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Abstract   This paper focuses on the application of backstepping control scheme 
for fractional order dynamic systems. As in the case of integer order version, the 
control scheme is applicable to a particular class of systems letting the designer 
obtain a closed loop control law in a nested structure. A Lyapunov function is de-
fined at each stage and the negativity of an overall Lyapunov function is ensured 
by proper selection of the control law. Two exemplar cases are considered in the 
paper. 

1 Introduction 

Recently there has been a dramatic increase in the number of research outcomes re-
garding the theory and applications of fractional order systems and control, Oldham 
and Spanier (1974), Podlubny (1998), Das (2008). Despite the emergence of the 
theory dates back to a letter from Leibniz to L’Hôpital in 1695, asking the possible 
consequences of choosing a derivative of order ½, the theory has been stipulated 
and with the advances in the computational facilities, many important tools of clas-
sical control have been reformulated for (or adapted to) fractional order case, such 
as PID controllers Podlubny (1999), Zhao et al (2005), stability considerations, Ma-
tignon (1996), Matignon (1998), Chen et al (2006), Ahmed (2006), Kalman filter-
ing Sierociuk and Dzielinski (2006), state space models and approaches Das 
(2008), Ortigueira (2000), Raynaud and Zerganoh (2000), root locus technique 
Merrikh-Bayat and Afshar (2008), applications involved with the partial differen-
tial equations Meerschaert and Tadjeran (2006), Podlubny et al (2009), discrete 
time issues Oldham and Spanier (1974), Podlubny (1998), Das (2008), Sierociuk 
and Dzielinski (2006) and so on. A system to be identified can well be approx-
imated by an integer order model or it can be approximated by a much simpler 
model that is a fractional order one. Having the necessary techniques and tools for 
such cases becomes a critical issue and with this motivation in mind, this paper fo-
cuses on adapting the backstepping control technique for fractional order plant dy-
namics. 

Backstepping technique has been a frequently used nonlinear control technique that 
is based on the definition of a set of intermediate variables and the procedure of en-
suring the negativity of Lyapunov functions that add up to build a common control 
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Lyapunov function for the overall system. Due to this nature, the backstepping 
technique is applicable to a particular −yet wide− class of systems, which includes 
most mechanical systems, biochemical processes etc. The technique has successful-
ly been implemented in the field of robotics to as one of the state variables is of 
type position and the other is of type velocity, Krstic (1995), Madani and Benalle-
gue (2006), Adigbli et al (2007), Hua et al (2009). 

Although the tools and approaches of fractional order mathematics and backstep-
ping control are not new, implementation of backstepping control for fractional or-
der system dynamics is. The reason is the definition of derivative that is genera-
lized by Leibniz rule. The rule, which also generalizes the integer order cases, 
yields infinitely many terms for the product and it becomes difficult to figure out 
stability by choosing a square type Lyapunov function and obtaining its time deriv-
ative. This paper discusses a remedy to this within the context of backstepping con-
trol method. The contribution of the current study is to extend the backstepping 
technique to fractional order plants. 

This paper is organized as follows: The second section briefly gives the definitions 
of widely used fractional differintegration formulas and basics of fractional calcu-
lus, the third section describes the backstepping technique for fractional order plant 
dynamics, the fourth section presents a set of simulation studies covering a second 
order linear system with known dynamics, and a third order nonlinear system hav-
ing uncertainties and disturbances, and the concluding remarks are given at the end 
of the paper. 

2 Fractional Order  Differ integration Operators 

Let Dβ denote the differintegration operator of order β, where β∈ℜ. For positive 
values of β, the operator is a differentiator whereas the negative values of β corres-
pond to integrators. This representation lets Dβ to be a differintegration operator 
whose functionality depends upon the numerical value of β . With n being an integ-
er and n−1 ≤ β < n, Riemann-Liouville definition of the β-fold fractional differinte-
gration is defined by (1) where Caputo’s definition for which is in (2). 
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where Γ(β )=∫0
∞e-ttβ-1dt is the well known Gamma function. In both definitions, we 

assumed the lower terminal zero and the integrals start from zero. Considering ak, 
bk ∈ℜ and αk, βk∈ℜ+, one can define the following differential equation 
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and with the assumption that all initial conditions are zero, obtain the transfer func-
tion given by (4). 
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Denoting frequency by ω and substituting s = jω in (4), one can exploit the tech-
niques of frequency domain. A significant difference in the Bode magnitude plot is 
to observe that the asymptotes can have any slope other that the integer multiples of 
20 dB/decade and this is a substantially important flexibility for modeling and iden-
tification research. When it comes to consider state space models, one can define 
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and obtain the transfer function via taking the Laplace transform in the usual sense, 
i.e. 
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−

BAIC
1
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For the state space representation in (5), if λi is an eigenvalue of the matrix A, the 
condition 
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is required for stability. It is possible to apply the same condition for the transfer 
function representation in (4), where λis denote the roots of the expression in the 
denominator. 

The implementation issues are tightly related to the numerical realization of the op-
erators defined in (1) and (2). There are several approaches in the literature and 
Crone is the most frequently used scheme in approximating the fractional order dif-
ferintegration operators, Das (2008). More explicitly, the algorithm determines a 
number of poles and zeros and approximates the magnitude plot over a predefined 
range of the frequency spectrum. In (8), the expression used in Crone approxima-
tion is given and the approximation accuracy is depicted for N = 9 in Figure 1 and 
for N = 40 in Figure 2. According to the shown approximates, it is clearly seen that 
the accuracy is improved as N gets larger, yet the price paid for this is the complex-
ity. 
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Fig. 1. Crone approximation to the operator s0.5 with ωmin=1e−12 rad/s, ωmax=1e+4 rad/s, N = 9 

 
Fig. 2. Crone approximation to the operator s0.5 with ωmin=1e−12 rad/s, ωmax=1e+4 rad/s, N = 35 
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3 Backstepping Control Technique for Fractional Order  Plant 
Dynamics 

Denote the β-fold differintegration operator Dβx by x(β) and consider the system 
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where x1 and x2 are the state variables, 0<β1, β 2<1 are positive fractional differen-
tiation orders, f(x1,x2) and g(x1,x2) are known and smooth functions of the state va-
riables and g(x1,x2)≠0. Define the following intermediate variables of backstepping 
design. 
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where A1=0 and 1( )
21r rβ = . 

Theorem: Let z be the variable of interest and choose the Lyapunov function given 
by (11). 
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2
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If  ( ) 0zz β <  if 0< β <1 is maintained then 0zz <  is satisfied. 

Proof: Consider the Riemann-Liouville definition, which is rewritten for the given 
conditions in (12). 
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If ( ) 0zz β <  is satisfied, then the variable z and the integral  
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and monotonically increasing for negative z. Since the denominator of the inte-
grand is always positive, this can only arise if 0zz <  is satisfied. 

Considering the Caputo’s definition in (14), having ( ) 0zz β <  can arise when 
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This proves that forcing ( ) 0zz β <  implies 0zz < . � 

Now we will formulate the backstepping control technique for the plant de-
scribed by (9) by repetitively checking the quantities 1( )

1 1z z β  and 1 2( ) ( )
1 21 2z z z zβ β+  

as explained below. 
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Step 2: With k1>0, choose 2 1 1A k z= − , this would let us have 
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Step 4: Force 1 2( ) ( ) 2 2
1 2 1 1 2 21 2z z z z k z k zβ β+ = − − , k2>0, this requires 
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It is possible to generalize the above procedure for higher order systems of the form 
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and the control law 
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and the result of applying the control law in (21) is as below. 
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According to the aforementioned theorem, ensuring the negativeness of the right 
hand side of (24) equivalent to ensuring the negativity of 1

q
i ii z z=∑  , and the trajec-

tories in the coordinate system spanned by z1,…,zq converge the origin. 

4 Simulation Studies 

In this section, we consider two sets of simulations so justify the claims. The first 
system is linear and a second order one with all necessary parameters are known 
perfectly. The system is given by (25). 
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The system is desired to track a sinusoidal profile for a period of 50 seconds, and 
then the following of a pulse like command is claimed. The results are illustrated in 
Figure 3-4. 

According to the presented results, precise tracking of the command signals is 
achieved with N=35 term approximation for the fractional order differentiation op-
erators. The numerical realization has been performed in Matlab environment with 
Ninteger toolbox, Valerio (2005). The results seen in Figure 3 have been obtained 
with k1=k2=10, and those in Figure 4 are obtained with k1=k2=0.1. The former case 
reveals better tracking performance while the latter produces smother control sig-
nals and the comparison guides the designer for setting the best parameter values 
for the design expectations. 

In the second set of simulations, a third order system dynamics with several uncer-
tainty terms is considered. The system dynamics is given by (26). 
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where ∆(x1,x2,x3) and ξ(t) are uncertainties and disturbance terms that are not avail-
able to the designer. In above, we have 
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Fig. 3. Simulation results for the system described by (24). k1=k2=10, N=35 

 
Fig. 4. Simulation results for the system described by (24). k1=k2=0.1, N=35 
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Fig. 5. Simulation results for the system described by (26)-(30), k1=k2=k3=10 and N=35 
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The results of the simulations are shown in Figure 5, where it is seen that the refer-
ence signal for the first state variable is followed very precisely when k1=k2=10 and 
N=35. Regarding the second state variable, due to the sharp changes in the refer-
ence signal, several instantaneous peaks are visible. The effect of the disturbances 
and approximation errors are seen as a slight degradation in the tracking perfor-
mance of the third state variable. The last row of Figure 5 shows the control signal 
that yields the shown tracking performances. Clearly the control signal has very 
sharp responses when there are sudden changes in the command signal. In Figure 6, 
the approximation parameter is reduced to N=9 and the simulations were repeated. 
Apparently in this case the state tracking performance even for the second state is 
visibly degraded and we conclude that the numerical issues in implementing the 
fractional order differintegration operators influence the performance significantly.  

Since the reference signal contains instantaneous changes, the responses are af-
fected at these instants. In order to clarify this situation, we study the second exam-
ple once again but in this time, we choose the reference signal as a filtered version 
of the reference signal considered in the previous cases. More explicitly, we choose 

 1 6
1( ) ( )

( 1)
R s C s

s
=

+
 (31) 

where C(s) is the command signal used so far and R1(s) is the Laplace transform of 
r1(t). The results are shown in Figure 7, where it is seen that both the trajectory 
tracking performance and the control signal smoothness are very good provided 
that the smoothness of the command signal is assured. 

The presented results demonstrate that the backstepping design can be adapted for 
fractional order plant dynamics and the use of better approximations for fractional 
order operators can lead to improved performance indications. 
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Fig. 6. Simulation results for the system described by (26)-(30), k1=k2=k3=10 and N=9 
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Fig. 7. Simulation results for the system described by (26)-(30), k1=k2=k3=10, N=35 and the ref-
erence signal is a filtered one as described by (31). 
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5 Conclusions 

This paper focuses on the adaptation of backstepping control technique for frac-
tional order plant dynamics. The derivation of the control law for a second order 
plant is given, the result is generalized for q-th order case and it is shown that en-
suring zz(β)<0 implies 0zz <  and stability conclusions for the control laws main-
taining zz(β)<0 are tied to the integer order case. Two application examples are scru-
tinized. The first is a linear second order system, the analytical details embodying 
which is known thoroughly. The second example is a nonlinear system that pos-
sesses some uncertainty terms as well as disturbances, which are all bounded. The 
adapted backstepping scheme is applied to both systems and it is seen that the ana-
lytical claims are met perfectly for the first case and some degradation in the per-
formance due to the uncertainties is seen in the second case. If the smoothness of 
the command signal is assured, then a significant improvement in the trajectory 
tracking performance and the command signal smoothness is observed. 

Briefly, the paper demonstrates the use of backstepping control technique for frac-
tional order plant dynamics and several illustrative examples are discussed. The re-
sults show that the design parameters N and kis have a strong influence on the over-
all performance of the control system as well as the smoothness of the command 
signal is seen to be an important parameter influencing the closed loop perfor-
mance. 
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