
SIVA: “CHAP05” — 2008/6/23 — 20:18 — PAGE 73 — #1

Chapter 5

Reduced order modeling of 2D Burgers
equation
Mehmet Önder Efe
Department of Electrical and Electronics Engineering, TOBB Economics and
Technology University, Sögütözü, TR-06560 Ankara, Turkey

Modeling is a critically important stage in many engineering applications. Especially in control
systems, a representative model constitutes the entity on which the design study is carried out.
When the systems governed by partial differential equations (PDEs) are taken into consideration, it
is seen that the traditional approaches of systems and control theory are not directly applicable. The
PDE model undergoes an intermediate modeling procedure, that is, the dimension reduction. This
fact is primarily because of the infinite dimensionality, in other words, the spatial continuity. The
two-dimensional Burgers equation is considered as the example. Proper orthogonal decomposition
(POD) is used for the order reduction and the chosen PDE is solved over a square domain, the
corners of which for both state variables are the possible inputs for external stimuli. The results
have shown that a useful low-dimensional model is achievable in standard state space, and the
representational capability of the model is satisfactory.

5.1 Introduction

Developing low-dimensional models for partial differential equations (PDEs) is one of the active
research topics today. Many physical phenomena are characterized by PDEs, and the understanding
of them sometimes requires simple computational tools such as a reduced order model capturing
the essential dynamics of the process. The two-dimensional (2D) Burgers equation is a good
example to study the difficulties encountered in low-dimensional modeling of infinite dimensional
systems. The reason is that the involved dynamics is governed by two coupled nonlinear PDEs
introducing a significant amount of computational complexity. Referring to [1], the 2D Burgers
equation is described by

wt + ε(w · ∇)w = µ∇2w (5.1)
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wherew(x, y, t) := (u(x, y, t) v(x, y, t))T , and (x, y, t) ∈ [0, 1]× [0, 1]× [0, T ], with T being
some final time. 2D Burgers equation has been studied in the past for modeling traffic flows,
shock waves and acoustic transmission. In [2–4], some variants of 2D Burgers equation have
been considered with the goal of finding exact solutions under certain circumstances. Blender, on
the other hand, postulates a method to obtain the solution of the PDE set in (5.1) iteratively [5].
Güngör [6] demonstrates that if suitable subalgebras can be defined, the PDE could be converted
into an ordinary differential equation (ODE), but it is a major problem to find such subalgebras
particularly for boundary control purposes. Nishinari et al. [7] focus on cellular automaton, which
is extensively studied for developing models of traffic flow, fluids and immune systems, and
therefore a good model to work on is a variant of Burgers equation. In [8], the dynamics that arises
upon discretization of 2D Burgers equation is analyzed. The effects of chosen time step (�t) for
getting physically reasonable numerical solutions are elaborated. Wescott and Rizwan-uddin [9]
present a computational technique to obtain the numerical solutions of PDEs having nonlinear
convection terms like 2D Burgers equation and Navier–Stokes equations. The goal in [9] is to
reduce the computation time without giving concessions from the accuracy. Boules and Eick [10]
obtain the solution for a specific boundary regime and initial conditions. Using a truncated Fourier
series expansion yields an autonomous ODE set, the solution of which approximates the numerical
solution, and the derived model rebuilds the situation implied by the chosen initial and boundary
conditions. Except [10], the works on 2D Burgers equation emphasize the similar difficulties as
the motivating factors and focus on the solutions and solvability issues. This chapter, on the other
hand, derives a nonautonomous ODE model that has external inputs explicitly and that is valid for
some set of boundary conditions with zero initials.

When the one-dimensional (1D) version is taken into consideration, it is seen that the 1D Burgers
equation has previously been considered for modeling and control system design purposes, and
it has been shown in [11, 21] that the task is achievable, yet there are very few results reporting
the modeling issues for vector PDE sets and higher dimensional cases as emphasized above. This
chapter fills the gap between very simple models such as 1D heat flow or Burgers system and
very complicated systems such as those reported in [22–24]. Clearly, the presented work is a step
towards the goal of modeling and control of more complicated PDE systems.

This chapter approaches the modeling problem from a control specialist’s point of view,
that is, a suitable model reduction associated with a set of well-defined system inputs and
a well-defined range of operating region. This process contains three major issues that need
to be addressed appropriately. First issue is to collect the representative data and to exploit
decomposition techniques for obtaining a set of ODEs. The next issue is to separate the
effect of external stimuli from the other terms by utilizing the boundary conditions. The last
issue is to validate the model. The considered process is continuous over a physical domain
(� := [0, 1]×[0,1]), the boundaries of which are the possible entries of external stimuli for
both u(x, y, t) and v(x, y, t). Choosing an adequately dense grid, say �d, makes it possible
to obtain a finite element representation of the processw(x, y, t) over�d. When the content of the
observed data, say w(x, y, t), is decomposed into spatial and temporal constituents (u(x, y, t) ≈∑RL
i=1�i(x, y)αi(t) and v(x, y, t)≈ ∑RL

i=1�i(x, y)αi(t)), the essence of spatial behavior appears
as a set of spatial basis functions (�(x, y) = {�1(x, y),�2(x, y), . . . , �RL(x, y)} and�(x, y) =
{�1(x, y),�2(x, y), . . . , �RL(x, y)}, withRL being a positive integer), and the essence of tempo-
ral evolution, α(t), appears as the solution of a set of ODEs obtained after utilizing the orthogonality
properties of the spatial basis functions, that is, the eigenfunctions.

As suggested in the pioneering work of Lumley [25], the dimension reduction in sys-
tems having high orders can be done by utilizing proper orthogonal decomposition (POD), or
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singular value decomposition (SVD) in cooperation with Galerkin projection [19, 22–24, 26–28],
or balancing methods as discussed in the survey of Gügercin andAntoulas [29]. The decomposition-
based methods exploit the sampled solutions (snapshots) obtained from the process and yield a
set of temporal variables associated with a set of spatial basis functions [24, 26, 27, 30]. In order
to obtain a useful approximation, the data, which is the raw information entering the modeling
process, should contain coherent modes. The procedure, if it succeeds, yields a set of autonomous
ODEs synthesizing the aforementioned temporal values. The reason that motivates us for using
POD is twofold: First, it is based on the numerical data, and this fact makes it possible to derive
a model where some instantaneous solutions of the process are measurable. Second, the POD is
an efficient way to approximate the grammians of a given system [31], and this fact is critically
important if the model is to be used for feedback system design.

Since the application of POD yields a set of autonomous ODEs, that is, no external inputs are
present, the separation of boundary condition(s) (or the control input(s)) from the remaining terms
becomes a key issue. For example, Krstić [18] describes a neatly selected Lyapunov function, and
the expression in its time derivative enables us to apply integration by parts; then the boundary
condition emerges in an explicit manner. Although the approach lets the designer manipulate
Dirichlét and Neumann type boundary conditions on Burgers equation, it is still tedious to follow
the same procedure for more complicated PDEs. This can be because of the high dimensionality
of the PDE in particular, and difficulty in finding an appropriate Lyapunov function in general.
Therefore, utilizing the numerical techniques is a practical alternative to describe reduced order
models for complicated systems of PDEs. Obtaining the ODE model with explicitly stated external
inputs is one important achievement of the overall modeling effort.

As pointed out in [20, 26], once the model is obtained, the final issue is to validate it. It has
been shown in the mentioned references that the behavior of the resulting model is similar to the
original system dynamics approximately over the frequency range covered in the model derivation
phase. This restricts the operating conditions to particular frequencies, which is also addressed in
this chapter.

The motivation of this chapter is to draw a clear path between a given PDE system and the
representative finite dimensional nonautonomous ODE model. With this in mind, the chapter is
organized as follows: Section 5.2 presents briefly the POD technique and its relevance to the
modeling strategy. In Section 5.3, development of the reduced order ODE model for the 2D
Burgers equation is postulated. The justification of the model, results and the contributions to the
subject area are discussed in Section 5.4. Concluding remarks are given at the end of the chapter.

5.2 Proper orthogonal decomposition

Consider the ensemble Pi ∈ �m×n, i = 1, 2, . . . , Ns , where Ns is the number of elements. Every
element of this set corresponds to a snapshot observed from a process, say, for example, 2D
Burgers equation given in (5.1) or

ut = µuxx + µuyy − εuux − εvuy

vt = µvxx + µvyy − εuvx − εvvy, (5.2)

with ε andµ being known constants, and the subscripts x, y and t refer to the partial differentiation
with respect to x, y and time, respectively. The continuous time process takes place over the
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physical domain � := {(x, y)|(x, y) ∈ [0, 1] × [0, 1]} and the solution is obtained on a grid
denoted by �d, which describes the coordinates of the pixels of every snapshot in the ensemble.

The goal is to find an orthonormal basis set letting us to write the solution as

(
u(x, y, t)

v(x, y, t)

)
≈
(
û(x, y, t)

v̂(x, y, t)

)
=

RL∑
i=1

αi(t)

(
Φi(x, y)

Ψi(x, y)

)
(5.3)

where αi(t) is the temporal part,

(
�i(x, y)

�i(x, y)

)
is the spatial part,

(
û(x, y, t)

v̂(x, y, t)

)
is the finite element

approximate of the infinite dimensional PDE andRL is the number of independent basis functions
that can be synthesized from the given ensemble, or equivalently the set of eigenfunctions that
spans the space described by the ensemble. It will later be clear that the orthonormality of the

elements of the basis set

(
Φi(x, y)

Ψi(x, y)

)
for i = 1, 2, . . . , RL, and Galerkin projection technique

let us obtain a finite dimensional set of dynamical equations. More explicitly, the inner product
operator defined over the basis functions is described as〈(

�i
�i

)
,

(
�j
�j

)〉
�

:=
∫∫

�

(
�i�j +�i�j

)
d� = δij (5.4)

where δij = 1 when i = j and zero otherwise, that is, the Kronecker delta. With these definitions,
the POD procedure can be summarized as follows:

Step 1. Define the concatenated process snapshot captured at time t as

Pt :=
(
Ut
Vt

)
, where Ut and Vt are R × R, Pt is m × n with m = 2R and n = R, and R

determines the spatial resolution. Without loss of generality, t could be an integer that is used to
index the snapshots. Start calculating the Ns × Ns dimensional correlation matrix L, the (ij)-th
entry of which is Lij := 〈Pi, Pj 〉�d , where 〈., .〉�d is the inner product operator defined over the

chosen spatial grid�d. Notice that the basis vectors

(
�i(x, y)

�i(x, y)

)
are defined over�, whereas the

bases that are obtained numerically (the sampled forms)

(
φi
ψi

)
are defined over �d and, φi and

ψi are R × R matrices. Therefore, we need the equivalent form of the used inner product, which
is given as 〈(

φi
ψi

)
,

(
φj
ψj

)〉
�d

: = 1

Ns

(
φi � φj + ψi � ψj

)

= 1

Ns

R∑
p=1

R∑
q=1

φi(p, q)φj (p, q)+ ψi(p, q)ψj (p, q)

= δij , (5.5)

where φa � φb := ∑R
i=1

∑R
j=1 φa(i, j)φb(i, j), that is, � stands for the sum of all elements of a

matrix that is obtained through elementwise multiplication of two matrices.
Step 2. Find the eigenvectors denoted by ξi and the associated eigenvalues (λi) of the symmetric

matrix L. Sort them in a descending order in terms of the magnitudes of λi . Note that every ξi
is an Ns × 1 dimensional vector satisfying ξTi ξi = 1

λi
; here, for simplicity of the exposition, we

assume that the eigenvalues are distinct.
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Step 3. Construct the basis set by utilizing the snapshots

(
φi
ψi

)
=

Ns∑
k=1

ξikPk =
Ns∑
k=1

(
ξikUk
ξikVk

)
, (5.6)

where ξik is the k-th entry of the eigenvector ξi , and i = 1, 2, ..., RL, where RL = rank(L). It can

be shown that

〈(
φi
ψi

)
,

(
φj
ψj

)〉
�d

= δij , with δij being the Kronecker delta function. Notice that

the basis functions are admixtures of the snapshots [21, 24, 26].
Step 4. Calculate the temporal coefficients. When t = tk , taking the inner product of both sides

of (5.3) with

(
�i
�i

)
, the orthonormality property leads to

αi(tk) =
〈(
�i(x, y)

�i(x, y)

)
,

(
û(x, y, tk)

v̂(x, y, tk)

)〉
�

=
〈(
φi
ψi

)
,

(
Utk
Vtk

)〉
�d

, (5.7)

Note that the temporal coefficients satisfy orthogonality properties over the discrete set
tk ∈ {t1, t2, . . . , tNs } (see Eq. (5.8)). For a more detailed discussion on the POD method, the
reader is referred to [22–24, 26] and references therein,

Ns∑
i=1

〈(
Ui
Vi

)
,

(
φk
ψk

)〉2

�d

≈
Ns∑
i=1

α2
k (ti) = λk. (5.8)

Underlying Assumption: The majority of works dealing with POD and model reduction applica-

tions presume that the flow is dominated by coherent modes and the quantities

(
u(x, y, t)

v(x, y, t)

)
and(

û(x, y, t)

v̂(x, y, t)

)
are indistinguishable [19,22–24,26]. Because of the dominance of coherent modes,

the typical spread of the eigenvalues of the correlation matrixL turns out to be logarithmic and the
terms decay very rapidly in magnitude. This fact further enables to assume that a reduced order
representation, say with M modes (M ≤ min(RL,Ns)), can also be written as an equality

(
û(x, y, t)

v̂(x, y, t)

)
=

M∑
i=1

αi(t)

(
�i(x, y)

�i(x, y)

)
, (5.9)

and the reduced order model is derived under the assumption that (5.9) satisfies the governing
PDE. Unsurprisingly, such an assumption results in a model having uncertainties; however, one
should keep in mind that the goal is to find a model that matches the infinite dimensional system
in some sense of approximation with typically M � RL ≤ Ns . To represent how good such an
expansion is, a percent energy measure is defined as follows:

E =
∑M
i=1 λi∑RL
i=1 λi

× 100%, (5.10)

where the tendency of E→ 100% means that the model captures the dynamical information
contained in the snapshots well. Conversely, an insufficient model will be obtained if E is far
below 100%. The second part of the underlying assumption emphasizes the compliance between
the numerical solution obtained over a finite-dimensional grid defined over�d and the true solution
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defined over �. This statement makes it possible to use a snapshot as an entity representing the
true dynamics at a particular instant of time.

In Section 5.3, we demonstrate how the boundary condition is transformed to an explicit control
input in the ODEs.

5.3 Development of the ODE model

According to the underlying assumption of POD-based model reduction scheme, the approximate
solution in Eq. (5.9) must satisfy the PDE in Eq. (5.2). Substituting Eq. (5.9) into Eq. (5.2) and

taking the inner product of both sides with

(
�k
�k

)
yields

α̇k = µ

M∑
i=1

αi

〈(
�xxi +�yyi
�xxi +�yyi

)
,

(
�k
�k

)〉
�

− ε

M∑
i=1

M∑
j=1

αiαj

〈(
�i�xj +�i�yj
�i�xj +�i�yj

)
,

(
�k
�k

)〉
�

.

(5.11)

Notice that the orthonormality property of the basis vectors leaves the α̇k term alone on the left-
hand side. Equivalently, by using the numerical quantities, the expression above can be rewritten
as follows:

α̇k = µ

M∑
i=1

αi

〈(
φxxi + φyyi
ψxxi + ψyyi

)
,

(
φk
ψk

)〉
�d

− ε

M∑
i=1

M∑
j=1

αiαj

〈(
φi ◦ φxj + ψi ◦ φyj
φi ◦ ψxj + ψi ◦ ψyj

)
,

(
φk
ψk

)〉
�d

, (5.12)

where ◦ stands for the elementwise multiplication of two matrices.
Although it is straightforward to conclude with the ODEs given in Eqs. (5.11) and (5.12), it

is apparent that these equations do not have the boundary conditions (external inputs) explicitly.
Chosen initial conditions and boundary excitation regime determine the solution, and the ODEs
above resynthesize the temporal variables, αi(t), associated with that particular solution (see
Eq. (5.9)). It is clear that such an ODE model is useless as it is specific to the chosen boundary
conditions. Our goal is to obtain a model that has external inputs explicitly and that can be used
for the boundary conditions other than the used ones. For this purpose, a method needs to be
postulated for separating the boundary excitations appropriately. According to the definition of the
inner product operator, it should be obvious that〈(

φi
ψi

)
,

(
φj
ψj

)〉
�d

=
〈(
φi
ψi

)
,

(
φj
ψj

)〉
�d\∂�d

+
〈(
φi
ψi

)
,

(
φj
ψj

)〉
∂�d

. (5.13)

In Eq. (5.13), ∂�d indicates the boundaries of the considered domain where the boundary
conditions are specified freely. In this chapter, we study pointwise boundary excitations; alterna-
tively, one could prescribe the boundary conditions along some subdomain of ∂�d. The approach
presented in this chapter can be extended to handle such cases.

Denote (xc, yc) as one of the points at which the solution is independently specified (i.e., the
boundary) and (pxc , qyc ) as the row and column numbers of this location in matrices φi and ψi .
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Note that the prescribed solution in Eq. (5.9) must be satisfied also at (xc, yc), i.e., we have

û(xc, yc, t) := γxcycu(t) =
M∑
i=1

αi(t)φi(pxc , qyc ) (5.14a)

v̂(xc, yc, t) := γxcycv(t) =
M∑
i=1

αi(t)ψi(pxc , qyc ) (5.14b)

or, equivalently, we can rewrite these equations as

αk(t)φk(pxc , qyc ) = γxcycu(t)−
M∑
i=1

(1 − δik) αi(t)φi(pxc , qyc ), (5.15)

αk(t)ψk(pxc , qyc ) = γxcycv(t)−
M∑
i=1

(1 − δik) αi(t)ψi(pxc , qyc ). (5.16)

Since we consider the problem on a square domain, �d, for both states, every corner can be a
possible entry for the external excitations and we may have at most eight distinct inputs for this
system. Once the Dirichlét type corner conditions are specified, the numerical solutions u(x, y, t)
and v(x, y, t) on x = 0, y = 0, x = 1 and y = 1 segments of�d need to be obtained. This can be
achieved by setting the relevant partial derivatives in Eq. (5.2) to zero and by solving the resulting
PDE. For example, we solve

ut = µuyy − εvuy

vt = µvyy − εvvy (5.17)

along x = 1 segment, which is a significant subtlety of moving from 1D to 2D. For the simplicity
of the exposition, assume xc = 0 and yc = 0 ((pxc , qyc ) = (1, 1)) is the chosen corner, and rewrite
Eq. (5.12) as follows:

α̇k = µ

Ns

M∑
i=1

αi
((
φxxi + φyyi

)
� φk + (

ψxxi + ψyyi
)
� ψk

)

− ε

Ns

M∑
i=1

M∑
j=1

αiαj
((
φi ◦ φxj + ψi ◦ φyj

)
� φk

)+ ((
φi ◦ ψxj + ψi ◦ ψyj

)
� ψk

)
.

(5.18)

Let ζi := φxxi + φyyi and θi := ψxxi + ψyyi , and rearrange Eq. (5.18) as given below

α̇k = µ

Ns

M∑
i=1

αi (ζi � φk + θi � ψk)

− ε

Ns

M∑
i=1

M∑
j=1

αiαj
((
φi ◦ φxj + ψi ◦ φyj

)
� φk

)+ ((
φi ◦ ψxj + ψi ◦ ψyj

)
� ψk

)
.

(5.19)

Define φ′
k = {φ′

k|φ′
k(i, j) = φk(i, j) when i �= pxc , j �= qyc , and φ′

k(pxc , qyc ) = 0} and
ζ ′
k = {ζ ′

k|ζ ′
k(i, j) = ζk(i, j) when i �= pxc , j �= qyc , and ζ ′

k(pxc , qyc ) = 0} and so on. By
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this means, the matrices used in the derivation have zero values corresponding to the external
excitation entries. Now we can explicitly write the first term in Eq. (5.19) as follows:

M∑
i=1

αiζi � φk =
M∑
i=1

αi
(
ζ ′
i � φ

′
k + ζi(1, 1)φk(1, 1)

)

=
M∑
i=1

αi
(
ζ ′
i � φ

′
k

)+
M∑
i=1

αiζi(1, 1)φk(1, 1)

=
M∑
i=1

αi
(
ζ ′
i � φ

′
k

)+
(
αkζk(1, 1)φk(1, 1)+

M∑
i=1

(1 − δik)αiζi(1, 1)φk(1, 1)

)
.

(5.20)

Utilizing Eq. (5.15) for the term αkζk(1, 1)φk(1, 1), we get

αkζk(1, 1)φk(1, 1) = γ00u(t)ζk(1, 1)−
M∑
i=1

(1 − δik)αiζk(1, 1)φi(1, 1). (5.21)

Inserting Eq. (5.21) into Eq. (5.20) yields the following:

M∑
i=1

αiζi � φk = γ00u(t)ζk(1, 1)+
M∑
i=1

αi
(
ζ ′
i � φ

′
k

)

+
M∑
i=1

(1 − δik)αi (ζi(1, 1)φk(1, 1)− ζk(1, 1)φi(1, 1))

= γ00u(t)ζk(1, 1)+
M∑
i=1

αi
(
ζ ′
i � φ

′
k

)

+
M∑
i=1

αi (ζi(1, 1)φk(1, 1)− ζk(1, 1)φi(1, 1))

= γ00u(t)ζk(1, 1)+
M∑
i=1

αi
(
ζ ′
i � φ

′
k

)

+
M∑
i=1

αi (ζi(1, 1)φk(1, 1)− ζk(1, 1)φi(1, 1))

= γ00u(t)ζk(1, 1)+
M∑
i=1

αi (ζi � φk − ζk(1, 1)φi(1, 1)) . (5.22)

For the second term in the first summation of Eq. (5.19), this result implies the equality in Eq. (5.23),
and the concatenated form is given in Eq. (5.24),

M∑
i=1

αi(θi � ψk) = γ00v(t)θk(1, 1)+
M∑
i=1

αi (θi � ψk − θk(1, 1)ψi(1, 1)) . (5.23)
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M∑
i=1

αi (ζi � φk + θi � ψk) = γ00u(t)ζk(1, 1)+ γ00v(t)θk(1, 1)

+
M∑
i=1

αi (ζi � φk + θi � ψk − ζk(1, 1)φi(1, 1)− θk(1, 1)ψi(1, 1)) . (5.24)

In the rest of this section, we will apply the same reasoning to the terms seen in the second line
of Eq. (5.19). For this purpose, consider the first term,

M∑
i=1

M∑
j=1

αiαj
((
φi ◦ φxj

)
� φk

) =
M∑
i=1

M∑
j=1

αiαj

((
φ′
i ◦ φ′

xj

)
� φ′

k + φi(1, 1)φxj (1, 1)φk(1, 1)
)
,

(5.25)

where we have

M∑
i=1

M∑
j=1

αiαjφi(1, 1)φxj (1, 1)φk(1, 1) = φk(1, 1)
M∑
i=1

αiφi(1, 1)
M∑
j=1

αjφxj (1, 1)

= φk(1, 1)γ00u

M∑
j=1

αjφxj (1, 1). (5.26)

Inserting Eq. (5.26) into Eq. (5.25) results in Eq. (5.27), and applying the same reasoning for the
remaining three terms of Eq. (5.19) gives the equalities in Eqs. (5.28)–(5.30):

M∑
i=1

M∑
j=1

αiαj
((
φi ◦ φxj

)
� φk

) =
M∑
i=1

M∑
j=1

αiαj

((
φ′
i ◦ φ′

xj

)
� φ′

k

)

+ γ00u

M∑
j=1

αjφk(1, 1)φxj (1, 1), (5.27)

M∑
i=1

M∑
j=1

αiαj
((
ψi ◦ φyj

)
� φk

) =
M∑
i=1

M∑
j=1

αiαj

((
ψ ′
i ◦ φ′

yj

)
� φ′

k

)

+ γ00v

M∑
j=1

αjφk(1, 1)φyj (1, 1), (5.28)

M∑
i=1

M∑
j=1

αiαj
((
φi ◦ ψxj

)
� ψk

) =
M∑
i=1

M∑
j=1

αiαj

((
φ′
i ◦ ψ ′

xj

)
� ψ ′

k

)

+ γ00u

M∑
j=1

αjψk(1, 1)ψxj (1, 1), (5.29)



SIVA: “CHAP05” — 2008/6/23 — 20:18 — PAGE 82 — #10

82 Reduced order modeling of 2D Burgers equation

M∑
i=1

M∑
j=1

αiαj
((
ψi ◦ ψyj

)
� ψk

) =
M∑
i=1

M∑
j=1

αiαj

((
ψ ′
i ◦ ψ ′

yj

)
� ψ ′

k

)

+ γ00v

M∑
j=1

αjψk(1, 1)ψyj (1, 1). (5.30)

According to the above derivation, the low-dimensional model for the 2D Burgers equation can
be given by

Ẋ (t) = AX (t)− B (X (t))+ CΓ (t)− D(X (t), Γ (t)), (5.31)

where X (t) = (
α1(t) α2(t) · · ·αM(t)

)T
, Γ (t) = (

γ00u(t) γ00v(t)
)T

, A is M ×M , B is M × 1,
C is M × 2 and D is M × 1. From Eq. (5.24), we can write the (ki)-th entry of matrix A and k-th
row of matrix C as follows:

(A)ki = µ

Ns
(ζi � φk + θi � ψk − ζk(1, 1)φi(1, 1)− θk(1, 1)ψi(1, 1)) , (5.32)

(C)k = µ

Ns
(ζk(1, 1) θk(1, 1)) . (5.33)

where k, i = 1, 2, . . . ,M . Similarly, from Eqs. (5.27)–(5.30), it is seen that

B(X ) =
(
X T B1XX T B2X · · · X TBMX

)T
(5.34)

where the ij -th entry of matrix Bk is

(Bk)ij = ε

Ns

((
φ′
i ◦ φ′

xj

)
� φ′

k +
(
ψ ′
i ◦ φ′

yj

)
� φ′

k +
(
φ′
i ◦ ψ ′

xj

)
� ψ ′

k +
(
ψ ′
i ◦ ψ ′

yj

)
� ψ ′

k

)
,

(5.35)

and the k-th row entry of vector D is computed as

(D)k = γ00u
ε

Ns

M∑
j=1

αj
(
φk(1, 1)φxj (1, 1)+ ψk(1, 1)ψxj (1, 1)

)

+ γ00v
ε

Ns

M∑
j=1

αj
(
φk(1, 1)φyj (1, 1)+ ψk(1, 1)ψyj (1, 1)

)
(5.36)

or

D = DuXγ00u +DvXγ00v (5.37)

where Du and Dv are M ×M matrices and the (kj)-th entry is computed as

(Du)kj = ε

Ns

(
φk(1, 1)φxj (1, 1)+ ψk(1, 1)ψxj (1, 1)

)
, (5.38)

and

(Dv)kj = ε

Ns

(
φk(1, 1)φyj (1, 1)+ ψk(1, 1)ψyj (1, 1)

)
, (5.39)

with k, j = 1, 2, . . . ,M . According to the derivation discussed in this section, once the initial and
boundary conditions are specified, one can get a dynamic model that captures the essential features
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of the solution. Although we have derived the model by assuming the external excitation enters
at a single point for u and v dynamics, it is straightforward to apply the scheme for obtaining a
model having up to eight inputs. In Section 5.4, the model is validated through some examples.

5.4 Justification of the model

In order to obtain the model, the 2D Burgers equation in Eq. (5.1) is solved for the boundary
conditions given as

γ00u(t) = sin(1000πt(T − t))

γ00v(t) = cos

(
1000πt

(
T

2
− t

))
. (5.40)

The time plots and the fast Fourier transforms (FFT) of the signals above are depicted in Fig. 5.1.
The reason that drives us to choose such signals is the spectral richness. If the spectral content
of the excitations are rich enough, the resulting model is more likely to operate properly over the
covered frequency range [20, 21]. The other important parameters of the simulation are tabulated
in Table 5.1. The numerical solution is obtained through Crank–Nicholson method with zero initial
conditions [32], and after the application of the modeling procedure discussed in Section 5.3, a
model is obtained in the form of Eq. (5.31).
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Figure 5.1: Boundary signals used for model derivation
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Table 5.1: Simulation settings

R 25
M 8
�t 0.1 ms
T 0.2 s
Ns 201
ε 1
µ 5
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Figure 5.2: First set of boundary signals that are used for model validation

It has been observed that the eigenvalues (λi) decay very rapidly, and the captured energy
content described by Eq. (5.10) is 99.9021%, which is found acceptable. The justification has
been done with the same settings as shown in Table 5.1, and the first set of boundary excitations
that are used in the model validation phase are

γ00u(t) = sin(700πt(T − t))+ 0.2 sin(1700πt(T − t)),

γ00v(t) = cos

(
500πt

(
T

2
− t

))
+ 0.1 cos

(
1500πt

(
T

2
− t

))
. (5.41)

Figure 5.2 illustrates these signals and the low frequency appearance of their FFT magnitude
plots. The PDE is solved for this new case and the αi(t) values are obtained by using Eq. (5.7),
which yields the desired values. On the other hand, the model had already been developed, and
it is simulated for the test boundary conditions in Eq. (5.41) with zero initials. The outcome is
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Figure 5.3: The desired values (thick curves) of αi(t) and the obtained values (thin curves) for
the first set of test conditions

expected to approximate the desired ones if the algorithm succeeds. The results are shown in
Fig. 5.3, where the first remark is the number of ODEs that provided this result. With M = 8
modes (ODEs), the task can be achieved to the extent seen in Fig. 5.3. For the first five modes, the
match is quite good, yet as the mode number increases the dissimilarity between the desired and
generated values become more distinguishable. Since the dominance of the corresponding modes
decrease logarithmically, as seen from Fig. 5.3 as well, so do their effect on the overall result.
Therefore, the similarity of the first few modes is more substantial than the similarity of modes
having high index numbers. A rough look at the eight subplots of Fig. 5.3 altogether gives the idea
of a successful approximation from a higher dimensionality to low orders, which is the goal of
this chapter.

We have repeated our tests for an extensive set of test signals. The correlation between the
model performance and spectral content of the external excitations is seen empirically. To clarify
this further, consider the second set of boundary conditions described by Eq. (5.42), which are
depicted in Fig. 5.4.

γ00u(t) = sin

(
700πt

(
T

7
− t

))
+ 0.2 sin

(
1700πt

(
T

4
− t

))
,

γ00v(t) = sin(2000πt(T − t)). (5.42)

A comparison of the Figs. 5.2 and 5.4, and Figs. 5.3 and 5.5 stipulate that the second set of
boundary conditions displays sharper fluctuations than the first set, and therefore they spread over
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Figure 5.4: Second set of boundary signals that are used for model validation
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Figure 5.5: The desired values (thick curves) of αi(t) and the obtained values (thin curves) for
the second set of test conditions
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Figure 5.6: The desired values (thick curves) of αi(t) and the obtained values (thin curves) for
constant boundary conditions

a wider range in the frequency spectrum (see Fig. 5.4, bottom row). Qualitatively, the second set of
boundary signals are dissimilar from the first set in the sense of spectral compositions. According
to this, the results depicted in Figs. 5.3 and 5.5 support the following claim: The descriptive nature
of the signals used in the model derivation is inherited by the developed dynamical model, and the
signals that do not resemble to the model derivation conditions make the system fail, depending on
the level of dissimilarity between the model derivation and validation signals. The dependence on
the spectral content is an important conclusion determining the features and limitations of the low
order model. Although it is very clear in Fig. 5.5 that the smooth parts of the temporal variables are
reconstructed well, the performance where the signals change quickly is low. The same conclusion
is visible also on the results seen in Fig. 5.3.

Another issue is to figure out the very low frequency behavior. For this purpose we have chosen
constant boundary conditions, and set γ00u(t)= 1 and γ00v(t)= − 0.8. The obtained results are
illustrated in Fig. 5.6. The idea that we infer from the behavior of temporal variables shown in
Figs. 5.3, 5.5 and 5.6 claim that the dynamic model is valid on a frequency region that is from zero
to some upper value determined by the model derivation conditions. According to the results of
this study, it is fair to claim that the dynamic model in Eq. (5.31) functions properly upto 100 Hz.
Considering the results obtained in [10], it is seen that the presented work achieves the modeling
goal with a few ODEs and associated spatial eigenfunctions.

Anatural issue that needs to be highlighted is the way of improving obtained results. Expectedly,
increasing the grid fineness, decreasing �t , increasing the number of snapshots entering the
POD procedure (Ns) and increasing the number of modes (M) are the alternatives that result in
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better model performance, yet the price paid for this improvement is the increased computational
intensity.

5.5 Conclusions

The research on flow modeling is drawing an ever-increasing attention [33–36]. One of the central
issues in this field is the order reduction of the infinite dimensional model. Toward this goal, POD
is one alternative among many others (see e.g. [29,33–36] and references therein). Its capability of
capturing the essential dynamics dominating the entire physical phenomena makes POD preferable
in the research on flow systems.

This chapter focuses on the low-dimensional modeling of 2D Burgers equation. The driving
facts for focusing on this system are its nonlinear, coupled and vector-valued PDE nature. Once
the POD algorithm is implemented, it is seen that the resulting ODE model is an autonomous
one, and a method to overcome this problem needs to be developed. One major contribution of
this chapter is on this issue, that is, the separation of boundary terms to obtain a nonautonomous
ODE model is demonstrated step by step on such a complicated system. The second contribution
of this chapter is its emphasis on the locality of the developed low order models. This feature
is illustrated with an example. It is seen that the conditions used in the model derivation are
critically important and the POD procedure has a natural propensity to build models that are valid
on particular conditions. With these results, the present work advances the subject area to the
establishment of a clear connection between state space methods of control theory and complex
infinite dimensional systems of PDEs. The fact that this connection is built through the numerical
observations from the infinite dimensional process is worthwhile to stress the applicability of the
discussed modeling effort for other systems of PDEs. The simplicity of the final model is another
merit of the presented approach.
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[17] W.-J. Liu and M. Krstić. Adaptive control of Burgers equation with unknown viscosity.
International Journal Adaptive Control and Signal Processing, 15:745–766, 2001.
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