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Summary. Design and implementation of flow control problems pose challenging
difficulties as the flow dynamics are governed by coupled nonlinear equations. Re-
cent research outcomes stipulate that the problem can be studied either from a
reduced order modeling point of view or from a transfer function point of view.
The latter identifies the physics of the problem on the basis of separate components
such as scattering, acoustics, shear layer etc. This paper uses the transfer function
representation and demonstrates a good match between the real-time observations
and a well-tuned transfer function can be obtained. Utilizing the devised model, an
H∞ controller based on Toker-Özbay formula is presented. The simulation results
illustrate that the effect of the noise can be eliminated significantly by appropriately
exciting the flow dynamics.

1 Introduction

Aerodynamic flow control is a core issue aiming to reduce skin friction thereby
increasing the maneuverability of aerial vehicles and reducing the fuel expen-
diture. The research towards this goal is in its infancy, however, some major
problems have been identified. These particularly include the development
of a dynamic model for a given flow geometry, and describing the best con-
trol scheme in some sense of optimality. In this paper we discuss cavity flow
problem.

One of the two branches of research towards the model development for
cavity flow stipulate the use of proper orthogonal decomposition techniques to
remedy the problem of infinite dimensionality, [1],[2]. These procedures yield a
set of ordinary differential equations, which are autonomous. The underlying
idea is to extract the most dominant features (modes) containing the essential
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part of the flow energy. Although the modeling issue has well been addressed,
the control design is still dependent upon models that explicitly include the
control input. The other viewpoint exploits the strength of representing the
physical properties by dynamical models in transfer function forms, [3],[4],[5].
Cited studies demonstrate that the shear layer, scattering, cavity acoustics
and receptivity can be represented dynamically as transfer functions. Due to
the reflections from the upstream wall of the cavity, after some propagation
delay time, the reflections interact with the oncoming flow and a delay-based
coupled dynamics arise. It must be noted that the devised form of the transfer
function matches the frequency content of the data obtained from Navier-
Stokes equations.

In this paper, we optimize the parameters of the model developed in
[3],[4],[5] to match the magnitude and frequencies of the resonant peaks and
use this model to synthesize an H∞ controller.

It is a well known fact that H∞ controller design scheme is particularly
well suited if the model involves uncertainties. This study demonstrates that
an optimal controller can be determined by utilizing the framework presented
in [6].

The paper is organized as follows: Section 2 introduces the transfer func-
tion based model of the cavity flows with its sub-components. The third sec-
tion is devoted to the parameter tuning issues. The frequency response match
is presented in that section. Following this, the methodology to design an
H∞ controller is discussed together with the simulation results. Concluding
remarks are made in the last section.

2 Delay-Based Models of Cavity Flow

The process shown in Figure 1 is for cavity flows, which constitute the sim-
plest geometry for studying aerodynamic flow control problems. Basically, this
representation captures major dynamic phenomena inside the flow field. For
the shear layer, we have,

G(s) = G0(s)e−sτs , (1)

where τs = L/(κU) (with L being the length of the cavity, U being the
freestream velocity and κ is a known constant). In (1), G0(s) = ω2

0
s2+2ζω0s+ω2

0

with ω0 and ζ are the natural frequency and damping ratio, respectively.
The acoustics term is given as

A(s) =
e−sτa

1− re−2sτa
, (2)

where
r(s) =

r

1 + s/ωr
, (3)
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Fig. 1. Block representation of the cavity flow and the control loop[3],[4]

is the attenuation factor of the reflection process. Denoting the speed of sound
by a, the time delay representing the acoustic lag between the trailing edge
and the leading edge is given as τa = L/a. Here, the Mach number can be
calculated as M = U/a. Furthermore, the numerical values of R (receptivity),
Sc (scattering), V (actuator) and Sm (sensor) are assumed to be available
in [4] and denote them by KR, KS , Kv and Km respectively. In the view of
these, the cavity transfer function P can be formed as given below:

P (s) =
AScG

1−RAScG
. (4)

Although the system is a linear one, at some Mach numbers unstable limit
cycling appears. The focus of this paper is to study how a robust controller
can be devised under dynamic uncertainties.

The goal of the controller is to reduce the peak value of |P (jω)S(jω)|,
where S(jω) is the sensitivity function, so that the effect of the noise at the
output is reduced. An example of achieving such a goal can be found in [4], in
which the controller is composed of a filter followed by a gain and a time delay.
In the next section, we outline the effect of each parameter on the frequency
response characteristics.

3 Parameter Tuning for the Flow Dynamics

Our studies have demonstrated that the flow dynamics developed by Rowley et
al, [4], [5] exhibit certain degrees of flexibility to match the frequency response
obtained from the real-time data with that of the input-output model. In
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order to analyze this, we have performed several tests to see which parameter
is responsible for introducing what sort of modification into the frequency
content. Following is a list summarizing our conclusions in this respect:

As ω0 increases, the dominant peak moves towards higher frequencies. The
frequency domain picture is stretched to the right.

As ζ increases, the values of the peaks get lowered, and the frequency
content becomes more flattened.

An increase in KS lifts up the entire frequency domain picture while mag-
nifying the peak values slightly.

If r is increased, more peaks appear particularly in the higher frequencies.
As τs increases, the frequency response acquires more fluctuations (peaks)

in the low frequencies. Further increments lead to more wavy low frequency
behavior.

Change in τa causes small translations with some tiny changes in the peak
magnitudes.

As KR increases, the peak magnitudes get larger.
Apparently, the above information constitutes a knowledge base for us,

and lets us know how to tune the parameters given some real-time data.
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Fig. 2. Power spectral density comparison of pressure data obtained from full order
Navier-Stokes simulation and data from the model in (4)

In this paper, we use trial and error method to match the frequency content
and the result of the model match is illustrated by Figure 2, from which we can
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see that the power spectral density of the simulation output of the linear model
matches that of the simulation outputs based on Navier-Stokes equations very
well. The data for the linear system are given in Table 1, on which the robust
controller design is based.

Table 1. Parameters of the Linear Model

Parameter Value

ω0 200 rad/sec
ζ 0.95
τs 0.0195 sec
τa 0.001 sec
r 0.1
ωr 100 rad/sec
KR 0.408
KS 1.65
Kv 1
Km 1

4 Robust Controller Design

Inserting the transfer functions of the shear layer and the acoustics into the
plant transfer function, we get

P (s) =
ω2

0
s2+2ζω0s+ω2

0
e−sτsKs

e−sτa

1−re−2sτa

1−KR
ω2

0
s2+2ζω0s+ω2

0
e−sτsKs

e−sτa

1−re−2sτa

,

=
KSω2

0e−s(τs+τa)

(s2 + 2ζω0s + ω2
0)(1− re−2sτa)−KRKSω2

0e−s(τs+τa)
, (5)

=
KSω2

0e−s(τs+τa)

(s2 + 2ζω0s + ω2
0)− r(s2 + 2ζω0s + ω2

0)e−2sτa −KRKSω2
0e−s(τs+τa)

.

Let us factorize P (s) into the form P (s) = No1(s)No2(s)Mn(s), where

No2(s) = KSG0(s) =
KS

1 + 2ζs/ω0 + s2/ω2
0

, (6)

Mn(s) = e−h1s, where h1 = τs + τa, (7)
No1(s) = (1−KRNo2(s)Mn(s)− r(s)M2(s))−1, (8)

where M2(s) = e−2τas. Plant is stable for the numerical values determined in
this case. For different numerical values it is possible to have an unstable plant,
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then finitely many unstable modes may appear from the roots of 1/No1(s) = 0.
This situation can be handled in our approach as well. At this stage, we
propose to use Toker-Özbay formula (see [6]) to design the controller. The
optimal robust performance is defined by

γopt := inf
C∈Ω

∥∥∥∥
(

W1S
W2T

) ∥∥∥∥
∞

, (9)

where Ω is the set of all compensators stabilizing P . It is known that
S = (1 + PC)−1 and T = 1 − S are the sensitivity and complementary sen-
sitivity functions and W1 and W2 are the performance and stability weight-
ing functions. Since the goal of the controller is to reduce the peak value of
|P (jω)S(jω)|, we choose the performance weighting function W1(s) as given
in (11), such that the oscillation magnitude at the dominating modes is sup-
pressed. To take care of the uncertainties in the high frequency, we set the
complementary sensitivity weighting function W2(s) as given by (13). In Fig-
ure 3, Bode plots of these weighting functions and the plant are depicted.

W1o(s) = k1
(1 + s/ω1n)
(1 + s/ω1d)

, (10)

W1(s) = W1o(s)(1− r(s)M2(s))No1(s), (11)
W2o(s) = ε2s(1 + s/ω1n), (12)
W2(s) = W2o(s)(1− r(s)M2(s)). (13)

Define the following functions

P2 = No2Mn, (14)
S2 = (1 + P2C2)−1, (15)
T2 = 1− S2. (16)

By inverting the outer part of the plant, we see that the H∞ controller has
to be in the form C(s) = C2(s)(1 − r(s)M2(s)) + KR, where C2 is designed
for

γ = inf
C2 stabilizesP2

∥∥∥∥
(

W1oS2

W2oT2

) ∥∥∥∥
∞

(17)

By definition, it can be seen that the performance specifications of both sys-
tems are equivalent, i.e.,

|W1(jω)S(jω)| = |W1o(jω)S2(jω)|, (18)

For the robustness of the system, it can be shown that if
∣∣∣∣
∆P2
P2

∣∣∣∣ <

∣∣∣∣γ−1W2o

∣∣∣∣, (19)
∣∣∣∣∆KR

∣∣∣∣ <

∣∣∣∣γ−1 W1oNo1(1− rM2)2

No2

∣∣∣∣. (20)
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then the system associated with plant P and controller C is robustly stable,
where ∆P2 denotes the uncertainty of the plant P2 and ∆KR

is the uncertainty
of the variable KR. The problem is significantly simplified such that C2 can
be computed explicitly by hand calculations. The optimal controller C2 for
P2 is in the form

C2(s) =
(

γ

γmin
− γmin

γ

)
N−1

o2 (s)
(1 + as + bs2)

(
1

1 + H(s)

)
, (21)

To compute the optimal performance level γ, define

γmin := k1
ω1d

ω1n
, (22)

γmax := k1, (23)

and

x =

√
k2
1 − γ2

γ2 − γ2
min

, (24)

b =
ε2

√
1− (γmin/γ)2

k1ω1d
, (25)

a =
√

2b + ε22(k
−2
1 − γ−2). (26)
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Taking the largest value of γ satisfying the below equality (27) in the allowable
range: γmax > γ > γmin will give us the optimal γ needed in the optimal
controller formula (21). For the current problem, we obtain γ = 1.9484.

π = h1ω1dx + tan−1x + tan−1 ω1dx

ω1n
+ tan−1 aω1dx

1− bω2
1dx

2
. (27)

To implement the controller in real-time, H(s) is expanded as a finite
impulse response (FIR) filter and an exponential decay term, i.e. H(s) =
HFIR(s) + HIIR(s), which are described in (28) and (29). The magnitude of
H(s) and its constituents are shown in Figure 7.

HFIR(s) =
(ω1d + ω1n)s + ω1nω1d − ω2

x + γ
γmin

ω2
1d(1 + x2)(d1s + d0)e−h1s

s2 + ω2
x

,

(28)

HIIR(s) =
γ

γmin

(
ω2

1d(1 + x2)(c1s + c0)− 1
1 + as + bs2

)
e−h1s, (29)

in which c0, c1, d0, d1 and ωx are defined as below:

c0 =
(b(1− bω2

x)− a2)
a

d1, (30)
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Fig. 4. Bode plot of the optimal controller
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c1 = −bd1, (31)

d0 = d1
(bω2

x − 1)
a

, (32)

d1 =
−a

ω2
xa2 + (1− bω2

x)2
, (33)

ωx = ω1dx. (34)

It has been demonstrated that the impulse response of HFIR(s) is re-
stricted to the time interval [0, h1], which is shown in Figure 6. Hence, HFIR(s)
can be realized as a FIR filter of duration h1. The discrete-time realization
of HFIR(s) requires only h1/Ts states, where Ts is the sampling period. The-
oretically, the infinite dimensional controller can be implemented through a
finite impulse response (FIR) filter approximation.

In Figure 4, we demonstrate the Bode plot of the controller, which has
been discussed above. Figure 8 illustrates the Bode plot of the closed loop
control system compared to the open loop plant. As the figure suggests, the
controller modifies the frequency content of the open loop system significantly
at the dominating modes. The resonant peaks in the frequency response of
the open loop system are suppressed and the improvement is obvious. Figure
9 shows the time domain simulation result of the the closed loop system.
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Fig. 6. Impulse response of HFIR(s)
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5 Conclusions

In this study, we focus on the transfer function based models of cavity flows.
Due to the delays inherited from the physics of the problem, the problem is
an infinite dimensional one. We demonstrate that a previously studied form
of delay-based flow model can be tuned so as to capture the resonant peaks
appearing in the frequency response. We present how a H∞ based controller
can be devised for such a Single-Input-Single-Output system. The observed
results demonstrate that the controller performs well under the presence of
uncertainties. The undesired resonant peaks of the open loop system have
been suppressed fairly well.
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