
Neural Network Assisted PIλDµ Control

Mehmet Önder Efe

Department of Pilotage, University of Turkish Aeronautical Association, Akköprü, Ankara,
Turkey, e-mail: onderefe@ieee.org

Abstract Realization of PIλDµ controllers by feedforward neural network struc-
tures is studied in this paper. The motivation of the study is the difficulty of realiz-
ing the fractional order operators in real-time. A good approximation entails tens
of poles and zeros scheduled appropriately in the frequency spectrum and the solu-
tion of such a high order system is needed afterwards. This paper remedies this
computational problem by introducing a neural network model that imitates a giv-
en order fractional differintegration operator. Several simulations have been pre-
sented to assess the performance that can be obtained by the use of neural alterna-
tives of PIλDµ controllers.

1 Introduction

The need to handle the computational intensity of fractional order differintegration
operators was an obstacle in between useful applications and theory. Rapid growth
in the technology of fast computation platforms has made it possible to offer versa-
tile design and simulation tools, from which the field of control engineering has
benefited remarkably.

In Oldham & Spanier (1974), Podlubny (1998), Das (2008), fundamental issues re-
garding the fractional calculus, fractional differential equations and a viewpoint
from the systems & control engineering are elaborated and several exemplar cases
are taken into consideration. One such application area focuses on PID control with
derivative and integral actions having fractional orders, i.e. PIλDµ control is imple-
mented. In the literature, several applications of PIλDµ controllers have been re-
ported. The early notion of the scheme is reported by Podlubny (1998). In Zhao et
al (2005) and Coponetto et al (2002), tuning of the controller parameters is consi-
dered when the plant under control is a fractional order one. Ziegler-Nichols type
tuning rules are derived in Valerio and Sa da Costa (2006) and rules for industrial
applications are designed in Monje et al (2006). The application of fractional order
PID controllers in chemical reaction systems is reported in Leu et al (2002), the is-
sues regarding the frequency domain are considered in Vinagre et al (2000). Tuning
based on genetic algorithms is considered in Cao at al (2005), where the best para-
meter configuration is coded appropriately and a search algorithm is executed to
find a parameter set that meets the performance specifications. A similar approach
exploiting the particle swarm optimization for finding a good set of gains and diffe-

2

rintegration orders is in Maiti et al (2008). Clearly, the cited volume of works de-
monstrates that the interest to PID control is growing also in the direction of frac-
tional order versions. Unsurprisingly the reason for this is the widespread use of the
variants of PID controller and the confidence of the engineers in industry.

The idea of approximating the fractional order operators has been considered in
Abisso et al (2001), where a fractional order integrator is generalized by a neural
network observing some history of the input and the output. The fundamental ad-
vancement introduced here is to generalize a PID controller utilizing a neural struc-
ture with a similar network structure.

This paper is organized as follows: The second section briefly gives the definitions
of widely used fractional differintegration formulas and basics of fractional calcu-
lus, the third section describes the Levenberg-Marquardt training scheme and
neural network structure, the fourth section presents a set of simulation studies,
and the concluding remarks are given at the end of the paper.

2 Fundamental Issues in Fractional Order Systems and
Control

Let Dβ denote the differintegration operator of order β, where β∈ℜ. For positive
values of β, the operator is a differentiator whereas the negative values of β corres-
pond to integrators. This representation lets Dβ to be a differintegration operator
whose functionality depends upon the numerical value of β . With n being an integ-
er and n−1 ≤ β < n, Riemann-Liouville definition of the β-fold fractional differinte-
gration is defined by (1) where Caputo’s definition for which is in (2).

()

()
() 1

0

1 d() d
d

tn

n
f

f t
n t t

β
β
τ

τ
β τ − +

 = Γ − −
∫D (1)

()

()
()

()

1
0

1() d
t n

n
f

f t
n t

β
β

τ
τ

β τ − +
=

Γ − −
∫D (2)

where Γ(β)=∫0
∞e-ttβ-1dt is the well known Gamma function. In both definitions, we

assumed the lower terminal zero and the integrals start from zero. Considering ak,
bk ∈ℜ and αk, βk∈ℜ+, one can define the following differential equation

1 0

1 0

1 0

1 0

() ()

() ()

n n

m m

n n

m m

a a a y t

b b b u t

α α α

β β β

−

−

−

−

+ + + =

+ + +

D D D

D D D

 (3)

and with the assumption that all initial conditions are zero, obtain the transfer func-
tion given by (4).

3

01

01

01

01
)(
)(

ααα

βββ

sasasa

sbsbsb
sU
sY

nn

mm

nn

mm
+++

+++
=

−

−

−

−

 (4)

Denoting frequency by ω and substituting s = jω in (4), one can exploit the tech-
niques of frequency domain. A significant difference in the Bode magnitude plot is
to observe that the asymptotes can have any slope other that the integer multiples of
20 dB/decade and this is a substantially important flexibility for modeling and iden-
tification research. When the state space models are taken into consideration, we
have

Duy

u
+=

+=
Cx

BAxxDβ
 (5)

and we obtain the transfer function via taking the Laplace transform in the usual
sense, i.e.

 () DssH +−=
−

BAIC
1

)(β (6)

For the state space representation in (5), if λi is an eigenvalue of the matrix A, and
the condition

2

|)arg(| πβλ >i (7)

is required for stability. It is possible to apply the same condition for the transfer
function representation in (4), where λis denote the roots of the expression in the
denominator.

Fig. 1. Crone approximation to the operator s0.5 with ωmin=1e−3 rad/s, ωmax=1e+3 rad/s. Left col-
umn: N = 3, Right column: N = 9

10
-2

10
0

10
2

-30

-20

-10

0

10

20

30

Frequency w (rad/s)

M
ag

ni
tu

de
 |(

jw
)0.

5 | (
dB

)

Magnitude of |(jw)0.5|
Crone Approximation

10
-2

10
0

10
2

20

30

40

50

60

Frequency w (rad/s)

P
ha

se
 o

f (
jw

)0.
5 (D

eg
re

es
)

Phase Angle of (jw)0.5

Crone Approximation

10
-2

10
0

10
2

-30

-20

-10

0

10

20

30

Frequency w (rad/s)

M
ag

ni
tu

de
 |(

jw
)0.

5 | (
dB

)

Magnitude of |(jw)0.5|
Crone Approximation

10
-2

10
0

10
2

20

30

40

50

60

Frequency w (rad/s)

P
ha

se
 o

f (
jw

)0.
5 (D

eg
re

es
)

Phase Angle of (jw)0.5

Crone Approximation

4

The implementation issues are tightly related to the numerical realization of the op-
erators defined in (1) and (2). There are several approaches in the literature and
Crone is the most frequently used scheme in approximating the fractional order dif-
ferintegration operators, Das (2008). More explicitly, the algorithm determines a
number of poles and zeros and approximates the magnitude plot over a predefined
range of the frequency spectrum. In (8), the expression used in Crone approxima-
tion is given and the approximation accuracy is depicted for N = 3 and 9 in Figure
1. According to the shown approximates, it is clearly seen that the accuracy is im-
proved as N gets larger, yet the price paid for this is the complexity and the tech-
nique presented next is a remedy to handle the difficulties stemming from the im-
plementation issues.

∏
∏

=

=

+

+
≈ N

k kz

N
k kp

ws

ws
Ks

1

1

/1

/1β (8)

The PIλDµ controller with the operator described above has the transfer function
given by (9), where E(s) is the error entering the controller and U(s) stands for the
output.

 ()
()

i
p d

KU s K K s
E s s

µ
λ= + + (9)

In Figure 2, it is illustrated that the classical PID controller variants correspond to a
subset in the λ-µ coordinate system and there are infinitely many parameter confi-
gurations that may lead to different performance indications.

Fig. 2. Continuous values of the differintegration orders λ and µ enables to obtain infinitely
many configurations of PIλDµ controller where the variants of the classical PID controller cor-
respond to a subset of the domain.

3 Neural Network Based Modeling and Levenberg-Marquardt
Training Scheme

In this work, we consider the feedforward neural network structure shown in Fig-
ure 3, where there are m inputs, R neurons in the first hidden layer and Q hidden
layer in the second hidden layer. Since the neural structure is aimed to imitate a

µ

λ

PD 1

PI 1

P

PID

5

PIλDµ controller, the model has a single output. The hidden layers have hyperbolic
tangent type nonlinear activation while the output layer neuron is linear.

Fig. 3. Feedforward neural network structure with R neurons in the first, Q neurons in the second
hidden layer.

The powerful mapping capabilities of neural networks have made them useful
tools of modeling research especially when the entity to be used is in the form of
raw data. This particular property is mainly because of the fact that real systems
have many variables, the variables involved in the modeling process are typically
noisy, and the underlying physical phenomenon is sometimes nonlinear. Due to
the inextricably intertwined nature of the describing differential (or difference)
equations, which are not known precisely, it becomes a tedious task to see the re-
lationship between the variables involved. In such cases, black box models, such
as neural networks, fuzzy logic or the methods adapted from the artificial intelli-
gence come into the picture as tools representing the input/output behavior accu-
rately. In what follows, we describe briefly the Levenberg-Marquardt training
scheme for adjusting the parameters of a neural structure Hagan and Menhaj
(1994). Since the algorithm is a soft transition in between the Newton’s method
and the standard gradient descent, it very quickly locates the global minimum (if
achievable) of the cost hypersurface, which is denoted by J in (10).

 ()()2

1

1 ,
2

P
p p

p
J d y e φ

=
= −∑ (10)

where yp denotes the response of the single output neural network, dp stands for
the corresponding target output. In (10), φ is the set of all adjustable parameters of
the neural structure (weights and the biases), and u is the vector of inputs which
are selected according to the following procedure.

 () 1T T(1) () () () () ()t t I t t t F tφ φ µ
−

+ = − + Φ Φ Φ (11)

where, µ is the regularization parameter, F(t)=[f1 f2 … fP]T is the vector of errors
described as fi=di−yi(e,φ) i=1,2,…,P, where P is the number of training pairs and
Φ is the Jacobian given explicitly by (12).

e1

em
y

6

1 1 1

1 2

2 2 2

1 2

1 2

H

H

P P P

H

f f f

f f f

f f f

φ φ φ

φ φ φ

φ φ φ

∂ ∂ ∂
 ∂ ∂ ∂
 ∂ ∂ ∂
 ∂ ∂ ∂Φ =

∂ ∂ ∂

 ∂ ∂ ∂

 (12)

where there are H adjustable parameters within the vector φ. In the application of
the tuning law in (11), if µ is large, the algorithm behaves more like the gradient
descent, conversely, if µ is small, the prescribed updates are more like the Gauss-
Newton updates. The algorithm removes the problem of rank deficiency in (11)
and improves the performance of gradient descent significantly.

4 Simulation Studies

The first stage of emulating the response of a PIλDµ controller is to select a repre-
sentative set of inputs to be applied to the PIλDµ controller and to collect the re-
sponse. We have set N = 9 and follow the procedure described below.

For n = 1 to #experiments
 Set a random Kp∈(0,2)
 Set a random Kd∈(0,1)
 Set a random Ki∈(0,1)
 Set a random µ∈(0,1)
 Set a random λ∈(0,1)
 Apply u(t) and obtain y(t) for t∈[0,10]
 Store u(t), y(t), Kp, Kd, Ki, µ, λ
End

A total of 200 experiments with step size 1 ms have been carried out to obtain the
data to be used for training data. Once the set of all responses are collected, a ma-
trix is formed, a generic row of which has the following structure

 [(), (1), , (), (), (), (), (), ()]p d iy k y k y k d K k K k K k k kλ µ− − (13)
where k is the time index indicating y(k) = y(kT) and T = 1 ms. and there are d+6
columns in each row and the delay depth d is a user defined parameter. Denote the
matrix, whose generic row is shown above, by Ω. In order to obtain the training da-
ta set, we downsample the matrix Ω by selecting the first row of every 100 consec-
utive row blocks. This significantly reduces the computational load of the training
scheme and according to the given procedure, 60,000 pairs of training data are gen-
erated and a neural network having m = 16 inputs is constructed. In Figure 4, the
evolution for the training data is shown with that obtained for the checking data,

7

which is obtained by running 15 experiments and the same procedure of downsam-
pling.

Fig. 4. Feedforward neural network structure with R neurons in the first, Q neurons in the second
hidden layer.

At 128th epoch the best set network parameters is obtained and after this time the
checking error for the neural model starts increasing and the training scheme stops
the parameter tuning when J=0.01778. In what follows, we discuss the performance
of the neural model as a PIλDµ controller.

As an illustrative example, we consider the following control problem, which is
simple yet our goal is to compare the responses of two controllers, namely, PIλDµ
controller and its neural network based approximate. The plant dynamics is given
as below.

 () 1
() (1)

Y s
U s s s

=
+

 (14)

where y is the plant output and u is the control input. We choose Kp=2.5, Kd=0.9,
Ki=0.1, µ=0.02, λ=0.7 and apply a step command that rises when t = 1 sec. The
command signal, the response obtained with the PIλDµ controller exploiting the
above parameters and the result obtained with the trained neural network emulator
are shown on the top row of Figure 5, where the response of PIλDµ controller is ob-
tained by the use of the toolbox described in Valerio (2005). For a better compari-
son, the bottom row depicts the difference in between the plant responses obtained
for both controllers individually. Clearly the results suggest that the neural network

0 20 40 60 80 100 120
10

-3

10
-2

10
-1

10
0

10
1

Final Value of J is 0.011778

J for training data
J for checking data

8

based controller is able to imitate the PIλDµ controller to a very good extent as the
two responses are very close to each other.

A better comparison is to consider the control signals that are produced by the
PIλDµ controller (uFracPID) and the neural network controller (uNNPID). The results are
seen in Figure 6, where the two control signals are shown together on the top sub-
plot, whereas the difference between them is illustrated in the bottom subplot.
Clearly the two control signals are very close to each other, furthermore, the signal
generated by the neural network is smoother than its alternative when t=1. This par-
ticular example demonstrates that the neural network based realization can be a
good candidate for replacing the PIλDµ controller.

Define the following relative error as given in (15), where T denotes the final time.
For the results seen above, we obtain erel=0.1091, which is an acceptably small val-
ue indicating the similarity of the two control signals seen in Figure 6.

FracPID NNPID

0
rel

FracPID
0

1 d

:
1 d

T

T

u u t
T

e

u t
T

−

=
∫

∫
 (15)

Fig. 5. For the first example, system response and the difference in between the two responses
obtained with the PIλDµ controller and its neural network based substitute.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

Time (sec)

System Response

Command
NN PID
Frac. PID

0 5 10 15 20 25 30 35 40 45 50
-0.02

0

0.02

0.04

0.06

Time (sec)

y Fr
ac

-y
NN

Difference between responses with fractional PID and neural network PID

9

Fig. 6. The control signals generated by the PIλDµ controller and its neural network based substi-
tute. The bottom row shows the differenc in between the two signals.

Table 1 Performance of The Proposed Controller for a Number of Different Parameter Configu-
rations

 Kp Ki Kd µ λ erel .

 1.3000 0.9000 0.7000 0.0200 0.0900 0.0897

 2.1000 0.9000 0.1000 0.0200 0.3900 0.0938

 1.7000 0.7000 0.4000 0.0200 0.0900 0.0965

 2.5000 0.7000 0.1000 0.0200 0.3900 0.0982

 2.5000 0.7000 0.1000 0.0200 0.6900 0.0991

 1.7000 0.3000 1.0000 0.0200 0.0900 0.1005

 0.9000 0.9000 0.7000 0.0200 0.0900 0.1014

 2.5000 0.9000 0.1000 0.0200 0.6900 0.1018

 1.3000 0.7000 0.4000 0.0200 0.0900 0.1028

 1.7000 0.1000 1.0000 0.0200 0.0900 0.1035

 2.1000 0.9000 0.1000 0.0200 0.6900 0.1038

 1.3000 0.7000 1.0000 0.0200 0.0900 0.1052

 1.3000 0.9000 0.4000 0.0200 0.0900 0.1073

 1.7000 0.5000 0.7000 0.0200 0.0900 0.1081

 1.3000 0.9000 1.0000 0.0200 0.0900 0.1090

 0.9000 0.9000 1.0000 0.0200 0.0900 0.1094

 0.9000 0.7000 0.7000 0.0200 0.0900 0.1108

 2.1000 0.7000 0.1000 0.0200 0.9900 0.1112

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

Time (sec)

Control signals

uFracPID

uNNPID

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

10

Time (sec)

uFrac-uNN

 1.7000 0.5000 1.0000 0.0200 0.0900 0.1113

10

In Table 1, we summarize a number of test cases with corresponding relative error
values. The data presented in the table indicates that the proposed controller is able
to perform well for a wide range of controller gains and for small values of λ and µ.
However, for another control problem, the proposed scheme may perform better for
larger values of differintegration orders. To see this, as a second example, we con-
sider the following plant dynamics.

(0.1)
21

(0.4)
31

(0.8)
1 2 3 1 2 3 43

(0.5)
4

(, ,) (, , ,) () ()

x x

x x

x f x x x x x x t g t x t

x u

ξ

=

=

= + ∆ + +

=

 (16)

where ∆(x1,x2,x3) and ξ(t) are uncertainties and disturbance terms that are not avail-
able to the designer. In above, we have

 3
1 2 3 1 2 3 3(, ,) 0.5 0.5 0.5f x x x x x x x= − − − (17)

 () 1 0.1sin
3
tg t π = +

 (18)

()()

()() ()()
1 2 3 1

3
2 3 3

(, , ,) 0.05 0.25sin 5

0.03 0.3cos 5 0.05 0.25sin 7

x x x t t x

t x t x x

π

π π

∆ = − + +

− + + − +
 (19)

 () 0.2sin(4)t tξ π= (20)

The plant considered is a nonlinear one having four states, disturbance terms and
uncertainties. The time varying gain multiplying the state x4 in (14) makes the
problem further complicated and we compare the neural network substitute of the
PIλDµ controller given by

 0.75
0.9

() 0.72 0.6
()

U s s
E s s

= + + (21)

The results are illustrated in Figures 7-8. The responses of the system for both con-
trollers are depicted in Figure 7, where we see that the two responses are very close
to each other. The similarity in the fluctuations around the setpoint is another result
to emphasize. The outputs of the controllers are analyzed in Figure 8, where we see
that the PIλDµ controller generates a very large magnitude spike when the step
change in the command signal occurs, whereas the neural network based substitute
produces a smoother control signal and this is reflected as a slight difference in be-
tween the plant responses to controllers being compared. The two controllers pro-
duce similar signals when the plant output is forced to lie around unity, which is
seen in the middle subplot of Figure 8, and the difference in between the two con-
trol signals is seen to be bounded by 0.05 during this period. The value of erel for
this case is equal to 20.3283, which seems large but noticing the peak in the top

11

subplot of Figure 8, this could be seen tolerable as the PIλDµ controller requests
high magnitude control signals when there is a step change in the command.

Fig. 7. For the second example, system response and the difference in between the two responses
obtained with the PIλDµ controller and its neural network based substitute.

A last issue to consider here is the possibility of increasing the performance ob-
tained by the chosen neural network structure, which is 16-25-10-1. One can argue
that the neural network could be realized as a single hidden layer one, or with two
hidden layers with less number of neurons in each. In obtaining the neural model,
whose results are discussed, many trials have been performed and it is seen that the
approximation performance could be increased if there are more neurons in the
hidden layers. In a similar fashion, a better map could be constructed if earlier val-
ues of the incoming error signal are taken into consideration. This enlarges the
network size and makes it more intense computationally to train the model. De-
pending on the problem in hand, the goal of the current paper is to demonstrate that
a fractional order PIλDµ Control could be replicated to a certain extent by the use of
neural network models and the findings of the paper support these claims thorough-
ly.

5 Conclusions

This paper discusses the use of standard neural network models for imitating the
behavior of a PIλDµ controller, whose parameters are provided explicitly as the in-
puts to the neural network. The motivation in focusing this has been the difficulty
of realizing fractional order controllers requiring high orders of approximation for
accuracy. The method followed here is to collect a set of data and to optimize the
set of parameters to obtain an emulator of the PIλDµ controller. Aside from the pa-

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time (sec)

System Response

Command
NN PID
Frac. PID

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

0.2

0.3

Time (sec)

y Fr
ac

-y
NN

Difference between responses with fractional PID and neural network PID

12

rameters of the PIλDµ controller, the neural model observed some history of the in-
put and outputs a value approximating the response of the PIλDµ controller. Several
exemplar cases are presented and it is seen that the use of neural network models is
a practical alternative in realizing the PIλDµ controllers. Furthermore, the developed
neural model allows modifying the controller parameters online as those parame-
ters are supplied as eternal inputs to the network.

Fig. 8. The control signals generated by the PIλDµ controller and its neural network based substi-
tute. The top row illustrates the two signals when the step change occurs. The middle row depicts
the closeness of the two signals when t> 5 sec., and the bottom row shows the difference in be-
tween the two signals.

0.99 1 1.01 1.02 1.03 1.04 1.05

0

100

200

300

400

500

Time (sec)

Control signals

4 6 8 10 12 14 16 18 20
-0.4

-0.2

0

0.2

0.4

Time (sec)

uFrac-uNN

0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.05

0

0.05

0.1

Time (sec)

uFrac-uNN

uFracPID

uNNPID

uFracPID

uNNPID

13

6 Acknowledgments

This work is supported in part by Turkish Scientific Council (TÜBİTAK) Contract
107E137.

7 References

Abbisso, S., Caponetto, R., Diamante, O., Fortuna, L., Porto, D., (2001) Non-
integer order integration by using neural networks. The 2001 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS 2001), 6-9 May, vol.2,
pp.688-691.

Cao, J.-Y., Liang, J., Cao, B.-G., (2005) Optimization of Fractional Order PID
Controllers Based on Genetic Algorithms. Proceedings of the Fourth Interna-
tional Conference on Machine Learning and Cybernetics, Guangzhou, 18-21
August.

Caponetto, R., Fortuna, L., Porto, D., (2002) Parameter Tuning of a Non Integer
Order PID Controller. In: Proceedings of the Fifteenth International Sympo-
sium on Mathematical Theory of Networks and Systems, Notre Dame, Indi-
ana.

Das, S. (2008) Functional Fractional Calculus for System Identification and Con-
trols. Springer, 1st Edition.

Hagan, M.T., Menhaj, M.B., (1994) Training Feedforward Networks with the Mar-
quardt Algorithm. IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp.
989-993.

Leu, J.F., Tsay, S.Y. Hwang, C., (2002) Design of Optimal Fractional-Order PID
Controllers. Journal of the Chinese Institute of Chemical Engineers 33(2),
193-202.

Maiti, D., Biswas, S., Konar, A., (2008) Design of a Fractional Order PID Control-
ler Using Particle Swarm Optimization Technique. 2nd National Conference
on Recent Trends in Information Systems (ReTIS-08), February 7-9, Kolkata,
India.

Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.-Q., (2006) Tuning and auto-tuning
of fractional order controllers for industry applications. Control Engineering
Practice, vol.16, pp.798–812.

Oldham, K.B. and Spanier J., (1974) The Fractional Calculus. Academic Press.
Podlubny, I. (1998) Fractional Differential Equations. Elsevier Science & Tech-

nology Books, 1st Edition.
Podlubny, I. (1999) Fractional-order systems and (PID mu)-D-lambda-controllers.

IEEE Transactions on Automatic Control, vol.44, no.1, 208-214.
Valerio, D., (2005) Ninteger v.2.3 Fractional Control Toolbox for MatLab.
Valerio, D., Sa Da Costa, L., (2006) Tuning of fractional PID controllers with Zieg-

ler–Nichols-type rules. Signal Processing, 86, pp.2771-2784.

14

Vinagre, B.M., Podlubny, I., Dorcak, L., Feliu, V., (2000) On Fractional PID Con-
trollers: A Frequency Domain Approach. IFAC Workshop on Digital Control.
Past, Present and Future of PID Control. Terrasa, Spain. pp.53-58.

Zhao, C., Xue, D., Chen, Y.-Q. (2005) A Fractional Order PID Tuning Algorithm
for A Class of Fractional Order Plants. Proc. of the IEEE Int. Conf. on Me-
chatronics & Automation, Niagara Falls, Canada.

