 ≤ β < n, Riemann-Liouville definition of the β-fold fractional differinte-
gration is defined by (1) where Caputo’s definition for which is in (2). 
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where Γ(β )=∫0
∞e-ttβ-1dt is the well known Gamma function. In both definitions, we 

assumed the lower terminal zero and the integrals start from zero. Considering ak, 
bk ∈ℜ and αk, βk∈ℜ+, one can define the following differential equation 
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and with the assumption that all initial conditions are zero, obtain the transfer func-
tion given by (4). 
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Denoting frequency by ω and substituting s = jω in (4), one can exploit the tech-
niques of frequency domain. A significant difference in the Bode magnitude plot is 
to observe that the asymptotes can have any slope other that the integer multiples of 
20 dB/decade and this is a substantially important flexibility for modeling and iden-
tification research. When the state space models are taken into consideration, we 
have 
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and we obtain the transfer function via taking the Laplace transform in the usual 
sense, i.e. 
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For the state space representation in (5), if λi is an eigenvalue of the matrix A, and 
the condition 

 
2
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is required for stability. It is possible to apply the same condition for the transfer 
function representation in (4), where λis denote the roots of the expression in the 
denominator. 

 
Fig. 1. Crone approximation to the operator s0.5 with ωmin=1e−3 rad/s, ωmax=1e+3 rad/s. Left col-
umn: N = 3, Right column: N = 9 
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The implementation issues are tightly related to the numerical realization of the op-
erators defined in (1) and (2). There are several approaches in the literature and 
Crone is the most frequently used scheme in approximating the fractional order dif-
ferintegration operators, Das (2008). More explicitly, the algorithm determines a 
number of poles and zeros and approximates the magnitude plot over a predefined 
range of the frequency spectrum. In (8), the expression used in Crone approxima-
tion is given and the approximation accuracy is depicted for N = 3 and 9 in Figure 
1. According to the shown approximates, it is clearly seen that the accuracy is im-
proved as N gets larger, yet the price paid for this is the complexity and the tech-
nique presented next is a remedy to handle the difficulties stemming from the im-
plementation issues. 
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The PIλDµ controller with the operator described above has the transfer function 
given by (9), where E(s) is the error entering the controller and U(s) stands for the 
output. 
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In Figure 2, it is illustrated that the classical PID controller variants correspond to a 
subset in the λ-µ coordinate system and there are infinitely many parameter confi-
gurations that may lead to different performance indications. 

 

 

 

 

 

 

Fig. 2. Continuous values of the differintegration orders λ and µ enables to obtain infinitely 
many configurations of PIλDµ controller where the variants of the classical PID controller cor-
respond to a subset of the domain. 

3 Neural Network Based Modeling and Levenberg-Marquardt 
Training Scheme 

In this work, we consider the feedforward neural network structure shown in Fig-
ure 3, where there are m inputs, R neurons in the first hidden layer and Q hidden 
layer in the second hidden layer. Since the neural structure is aimed to imitate a 
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PIλDµ controller, the model has a single output. The hidden layers have hyperbolic 
tangent type nonlinear activation while the output layer neuron is linear. 

 

 

 

 

 
 

Fig. 3. Feedforward neural network structure with R neurons in the first, Q neurons in the second 
hidden layer. 

The powerful mapping capabilities of neural networks have made them useful 
tools of modeling research especially when the entity to be used is in the form of 
raw data. This particular property is mainly because of the fact that real systems 
have many variables, the variables involved in the modeling process are typically 
noisy, and the underlying physical phenomenon is sometimes nonlinear. Due to 
the inextricably intertwined nature of the describing differential (or difference) 
equations, which are not known precisely, it becomes a tedious task to see the re-
lationship between the variables involved. In such cases, black box models, such 
as neural networks, fuzzy logic or the methods adapted from the artificial intelli-
gence come into the picture as tools representing the input/output behavior accu-
rately. In what follows, we describe briefly the Levenberg-Marquardt training 
scheme for adjusting the parameters of a neural structure Hagan and Menhaj 
(1994). Since the algorithm is a soft transition in between the Newton’s method 
and the standard gradient descent, it very quickly locates the global minimum (if 
achievable) of the cost hypersurface, which is denoted by J in (10). 
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where yp denotes the response of the single output neural network, dp stands for 
the corresponding target output. In (10), φ is the set of all adjustable parameters of 
the neural structure (weights and the biases), and u is the vector of inputs which 
are selected according to the following procedure. 

 ( ) 1T T( 1) ( ) ( ) ( ) ( ) ( )t t I t t t F tφ φ µ
−
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where, µ is the regularization parameter, F(t)=[f1 f2 … fP]T is the vector of errors 
described as fi=di−yi(e,φ) i=1,2,…,P, where P is the number of training pairs and 
Φ is the Jacobian given explicitly by (12). 
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where there are H adjustable parameters within the vector φ. In the application of 
the tuning law in (11), if µ is large, the algorithm behaves more like the gradient 
descent, conversely, if µ is small, the prescribed updates are more like the Gauss-
Newton updates. The algorithm removes the problem of rank deficiency in (11) 
and improves the performance of gradient descent significantly. 

4 Simulation Studies 

The first stage of emulating the response of a PIλDµ controller is to select a repre-
sentative set of inputs to be applied to the PIλDµ controller and to collect the re-
sponse. We have set N = 9 and follow the procedure described below. 

For n = 1 to #experiments 
 Set a random Kp∈(0,2) 
 Set a random Kd∈(0,1) 
 Set a random Ki∈(0,1) 
 Set a random µ∈(0,1) 
 Set a random λ∈(0,1) 
 Apply u(t) and obtain y(t) for t∈[0,10] 
 Store u(t), y(t), Kp, Kd, Ki, µ, λ 
End 

A total of 200 experiments with step size 1 ms have been carried out to obtain the 
data to be used for training data. Once the set of all responses are collected, a ma-
trix is formed, a generic row of which has the following structure 

 [ ( ), ( 1), , ( ), ( ), ( ), ( ), ( ), ( )]p d iy k y k y k d K k K k K k k kλ µ− −  (13) 
where k is the time index indicating y(k) = y(kT) and T = 1 ms. and there are d+6 
columns in each row and the delay depth d is a user defined parameter. Denote the 
matrix, whose generic row is shown above, by Ω. In order to obtain the training da-
ta set, we downsample the matrix Ω by selecting the first row of every 100 consec-
utive row blocks. This significantly reduces the computational load of the training 
scheme and according to the given procedure, 60,000 pairs of training data are gen-
erated and a neural network having m = 16 inputs is constructed. In Figure 4, the 
evolution for the training data is shown with that obtained for the checking data, 
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which is obtained by running 15 experiments and the same procedure of downsam-
pling. 

 
Fig. 4. Feedforward neural network structure with R neurons in the first, Q neurons in the second 
hidden layer. 

At 128th epoch the best set network parameters is obtained and after this time the 
checking error for the neural model starts increasing and the training scheme stops 
the parameter tuning when J=0.01778. In what follows, we discuss the performance 
of the neural model as a PIλDµ controller. 

As an illustrative example, we consider the following control problem, which is 
simple yet our goal is to compare the responses of two controllers, namely, PIλDµ 
controller and its neural network based approximate. The plant dynamics is given 
as below. 
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where y is the plant output and u is the control input. We choose Kp=2.5, Kd=0.9, 
Ki=0.1, µ=0.02, λ=0.7 and apply a step command that rises when t = 1 sec. The 
command signal, the response obtained with the PIλDµ controller exploiting the 
above parameters and the result obtained with the trained neural network emulator 
are shown on the top row of Figure 5, where the response of PIλDµ controller is ob-
tained by the use of the toolbox described in Valerio (2005). For a better compari-
son, the bottom row depicts the difference in between the plant responses obtained 
for both controllers individually. Clearly the results suggest that the neural network 
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based controller is able to imitate the PIλDµ controller to a very good extent as the 
two responses are very close to each other. 

A better comparison is to consider the control signals that are produced by the 
PIλDµ controller (uFracPID) and the neural network controller (uNNPID). The results are 
seen in Figure 6, where the two control signals are shown together on the top sub-
plot, whereas the difference between them is illustrated in the bottom subplot. 
Clearly the two control signals are very close to each other, furthermore, the signal 
generated by the neural network is smoother than its alternative when t=1. This par-
ticular example demonstrates that the neural network based realization can be a 
good candidate for replacing the PIλDµ controller.  

Define the following relative error as given in (15), where T denotes the final time. 
For the results seen above, we obtain erel=0.1091, which is an acceptably small val-
ue indicating the similarity of the two control signals seen in Figure 6. 
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Fig. 5. For the first example, system response and the difference in between the two responses 
obtained with the PIλDµ controller and its neural network based substitute. 
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Fig. 6. The control signals generated by the PIλDµ controller and its neural network based substi-
tute. The bottom row shows the differenc in between the two signals. 

Table 1 Performance of The Proposed Controller for a Number of Different Parameter Configu-
rations  

         Kp           Ki            Kd           µ            λ         erel      . 

    1.3000    0.9000    0.7000    0.0200    0.0900    0.0897 

    2.1000    0.9000    0.1000    0.0200    0.3900    0.0938 

    1.7000    0.7000    0.4000    0.0200    0.0900    0.0965 

    2.5000    0.7000    0.1000    0.0200    0.3900    0.0982 

    2.5000    0.7000    0.1000    0.0200    0.6900    0.0991 

    1.7000    0.3000    1.0000    0.0200    0.0900    0.1005 

    0.9000    0.9000    0.7000    0.0200    0.0900    0.1014 

    2.5000    0.9000    0.1000    0.0200    0.6900    0.1018 

    1.3000    0.7000    0.4000    0.0200    0.0900    0.1028 

    1.7000    0.1000    1.0000    0.0200    0.0900    0.1035 

    2.1000    0.9000    0.1000    0.0200    0.6900    0.1038 

    1.3000    0.7000    1.0000    0.0200    0.0900    0.1052 

    1.3000    0.9000    0.4000    0.0200    0.0900    0.1073 

    1.7000    0.5000    0.7000    0.0200    0.0900    0.1081 

    1.3000    0.9000    1.0000    0.0200    0.0900    0.1090 

    0.9000    0.9000    1.0000    0.0200    0.0900    0.1094 

    0.9000    0.7000    0.7000    0.0200    0.0900    0.1108 

    2.1000    0.7000    0.1000    0.0200    0.9900    0.1112 
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In Table 1, we summarize a number of test cases with corresponding relative error 
values. The data presented in the table indicates that the proposed controller is able 
to perform well for a wide range of controller gains and for small values of λ and µ. 
However, for another control problem, the proposed scheme may perform better for 
larger values of differintegration orders. To see this, as a second example, we con-
sider the following plant dynamics. 
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where ∆(x1,x2,x3) and ξ(t) are uncertainties and disturbance terms that are not avail-
able to the designer. In above, we have 

 3
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The plant considered is a nonlinear one having four states, disturbance terms and 
uncertainties. The time varying gain multiplying the state x4 in (14) makes the 
problem further complicated and we compare the neural network substitute of the 
PIλDµ controller given by 

 0.75
0.9

( ) 0.72 0.6
( )

U s s
E s s

= + +  (21) 

The results are illustrated in Figures 7-8. The responses of the system for both con-
trollers are depicted in Figure 7, where we see that the two responses are very close 
to each other. The similarity in the fluctuations around the setpoint is another result 
to emphasize. The outputs of the controllers are analyzed in Figure 8, where we see 
that the PIλDµ controller generates a very large magnitude spike when the step 
change in the command signal occurs, whereas the neural network based substitute 
produces a smoother control signal and this is reflected as a slight difference in be-
tween the plant responses to controllers being compared. The two controllers pro-
duce similar signals when the plant output is forced to lie around unity, which is 
seen in the middle subplot of Figure 8, and the difference in between the two con-
trol signals is seen to be bounded by 0.05 during this period. The value of erel for 
this case is equal to 20.3283, which seems large but noticing the peak in the top 
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subplot of Figure 8, this could be seen tolerable as the PIλDµ controller requests 
high magnitude control signals when there is a step change in the command. 

 
Fig. 7. For the second example, system response and the difference in between the two responses 
obtained with the PIλDµ controller and its neural network based substitute. 

A last issue to consider here is the possibility of increasing the performance ob-
tained by the chosen neural network structure, which is 16-25-10-1. One can argue 
that the neural network could be realized as a single hidden layer one, or with two 
hidden layers with less number of neurons in each. In obtaining the neural model, 
whose results are discussed, many trials have been performed and it is seen that the 
approximation performance could be increased if there are more neurons in the 
hidden layers. In a similar fashion, a better map could be constructed if earlier val-
ues of the incoming error signal are taken into consideration. This enlarges the 
network size and makes it more intense computationally to train the model. De-
pending on the problem in hand, the goal of the current paper is to demonstrate that 
a fractional order PIλDµ Control could be replicated to a certain extent by the use of 
neural network models and the findings of the paper support these claims thorough-
ly. 

5 Conclusions 

This paper discusses the use of standard neural network models for imitating the 
behavior of a PIλDµ controller, whose parameters are provided explicitly as the in-
puts to the neural network. The motivation in focusing this has been the difficulty 
of realizing fractional order controllers requiring high orders of approximation for 
accuracy. The method followed here is to collect a set of data and to optimize the 
set of parameters to obtain an emulator of the PIλDµ controller. Aside from the pa-
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rameters of the PIλDµ controller, the neural model observed some history of the in-
put and outputs a value approximating the response of the PIλDµ controller. Several 
exemplar cases are presented and it is seen that the use of neural network models is 
a practical alternative in realizing the PIλDµ controllers. Furthermore, the developed 
neural model allows modifying the controller parameters online as those parame-
ters are supplied as eternal inputs to the network. 

 
Fig. 8. The control signals generated by the PIλDµ controller and its neural network based substi-
tute. The top row illustrates the two signals when the step change occurs. The middle row depicts 
the closeness of the two signals when t> 5 sec., and the bottom row shows the difference in be-
tween the two signals. 
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